首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genetically engineered Sindbis viruses (SIN) are excellent oncolytic agents in preclinical models. Several human cancers have aberrant Akt signaling, and kinase inhibitors including rapamycin are currently tested in combination therapies with oncolytic viruses. Therefore, it was of interest to delineate possible cross-regulation between SIN replication and PI3K/Akt/mTOR signaling. Here, using HEK293T cells as host, we report the following key findings: (a) robust SIN replication occurs in the presence of mTOR specific inhibitors, rapamycin and torin1 or Ly294002 – a PI3K inhibitor, suggesting a lack of requirement for PI3K/Akt/mTOR signaling; (b) suppression of phosphorylation of Akt, mTOR and its effectors S6, and 4E-BP1 occurs late during SIN infection: a viral function that may be beneficial in counteracting cellular drug resistance to kinase inhibitors; (c) Ly294002 and SIN act additively to suppress PI3K/Akt/mTOR pathway with little effect on virus release; and (d) SIN replication induces host translational shut off, phosphorylation of eIF2α and apoptosis. This first report on the potent inhibition of Akt/mTOR signaling by SIN replication, bolsters further studies on the development and evaluation of engineered SIN genotypes in vitro and in vivo for unique cytolytic functions.  相似文献   

2.
Chen J  Jin J  Song M  Dong H  Zhao G  Huang L 《Gene》2012,496(2):128-135

Objective

C-reactive protein (CRP), the prototypic marker of inflammation, has been shown to be an independent predictor of atherosclerosis. CRP can regulate receptor for advanced glycation end-products (RAGE) expression in endothelial progenitor cells (EPCs). Endothelial nitric oxide synthase (eNOS) deficiency is a pivotal event in atherogenesis. It is believed that decreased eNOS bioactivity occurs early in atherogenesis. Therefore, we tested the hypothesis that CRP can alter eNOS expression and promote apoptosis in EPCs through RAGE.

Methods and results

EPCs, isolated from bone marrow, were cultured in the presence or absence of LPS-free CRP (5, 10, 15, 20, and50 μg/ml). RAGE protein expression and siRNA were measured by flow cytometric analysis. PCR was used to detect eNOS mRNA expression. eNOS protein expression was measured by Western blot analysis. A spectrophotometer was used to assess eNOS activity. A modified Boyden's chamber was used to assess the migration of EPCs and the number of recultured EPCs was counted to measure adhesiveness. A MTT assay was used to determine proliferation. Apoptosis was evaluated by annexin V immunostaining and TUNEL staining. Co-culturing with CRP caused a significant down-regulation of eNOS expression, inhibited the proliferation, migration, and adhesion of EPCs, and induced EPC apoptosis. In addition, these effects were attenuated during RAGE protein expression blockade by siRNA.

Conclusions

CRP, at concentrations known to predict cardiovascular event, directly quenches the expression of eNOS and diminishes NO production, and may serve to impair EPC function and promote EPC apoptosis through RAGE. These data further support a direct role of CRP in the development and/or progression of atherosclerosis and indicate a new pathophysiologic mechanism of disturbed vascular adaptation in atherosclerosis.  相似文献   

3.
mTOR regulation of autophagy   总被引:1,自引:0,他引:1  
Chang Hwa Jung 《FEBS letters》2010,584(7):1287-21
Nutrient starvation induces autophagy in eukaryotic cells through inhibition of TOR (target of rapamycin), an evolutionarily-conserved protein kinase. TOR, as a central regulator of cell growth, plays a key role at the interface of the pathways that coordinately regulate the balance between cell growth and autophagy in response to nutritional status, growth factor and stress signals. Although TOR has been known as a key regulator of autophagy for more than a decade, the underlying regulatory mechanisms have not been clearly understood. This review discusses the recent advances in understanding of the mechanism by which TOR regulates autophagy with focus on mammalian TOR (mTOR) and its regulation of the autophagy machinery.  相似文献   

4.
To maintain the normal length of female reproductive life, the majority of primordial follicles must be maintained in a quiescent state for later use. In this study, we aimed to study the effects of rapamycin on primordial follicle development and investigate the role of mTOR and sirtuin signaling. Rats were treated every other day with an intraperitoneal injection of rapamycin (5 mg/kg) or vehicle. After 10 weeks of treatment, ovaries were harvested for hematoxylin and eosin (HE) staining, and analysis by immunohistochemistry and Western blotting. HE staining showed that the number and percentage of primordial follicles in the rapamycin-treated group were twice the control group (P < 0.001). Immunohistochemical analysis showed that mTOR and phosphorylated-p70S6K were extensively expressed in surviving follicles with strong staining observed in the cytoplasm of the oocyte. Western blotting showed decreased expression of phosphorylated mTOR and phosphorylated p70S6K in the rapamycin-treated group, and increased the expression of both SIRT1 and SIRT6 compared to the control group (P < 0.05). Taken together, these results suggest that rapamycin may inhibit the transition from primordial to developing follicles and preserve the follicle pool reserve, thus extending the ovarian lifespan of female rats via the modulation of mTOR and sirtuin signalings.  相似文献   

5.
Programmed cell death 6 (PDCD6) was originally found as a pro-apoptotic protein, but its molecular mechanism is not well understood. In this study, we have attempted to investigate the effects of PDCD6 on the inhibition of angiogenesis-mediated cell growth as a novel anti-angiogenic protein. Purified recombinant human PDCD6 inhibited cell migration in a concentration-time-dependent manner. We also found that overexpressed PDCD6 suppressed vascular endothelial growth factor (VEGF)-induced proliferation, invasion, and capillary-like structure tube formation in vitro. PDCD6 suppressed phosphorylation of signaling regulators downstream from PI3K, including Akt, mammalian target of rapamycin (mTOR), glycogen synthase kinase-3β(GSK-3β), ribosomal protein S6 kinase (p70S6K), and also decreased cyclin D1 expression. We found binding PDCD6 to VEGFR-2, a key player in the PI3K/mTOR/P70S6K signaling pathway. Taken together, these data suggest that PDCD6 plays a significant role in modulating cellular angiogenesis.  相似文献   

6.
7.
The PI3K signaling pathway is activated in a broad spectrum of human cancers, either directly by genetic mutation or indirectly via activation of receptor tyrosine kinases or inactivation of the PTEN tumor suppressor. The key nodes of this pathway have emerged as important therapeutic targets for the treatment of cancer. In this study, we show that (−)-epigallocatechin-3-gallate (EGCG), a major component of green tea, is an ATP-competitive inhibitor of both phosphoinositide-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) with Ki values of 380 and 320 nM respectively. The potency of EGCG against PI3K and mTOR is within physiologically relevant concentrations. In addition, EGCG inhibits cell proliferation and AKT phosphorylation at Ser473 in MDA-MB-231 and A549 cells. Molecular docking studies show that EGCG binds well to the PI3K kinase domain active site, agreeing with the finding that EGCG competes for ATP binding. Our results suggest another important molecular mechanism for the anticancer activities of EGCG.  相似文献   

8.
Chronic exposure of blood vessels to cardiovascular risk factors such as free fatty acids, LDL-cholesterol, homocysteine and hyperglycemia can give rise to endothelial dysfunction, partially due to decreased synthesis and bioavailability of nitric oxide (NO). Many of these same risk factors have been shown to induce endoplasmic reticulum (ER) stress in endothelial cells. The objective of this study was to examine the mechanisms responsible for endothelial dysfunction mediated by ER stress. ER stress elevated both intracellular and plasma membrane (PM) cholesterols in BAEC by ~ 3-fold, indicated by epifluorescence and cholesterol oxidase methods. Increases in cholesterol levels inversely correlated with neutral sphingomyelinase 2 (NSMase2) activity, endothelial nitric oxide synthase (eNOS) phospho-activation and NO-production. To confirm that ER stress-induced effects on PM cholesterol were a direct consequence of decreased NSMase2 activity, enzyme expression was either enhanced or knocked down in BAEC. NSMase2 over-expression did not significantly affect cholesterol levels or NO-production, but increased eNOS phosphorylation by ~ 1.7-fold. Molecular knock down of NSMase2 decreased eNOS phosphorylation and NO-production by 50% and 40%, respectively while increasing PM cholesterol by 1.7-fold and intracellular cholesterol by 2.7-fold. Furthermore, over-expression of NSMase2 in ER-stressed BAEC lowered cholesterol levels to within control levels as well as nearly doubled the NO production, restoring it to ~ 74% and 68% of controls using tunicamycin and palmitate, respectively. This study establishes NSMase2 as a pivotal enzyme in the onset of endothelial ER stress-mediated vascular dysfunction as its inactivation leads to the attenuation of NO production and the elevation of cellular cholesterol.  相似文献   

9.
10.
When deprived of an anchorage to the extracellular matrix, fibroblasts arrest in the G1 phase with inactivation of Cdk4/6 and Cdk2 and destruction of Cdc6, the assembler of prereplicative complexes essential for S phase onset. How cellular anchorages control these kinases and Cdc6 stability is poorly understood. Here, we report that in rat embryonic fibroblasts, activation of mammalian target of rapamycin complex 1 by a Tsc2 mutation or overexpression of a constitutively active mutant Rheb overrides the absence of the anchorage and stabilizes Cdc6 at least partly via activating Cdk4/6 that induces Emi1, an APC/CCdh1 ubiquitin ligase inhibitor.

Structured summary

MINT-7890626: cdc27 (uniprotkb:Q4V8A2) physically interacts (MI:0915) with Cyclin-A (uniprotkb:Q6AY13) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

11.
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and is associated with various clinico-pathological characteristics such as genetic mutations and viral infections. Therefore, numerous laboratories look out for identifying always new putative markers for the improvement of HCC diagnosis/prognosis. Many molecular profiling studies investigated gene expression changes related to HCC. HepG2 represents a pure cell line of human liver carcinoma, often used as HCC model due to the absence of viral infection. In this study we compare gene expression profiles associated with HepG2 (as HCC model) and normal hepatocyte cells by microarray technology. Hierarchical cluster analysis of genes evidenced that 2646 genes significantly down-regulated in HepG2 cells compared to hepatocytes whereas a further 3586 genes significantly up-regulated. By using the Ingenuity Pathway Analysis (IPA) program, we have classified the genes that were differently expressed and studied the functional networks correlating these genes in the complete human interactome. Moreover, to confirm the differentially expressed genes as well as the reliability of our microarray data, we performed a quantitative Real time RT-PCR analysis on 9 up-regulated and 11 down-regulated genes, respectively. In conclusion this work i) provides a gene signature of human hepatoma cells showing genes that change their expression as a consequence of liver cancer in the absence of any genetic mutations or viral infection, ii) evidences new differently expressed genes found in our signature compared to previous published studies and iii) suggests some genes on which to focus future studies to understand if they can be used to improve the HCC prognosis/diagnosis.  相似文献   

12.
13.
14.
15.
The plasma membrane in eukaryotic cells contains microdomains that are enriched in certain glycosphingolipids, gangliosides, and sterols (such as cholesterol) to form membrane/lipid rafts (MLR). These regions exist as caveolae, morphologically observable flask-like invaginations, or as a less easily detectable planar form. MLR are scaffolds for many molecular entities, including signaling receptors and ion channels that communicate extracellular stimuli to the intracellular milieu. Much evidence indicates that this organization and/or the clustering of MLR into more active signaling platforms depends upon interactions with and dynamic rearrangement of the cytoskeleton. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to MLR and help regulate lateral diffusion of membrane proteins and lipids in response to extracellular events (e.g., receptor activation, shear stress, electrical conductance, and nutrient demand). MLR regulate cellular polarity, adherence to the extracellular matrix, signaling events (including ones that affect growth and migration), and are sites of cellular entry of certain pathogens, toxins and nanoparticles. The dynamic interaction between MLR and the underlying cytoskeleton thus regulates many facets of the function of eukaryotic cells and their adaptation to changing environments. Here, we review general features of MLR and caveolae and their role in several aspects of cellular function, including polarity of endothelial and epithelial cells, cell migration, mechanotransduction, lymphocyte activation, neuronal growth and signaling, and a variety of disease settings. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

16.
Glioblastoma is the most common and aggressive brain tumor type, with a mean patient survival of approximately 1 year. Many previous analyses of the glioma kinome have identified key deregulated pathways that converge and activate mammalian target of rapamycin (mTOR). Following the identification and characterization of mTOR-promoting activity in gliomagenesis, data from preclinical studies suggested the targeting of mTOR by rapamycin or its analogs (rapalogs) as a promising therapeutic approach. However, clinical trials with rapalogs have shown very limited efficacy on glioma due to the development of resistance mechanisms. Analysis of rapalog-insensitive glioma cells has revealed increased activity of growth and survival pathways compensating for mTOR inhibition by rapalogs that are suitable for therapeutic intervention. In addition, recently developed mTOR inhibitors show high anti-glioma activity. In this review, we recapitulate the regulation of mTOR signaling and its involvement in gliomagenesis, discuss mechanisms resulting in resistance to rapalogs, and speculate on strategies to overcome resistance. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   

17.
18.
19.
Retinoids, the metabolically-active structural derivatives of vitamin A, are critical signaling molecules in many fundamental biological processes including cell survival, proliferation and differentiation. Emerging evidence, both clinical and molecular, implicates retinoids in atherosclerosis and other vasculoproliferative disorders such as restenosis. Although the data from clinical trials examining effect of vitamin A and vitamin precursors on cardiac events have been contradictory, this data does suggest that retinoids do influence fundamental processes relevant to atherosclerosis. Preclinical animal model and cellular studies support these concepts. Retinoids exhibit complex effects on proliferation, growth, differentiation and migration of vascular smooth muscle cells (VSMC), including responses to injury and atherosclerosis. Retinoids also appear to exert important inhibitory effects on thrombosis and inflammatory responses relevant to atherogenesis. Recent studies suggest retinoids may also be involved in vascular calcification and endothelial function, for example, by modulating nitric oxide pathways. In addition, established retinoid effects on lipid metabolism and adipogenesis may indirectly influence inflammation and atherosclerosis. Collectively, these observations underscore the scope and complexity of retinoid effects relevant to vascular disease. Additional studies are needed to elucidate how context and metabolite-specific retinoid effects affect atherosclerosis. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号