首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epidermis is a very active site of lipid metabolism, and all peroxisome proliferator-activated receptor (PPAR) and liver X receptor (LXR) isoforms are expressed in the epidermis. Activation of PPARalpha, -beta/delta, or -gamma or LXRs stimulates keratinocyte differentiation. Additionally, activation of these receptors also improves permeability barrier homeostasis by a number of mechanisms, including stimulating epidermal lipid synthesis, increasing lamellar body formation and secretion, and increasing the activity of enzymes required for the extracellular processing of lipids in the stratum corneum, leading to the formation of lamellar membranes that mediate permeability barrier function. The stimulation of keratinocyte differentiation and permeability barrier formation also occurs during fetal development, resulting in accelerated epidermal development. PPAR and LXR activation regulates keratinocyte proliferation and apoptosis, and studies have shown that these receptors play a role in cutaneous carcinogenesis. Lastly, PPAR and LXR activation is anti-inflammatory, reducing inflammation in animal models of allergic and irritant contact dermatitis. Because of their broad profile of beneficial effects on skin homeostasis, PPAR and LXR have great potential to serve as drug targets for common skin diseases such as psoriasis, atopic dermatitis, and skin cancer.  相似文献   

2.
Mitro N  Vargas L  Romeo R  Koder A  Saez E 《FEBS letters》2007,581(9):1721-1726
The liver X receptors (LXRalpha and beta) are nuclear receptors that coordinate carbohydrate and lipid metabolism. Insight into the physiologic roles of the LXRs has been greatly facilitated by the discovery of potent synthetic agonists. Here we show that one of these compounds, T0901317, is also a high-affinity ligand for the xenobiotic receptor pregnane X receptor (PXR). T0901317 binds and activates PXR with the same nanomolar potency with which it stimulates LXR activity. T0901317 induces expression not only of LXR target genes, but also of PXR target genes in cells and animals, including the scavenger receptor CD36, a property not shared by more specific LXR ligands, such as GW3965. Activation of PXR targets may explain why T0901317 induces dramatic liver steatosis, while GW3965 has a milder effect. These results suggest that many of the biological activities heretofore associated with LXR activation may be mediated by PXR, not LXR. Since T0901317 has been widely used in animals to study LXR function, the in vivo effects of this compound ascribed to LXR activation should be re-examined.  相似文献   

3.
LXR, PXR, and PPARα are members of a nuclear receptor family which regulate the expression of genes involved in lipid metabolism. Here, we show the administration of T0901317 stimulates PPARα gene expression in the small intestine but not in the liver of both normal and FXR-null mice. The administration of LXR specific ligand GW3965, or PXR specific ligand PCN has the same effect, indicating that ligand-dependent activation of LXR and PXR, but not FXR, is responsible for the increased gene expression of PPARα in the mouse small intestine.  相似文献   

4.
Autoregulation of the human liver X receptor alpha promoter   总被引:4,自引:0,他引:4       下载免费PDF全文
Previous work has implicated the nuclear receptors liver X receptor alpha (LXR alpha) and LXR beta in the regulation of macrophage gene expression in response to oxidized lipids. Macrophage lipid loading leads to ligand activation of LXRs and to induction of a pathway for cholesterol efflux involving the LXR target genes ABCA1 and apoE. We demonstrate here that autoregulation of the LXR alpha gene is an important component of this lipid-inducible efflux pathway in human macrophages. Oxidized low-density lipoprotein, oxysterols, and synthetic LXR ligands induce expression of LXR alpha mRNA in human monocyte-derived macrophages and human macrophage cell lines but not in murine peritoneal macrophages or cell lines. This is in contrast to peroxisome proliferator-activated receptor gamma (PPAR gamma)-specific ligands, which stimulate LXR alpha expression in both human and murine macrophages. We further demonstrate that LXR and PPAR gamma ligands cooperate to induce LXR alpha expression in human but not murine macrophages. Analysis of the human LXR alpha promoter led to the identification of multiple LXR response elements. Interestingly, the previously identified PPAR response element (PPRE) in the murine LXR alpha gene is not conserved in humans; however, a different PPRE is present in the human LXR 5'-flanking region. These results have implications for cholesterol metabolism in human macrophages and its potential to be regulated by synthetic LXR and/or PPAR gamma ligands. The ability of LXR alpha to regulate its own promoter is likely to be an integral part of the macrophage physiologic response to lipid loading.  相似文献   

5.
The human pregnane X receptor (PXR) recognizes a range of structurally and chemically distinct ligands and plays a key role in regulating the expression of protective gene products involved in the metabolism and excretion of potentially harmful compounds. The identification and development of PXR antagonists is desirable as a potential way to control the up-regulation of drug metabolism pathways during the therapeutic treatment of disease. We present the 2.8A resolution crystal structure of the PXR ligand binding domain (LBD) in complex with T0901317 (T1317), which is also an agonist of another member of the orphan class of the nuclear receptor superfamily, the liver X receptor (LXR). In spite of differences in the size and shape of the receptors' ligand binding pockets, key interactions with this ligand are conserved between human PXR and human LXR. Based on the PXR-T1317 structure, analogues of T1317 were generated with the goal of designing an PXR antagonist effective via the receptor's ligand binding pocket. We find that selectivity in activating PXR versus LXR was achieved; such compounds may be useful in addressing neurodegenerative diseases like Niemann-Pick C. We were not successful, however, in producing a PXR antagonist. Based on these observations, we conclude that the generation of PXR antagonists targeted to the ligand binding pocket may be difficult due to the promiscuity and structural conformability of this xenobiotic sensor.  相似文献   

6.
Liver X receptor (LXR) and peroxisome proliferator-activated receptor (PPAR) are two members of nuclear receptors involved in the nutrient metabolisms of dietary fatty acid and cholesterol. They are found to be of cross-talk function in that LXR regulates fatty acid synthesis and PPAR controls fatty acid degradation. LXRs (LXRalpha and LXRbeta) function by forming obligate heterodimers with the retinoid X receptor (RXR), and subsequently binding to specific DNA response elements within the regulatory regions of their target genes. In this work, the kinetic features concerning LXR/RXR and LXR/PPAR interactions have been fully investigated using surface plasmon resonance (SPR) technology. It is found that LXRs could bind to all the three PPAR subtypes, PPARalpha, PPARgamma and PPARdelta with different binding affinities, and such receptor/receptor interactions could be regulated by ligand binding. Moreover, molecular dynamics (MD) simulations were performed on six typical complex models. The results revealed that ligands may increase the interaction energies between the receptor interfaces of the simulated receptor/receptor complexes. The MD results are in agreement with the SPR data. Further analyses on the MD results indicated that the ligand binding might increase the hydrogen bonds between the interfaces of the receptor/receptor complex.  相似文献   

7.
Liver X receptors (LXRalpha and -beta) are liposensors that exert their metabolic effects by orchestrating the expression of macrophage genes involved in lipid metabolism and inflammation. LXRs are also expressed in other tissues, including skin, where their natural oxysterol ligands induce keratinocyte differentiation and improve epidermal barrier function. To extend the potential use of LXR ligands to dermatological indications, we explored the possibility of using LXR as a target for skin aging. We demonstrate that LXR signaling is down-regulated in cell-based models of photoaging, i.e. UV-activated keratinocytes and TNFalpha-activated dermal fibroblasts. We show that a synthetic LXR ligand inhibits the expression of cytokines and metalloproteinases in these in vitro models, thus indicating its potential in decreasing cutaneous inflammation associated with the etiology of photoaging. Furthermore, a synthetic LXR ligand induces the expression of differentiation markers, ceramide biosynthesis enzymes, and lipid synthesis and transport genes in keratinocytes. Remarkably, LXRbeta-null mouse skin showed some of the molecular defects that are observed in chronologically aged human skin. Finally, we demonstrate that a synthetic LXR agonist inhibits UV-induced photodamage and skin wrinkle formation in a murine model of photoaging. Therefore, the ability of an LXR ligand to modulate multiple pathways underlying the etiology of skin aging suggests that LXR is a novel target for developing potential therapeutics for photoaging and chronological skin aging indications.  相似文献   

8.
9.
10.
LXR (liver X receptor) and PPARα (peroxisome-proliferator-activated receptor α) are nuclear receptors that control the expression of genes involved in glucose and lipid homoeostasis. Using wild-type and PPARα-null mice fed on an LXR-agonist-supplemented diet, the present study analysed the impact of pharmacological LXR activation on the expression of metabolically important genes in skeletal muscle, testing the hypothesis that LXR activation can modulate PPAR action in skeletal muscle in a manner dependent on nutritional status. In the fed state, LXR activation promoted a gene profile favouring lipid storage and glucose oxidation, increasing SCD1 (stearoyl-CoA desaturase 1) expression and down-regulating PGC-1α (PPARγ co-activator-1α) and PDK4 (pyruvate dehydrogenase kinase 4) expression. PPARα deficiency enhanced LXR stimulation of SCD1 expression, and facilitated elevated SREBP-1 (sterol-regulatory-element-binding protein-1) expression. However, LXR-mediated down-regulation of PGC-1α and PDK4 was opposed and reversed by PPARα deficiency. During fasting, prior LXR activation augmented PPARα signalling to heighten FA (fatty acid) oxidation and decrease glucose oxidation by augmenting fasting-induced up-regulation of PGC-1α and PDK4 expression, effects opposed by PPARα deficiency. Starvation-induced down-regulation of SCD1 expression was opposed by antecedent LXR activation in wild-type mice, an effect enhanced further by PPARα deficiency, which may elicit increased channelling of FA into triacylglycerol to limit lipotoxicity. Our results also identified potential regulatory links between the protein deacetylases SIRT1 (sirtuin 1) and SIRT3 and PDK4 expression in muscle from fasted mice, with a requirement for PPARα. In summary, we therefore propose that a LXR-PPARα signalling axis acts as a metabolostatic regulatory mechanism to optimize substrate selection and disposition in skeletal muscle according to metabolic requirement.  相似文献   

11.
Liver X receptors (LXR alpha and LXR beta) are nuclear receptors, which are important regulators of cholesterol and lipid metabolism. LXRs control genes involved in cholesterol efflux in macrophages, bile acid synthesis in liver and intestinal cholesterol absorption. LXRs also regulate genes participating in lipogenesis. To determine whether the activation of LXR promotes or inhibits development of atherosclerosis, T-0901317, a synthetic LXR ligand, was administered to low density lipoprotein receptor (LDLR)(-/-) mice. T-0901317 significantly reduced the atherosclerotic lesions in LDLR(-/-) mice without affecting plasma total cholesterol levels. This anti-atherogenic effect correlated with the plasma concentration of T-0901317, but not with high density lipoprotein cholesterol, which was increased by T-0901317. In addition, we observed that T-0901317 increased expression of ATP binding cassette A1 in the lesions in LDLR(-/-) mice as well as in mouse peritoneal macrophages. T-0901317 also significantly induced cholesterol efflux activity in peritoneal macrophages. These results suggest that LXR ligands may be useful therapeutic agents for the treatment of atherosclerosis.  相似文献   

12.
13.
Dissection of the insulin-sensitizing effect of liver X receptor ligands   总被引:3,自引:0,他引:3  
The liver X receptors (LXRalpha and beta) are nuclear receptors that coordinate carbohydrate and lipid metabolism. Treatment of insulin-resistant mice with synthetic LXR ligands enhances glucose tolerance, inducing changes in gene expression expected to decrease hepatic gluconeogenesis (via indirect suppression of gluconeogenic enzymes) and increase peripheral glucose disposal (via direct up-regulation of glut4 in fat). To evaluate the relative contribution of each of these effects on whole-body insulin sensitivity, we performed hyperinsulinemic-euglycemic clamps in high-fat-fed insulin-resistant rats treated with an LXR agonist or a peroxisome proliferator-activated receptor gamma ligand. Both groups showed significant improvement in insulin action. Interestingly, rats treated with LXR ligand had lower body weight and smaller fat cells than controls. Insulin-stimulated suppression of the rate of glucose appearance (Ra) was pronounced in LXR-treated rats, but treatment failed to enhance peripheral glucose uptake (R'g), despite increased expression of glut4 in epididymal fat. To ascertain whether LXR ligands suppress hepatic gluconeogenesis directly, mice lacking LXRalpha (the primary isotype in liver) were treated with LXR ligand, and gluconeogenic gene expression was assessed. LXR activation decreased expression of gluconeogenic genes in wild-type and LXRbeta null mice, but failed to do so in animals lacking LXRalpha. Our observations indicate that despite inducing suggestive gene expression changes in adipose tissue in this model of diet-induced insulin resistance, the antidiabetic effect of LXR ligands is primarily due to effects in the liver that appear to require LXRalpha. These findings have important implications for clinical development of LXR agonists as insulin sensitizers.  相似文献   

14.
15.
Lipophilic insect hormones and their analogs affect mammalian physiology by regulating the expression of metabolic genes. Therefore, we determined the effect of fenoxycarb, a juvenile hormone analog, on lipid metabolism in adipocytes. Here, we demonstrated that fenoxycarb dose‐dependently promoted lipid accumulation in 3T3‐L1 adipocytes during adipocyte differentiation and that its lipogenic effect was comparable to that of rosiglitazone, a well‐known ligand for peroxisome proliferator‐activated receptor gamma (PPARγ). Furthermore, fenoxycarb stimulated PPARγ activity without affecting other nuclear receptors, such as liver X receptor (LXR), farnesoid X‐activated receptor (FXR) and Nur77. In addition, fenoxycarb treatment increased the expression of PPARγ and fatty acid transporter protein 1 (FATP1) in 3T3‐L1 adipocytes, suggesting that fenoxycarb may facilitate adipocyte differentiation by enhancing PPARγ signaling, the master regulator of adipogenesis. Together, our results suggest that fenoxycarb promoted lipid accumulation in adipocytes, in part, by stimulating PPARγ.  相似文献   

16.
17.
18.
19.
20.
During the last three years there have been a plethora of publications on the liver X-activated receptors (LXRalpha, NR1H3, and LXRbeta, NR1H2), the farnesoid X-activated receptor (FXR, NR1H4), and the pregnane X receptor (PXR, NR1I2) and the role these nuclear receptors play in controlling cholesterol, bile acid, lipoprotein and drug metabolism. The current interest in these nuclear receptors is high, in part, because they appear to be promising therapeutic targets for new drugs that have the potential to control lipid homeostasis.In this review we emphasize i) the role of LXR in controlling many aspects of cholesterol and fatty acid metabolism, ii) the expanded role of FXR in regulating genes that control not only bile acid metabolism but also lipoprotein metabolism, and iii) the regulation of bile acid transport/metabolism in response to bile acid-activated PXR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号