首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Apoptosis is one of the main fundamental biological processes required for development of multicellular organisms. Inappropriate regulation of apoptosis can lead to severe developmental abnormalities and diseases. Therefore, the control of apoptosis, not only for its activation but also for its inhibition, is critically important during development. In contrast to the extensive studies of apoptosis induction, its inhibitory mechanisms that are even more vital in certain populations of cells actually are very far from being well understood. Here we report an inhibitory role of protein phosphatase V (PpV), a serine/threonine protein phosphatase, in controlling the apoptosis during Drosophila wing development. We observed that inhibition of ppv by RNAi in wing imaginal discs induced ectopic cell death and caspase activation, thus, resulted in a defective adult wing. Moreover, knocking-down ppv triggered the activation of c-Jun N-terminal kinase (JNK) signal, an evolutionarily conserved intracellular signaling that has been implicated to modulate the apoptotic machinery in many biological and experimental systems. Disrupting the JNK signal transduction was adequate to suppress the ppv effects for wing development. Together, we provided the evidence to demonstrate that ppv is required for normal wing development in maintaining the silence of apoptotic signal possibly through JNK pathway.  相似文献   

2.

Key message

Arabidopsis and poplar with modified PAD4, LSD1 and EDS1 genes exhibit successful growth under drought stress. The acclimatory strategies depend on cell division/cell death control and altered cell wall composition.

Abstract

The increase of plant tolerance towards environmental stresses would open much opportunity for successful plant cultivation in these areas that were previously considered as ineligible, e.g. in areas with poor irrigation. In this study, we performed functional analysis of proteins encoded by PHYTOALEXIN DEFICIENT 4 (PAD4), LESION SIMULATING DISEASE 1 (LSD1) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) genes to explain their role in drought tolerance and biomass production in two different species: Arabidopsis thaliana and Populus tremula × tremuloides. Arabidopsis mutants pad4-5, lsd1-1, eds1-1 and transgenic poplar lines PAD4-RNAi, LSD1-RNAi and ESD1-RNAi were examined in terms of different morphological and physiological parameters. Our experiments proved that Arabidopsis PAD4, LSD1 and EDS1 play an important role in survival under drought stress and regulate plant vegetative and generative growth. Biomass production and acclimatory strategies in poplar were also orchestrated via a genetic system of PAD4 and LSD1 which balanced the cell division and cell death processes. Furthermore, improved rate of cell division/cell differentiation and altered physical properties of poplar wood were the outcome of PAD4- and LSD1-dependent changes in cell wall structure and composition. Our results demonstrate that PAD4, LSD1 and EDS1 constitute a molecular hub, which integrates plant responses to water stress, vegetative biomass production and generative development. The applicable goal of our research was to generate transgenic plants with regulatory mechanism that perceives stress signals to optimize plant growth and biomass production in semi-stress field conditions.
  相似文献   

3.
4.
A complex study on the adaptation of cn and vn mutants and the allozymes of alcoholdehydrogenase (ADH) was carried out in initially pure lines, and their panmixia populations during exchange of the mutant genotype with that of wild-type flies (C-S) and D) through saturating crossings. The relative adaptation of the genotypes was estimated by their effect on reproductive efficiency in the experimentally obtained population. Fecundity, lifespan, and the resistance of the studied genotypes to hyperthermia were investigated individually. It was shown that the high level of adaptation of the cn mutants and the low level of adaptation of the vg mutants was correlated with the presence of different ADH allozymes. In the studied population, the F-allozyme of ADH accompanied the vg mutation, while the S-allozyme of the enzyme was detected in cn mutants. Saturating crossings of C-S(Adh Svg(Adh F) and D(Adh F) × cn(Adh S), along with the parallel determination of the allele composition of the Adh locus, demonstrated that the complete substitution of the F-allozyme of ADH in the vg mutants by the S-allozyme in D flies, as well as the substitution of the S-allozyme of ADH in the cn mutants by the F-allozyme in D flies was realized only after the 15th–20th backcrosses. These results favor the coadaptation of cn and vg marker genes with alleles of the Adh locus and indicate the important role of the latter in the adaptation of genotypes. In the studied population, selection acted primarily against the vg mutants, which were inferior to the cn mutants, and heterozygote genotypes in indices of the main adaptation components.  相似文献   

5.
The sequences of the PsSst1 and PsIgn1 genes of pea (Pisum sativum L.) homologous to the symbiotic LjSST1 and LjIGN1 genes of Lotus japonicus (Regel.) K. Larsen are determined. The expression level of PsSst1 and PsIgn1 genes is determined by real-time PCR in nodules of several symbiotic mutants and original lines of pea. Lines with increased (Sprint-2Fix (Pssym31)) and decreased (P61 (Pssym25)) expression level of both genes are revealed along with the lines characterized by changes in the expression level of only one of these genes. The revealed features of the PsSst1 and PsIgn1 expression allow us to expand the phenotypic characterization of pea symbiotic mutants. In addition, PsSst1 and PsIgn1 cDNA is sequenced in selected mutant lines, characterized by a decreased expression level of these genes in nodules, but no mutations are found.  相似文献   

6.
TRANSFER RNA has been implicated in the regulation of a number of amino-acid biosynthetic operons1–4. Histidyl-tRNAHis has been shown to be involved in regulation of the histidine operon by analysis of six genes (hisO, hisR, hisS, hisT, hisU, hisW), mutation of which causes derepression of the enzymes of the histidine biosynthetic pathway in Salmonella typhimurium5–7. A class of derepressed mutants (hisR) has only about 55% as much tRNAHis as the wild type4 and in the one example sequenced, contains tRNAHIS with a structure identical to that of the wild type8. Studies of mutants of the gene for histidyl-tRNA synthetase (hisS) indicated that the derepressed phenotype was associated with defects in the charging of tRNAHISin vitro2. The amounts of charged and uncharged tRNAHis present in vivo during physiological derepression of the wild type and in the six classes of regulatory mutants, have been determined9. This work has shown that repression of the histidine operon is correlated directly with the concentration of charged histidyl-tRNAHisin vivo and not with the ratio of charged to uncharged or the absolute amount of uncharged tRNAHis. The derepression observed in mutants, of hisS (the gene for histidyl-tRNA synthetase), hisR (the presumed structural gene for the single species of tRNAHis) and hisU and hisW (genes presumably involved in tRNA modification) may be explained by the lower cellular concentration of charged tRNAHis which these mutants contain.  相似文献   

7.
We have studied the molecular characteristics of the yellow locus (y; 1–0.0), which determines the body color of phenotypically wild-type and mutant alleles isolated in different years from geographically distant populations of Drosophila melanogaster. According to the Southern blot, data restriction maps of the yellow locus of all examined strains differ from one another, as well as from Oregon stock. FISH analysis shows that, in the neighborhood of the yellow locus in the X chromosome, neither P nor hobo elements are found in y1–775 stock, while only hobo is found in these region in y1–859 and y1–866 stocks, only the P element is found in y+sn849 stock, and both elements are found in y1–719 stock. Thus, all yellow mutants studied are of independent origin. Locus yellow located on the end of X chromosome (region 1A5–8 on the cytologic map) carries significantly more transposon than retrotransposon induced mutations compared to the white locus (region 3C2). It is possible that, at the ends of Drosophila melanogaster chromosomes, transposons are more active than retrotransposons.  相似文献   

8.
Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 induced macrophage apoptosis in a caspase-dependent manner. The loss of mitochondrial transmembrane potential (ΔΨm), mitochondrial translocation of Bax, and release of cytochrome c from mitochondria were observed in macrophages treated with MAV2052. Further, reactive oxygen species (ROS) production was required for the apoptosis induced by MAV2052. In addition, ROS and mitogen-activated protein kinases were involved in MAV2052-mediated TNF-α and IL-6 production. ROS-mediated activation of apoptosis signal-regulating kinase 1 (ASK1)-JNK pathway was a major signaling pathway for MAV2052-induced apoptosis. Moreover, MAV2052 bound to Toll-like receptor (TLR) 4 molecule and MAV2052-induced ROS production, ΔΨm loss, and apoptosis were all significantly reduced in TLR4?/? macrophages. Altogether, our results suggest that MAV2052 induces apoptotic cell death through TLR4 dependent ROS production and JNK pathway in murine macrophages.  相似文献   

9.
Group A saponins are thought to be the cause of bitter and astringent tastes in processed foods of soybean (Glycine max), and the elimination of group A saponins is an important breeding objective. The group A saponins include two main Aa and Ab types, controlled by codominant alleles at the Sg-1 locus that is one of several key loci responsible for saponin biosynthesis in the subgenus Glycine soja. However, A0 mutant lacking group A saponin is a useful gene resource for soybean quality breeding. Here, eight Chinese wild soybean A0 accessions were sequenced to reveal the mutational mechanisms, and the results showed that these mutants were caused by at least three kinds of mechanisms involving four allelic variants (sg-10-b2, sg-10-b3, Sg-1b-0, and Sg-1b-01). The sg-10-b2 had two nucleotide deletions at positions +?72 and +?73 involving in the 24th and 25th amino acids. The sg-10-b3 contained a stop codon (TGA) at the 254th residue. The Sg-1b-0 and Sg-1b-01 were two novel A0-type mutants, which likely carried normal structural alleles, and nevertheless did not encode group A saponin due to unknown mutations beyond the normal coding regions. In addition, to reveal the structural features, allelic polymorphism, and mechanisms of the abiogenetic absence of group A (i.e., A0 phenotype), nucleotide sequence analysis was performed for the Sg-1 locus in wild soybean (Glycine soja). The results showed that Sg-1 alleles had a lower conservatism in the coding region; as high as 18 sequences were found in Chinese wild soybeans in addition to the Sg-1a (Aa) and Sg-1b (Ab) alleles. Sg-1a and Sg-1b alleles were characterized by eight synonymous codons and nine amino acid substitutions. Two evolutionarily transitional allelic sequences (Sg-1a7 and Sg-1b2) from Sg-1a toward Sg-1b were detected.  相似文献   

10.
Sensitivity to the lethal action of the anticancer substance cisplatin was studied in the yeast mutants him1, hsm2, hsm3, and hsm6, deficient for repair of spontaneous and induced mutations. The him1 and hsm3 mutants were as resistant to the agent under study as the wild-type strain. The survival of the double mutant rad2 hsm3 was higher than that of the single mutant rad2. The hsm2 and hsm6 mutants were more cisplatin-sensitive than the wild type. Cisplatin was shown to have high mutagenic and recombinogenic effects on yeast cells.  相似文献   

11.
L-Lactate cytochrome c oxidoreductase (flavocytochrome b 2, FC b 2) from the thermotolerant methylotrophic yeast Hansenula polymorpha (Pichia angusta) is, unlike the enzyme form baker’s yeast, a thermostable enzyme potentially important for bioanalytical technologies for highly selective assays of L-lactate in biological fluids and foods. This paper describes the construction of flavocytochrome b 2 producers with over-expression of the H. polymorpha CYB2 gene, encoding FC b 2. The HpCYB2 gene under the control of the strong H. polymorpha alcohol oxidase promoter in a plasmid for multicopy integration was transformed into the recipient strain H. polymorpha C-105 (grc1 catX), impaired in glucose repression and devoid of catalase activity. A method was developed for preliminary screening of the transformants with increased FC b 2 activity in permeabilized yeast cells. The optimal cultivation conditions providing for the maximal yield of the target enzyme were found. The constructed strain is a promising FC b 2 producer characterized by a sixfold increased (to 3 μmol min?1 mg?1 protein in cell-free extract) activity of the enzyme.  相似文献   

12.

Objectives

To enhance activity of cis-epoxysuccinate hydrolase from Klebsiella sp. BK-58 for converting cis-epoxysuccinate to tartrate.

Results

By semi-saturation mutagenesis, all the mutants of the six important conserved residues almost completely lost activity. Then random mutation by error-prone PCR and high throughput screening were further performed to screen higher activity enzyme. We obtained a positive mutant F10D after screening 6000 mutations. Saturation mutagenesis on residues Phe10 showed that most of mutants exhibited higher activity than the wild-type, and the highest mutant was F10Q with activity of 812 U mg?1 (k cat /K m , 9.8 ± 0.1 mM?1 s?1), which was 230 % higher than that of wild-type enzyme 355 U mg?1 (k cat /K m , 5.3 ± 0.1 mM?1 s?1). However, the thermostability of the mutant F10Q slightly decreased.

Conclusions

The catalytic activity of a cis-epoxysuccinate hydrolase was efficient improved by a single mutation F10Q and Phe10 might play an important role in the catalysis.
  相似文献   

13.
BIOCHEMICAL studies of chromosome replication have been hampered by the unavailability of an adequate in vitro system with the basic features of in vivo DNA replication. The criteria for such a system are: (1) semiconservative replication; (2) normal biological activity of newly synthesized DNA; (3) normal advancement of the original replication fork; (4) rate of DNA replication equivalent to in vivo; and (5) expected phenotypic behaviour of temperature-sensitive dna mutants. Systems in Escherichia coli, a membrane-DNA fraction1, an agar-embedded cell lysate2 and toluene-treated cells3 have met two or three of the requirements. Several laboratories have also reported the expected behaviour of ts-dna E. coli mutants in toluenized cells3–5.  相似文献   

14.
Trichoderma species are widespread phytostimulant fungi that act through biocontrol of root pathogens, modulation of root architecture, and improving plant adaptation to biotic and abiotic stress. With the major challenge to better understand the contribution of Trichoderma symbionts to plant adaptation to climate changes and confer stress tolerance, we investigated the potential of Trichoderma virens and Trichoderma atroviride in modulating stomatal aperture and plant transpiration. Arabidopsis wild-type (WT) seedlings and ABA-insensitive mutants, abi1-1 and abi2-1, were co-cultivated with either T. virens or T. atroviride, and stomatal aperture and water loss were determined in leaves. Arabidopsis WT seedlings inoculated with these fungal species showed both decreased stomatal aperture and reduced water loss when compared with uninoculated seedlings. This effect was absent in abi1-1 and abi2-1 mutants. T. virens and T. atroviride induced the abscisic acid (ABA) inducible marker abi4:uidA and produced ABA under standard or saline growth conditions. These results show a novel facet of Trichoderma-produced metabolites in stomatic aperture and water-use efficiency of plants.  相似文献   

15.

Background

TP53 gene mutations occur in more than 50% of human cancers and the vast majority of these mutations in human cancers are missense mutations, which broadly occur in DNA binding domain (DBD) (Amino acids 102–292) and mainly reside in six “hotspot” residues. TP53 G245C and R273H point mutations are two of the most frequent mutations in tumors and have been verified in several different cancers. In the previous study of the whole genome sequencing (WGS), we found some mutations of TP53 DBD in esophageal squamous cell carcinoma (ESCC) clinical samples. We focused on two high-frequent mutations TP53 p.G245C and TP53 p.R273H and investigated their oncogenic roles in ESCC cell lines, p53-defective cell lines H1299 and HCT116 p53?/?.

Results

MTS and colony formation assays showed that mutant TP53 G245C and R273H increased cell vitality and proliferation. Flow cytometry results revealed inhibition of ultraviolet radiation (UV)- and ionizing radiation (IR)- induced apoptosis and disruption of TP53-mediated cell cycle arrest after UV, IR and Nocodazole treatment. Transwell assays indicated that mutant TP53 G245C and R273H enhanced cell migration and invasion abilities. Moreover, western blot revealed that they were able to suppress the expression of TP53 downstream genes in the process of apoptosis and cell cycle arrest induced by UV, which suggests that these two mutations can influence apoptosis and growth arrest might be due, at least in part, to down-regulate the expression of P21, GADD45α and PARP.

Conclusions

These results indicate that mutant TP53 G245C and R273H can lead to more aggressive phenotypes and enhance cancer cell malignancy, which further uncover TP53 function in carcinogenesis and might be useful in clinical diagnosis and therapy of TP53 mutant cancers.
  相似文献   

16.
Eukaryotic cells possess a special mechanism for the degradation of mRNAs containing premature termination codons (PTCs), referred to as NMD (nonsense-mediated mRNA decay). The strength of this pathway depends on the recognition of the PTCs by translational machinery and the interaction of translation termination factors eRF1 and eRF3 with Upf1, Upf2 and Upf3 proteins in Sachromyces cerevisiae yeast. Previously, we have shown that the decrease of eRF1 protein amounts in sup45 nonsense mutants leads to the impairment of NMD. Here we show that the deletion of UPF1 or UPF2 genes leads to an increase in the viability of sup45 mutants, while the effect of UPF3 gene deletion is allele-specific. Two-hybrid data have shown that amino acid residues 1–555 of Upf1 protein interact with eRF1. Any UPF gene deletion leads to allosupression of the adel1-14 mutation without a change in eRF1 content. The Upf1 depletion does not influence the synthetic lethality of sup45 mutations and the [PSI +] prion. It is possible that the absence of Upf1 (or its activator Upf2) leads to a more effective formation of the translation termination complex and consequently to the increased viability of the cells containing mutant termination factors.  相似文献   

17.
Despite possessing related ancestral genomes, hexaploid wheat behaves as a diploid during meiosis. The wheat Ph1 locus promotes accurate synapsis and crossover of homologous chromosomes. Interspecific hybrids between wheat and wild relatives are exploited by breeders to introgress important traits from wild relatives into wheat, although in hybrids between hexaploid wheat and wild relatives, which possess only homoeologues, crossovers do not take place during meiosis at metaphase I. However, in hybrids between Ph1 deletion mutants and wild relatives, crossovers do take place. A single Ph1 deletion (ph1b) mutant has been exploited for the last 40 years for this activity. We show here that chemically induced mutant lines, selected for a mutation in TaZIP4-B2 within the Ph1 locus, exhibit high levels of homoeologous crossovers when crossed with wild relatives. Tazip4-B2 mutant lines may be more stable over multiple generations, as multivalents causing accumulation of chromosome translocations are less frequent. Exploitation of such Tazip4-B2 mutants, rather than mutants with whole Ph1 locus deletions, may therefore improve introgression of wild relative chromosome segments into wheat.  相似文献   

18.
Strains pyc13T and ZGT13 were isolated from Lake Pengyan and Lake Zigetang on Tibetan Plateau, respectively. Both strains were Gram-negative, catalase- and oxidase-positive, aerobic, rod-shaped, nonmotile, and nonflagellated bacteria. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains pyc13T and ZGT13 belong to the genus Halomonas, with Halomonas alkalicola 56-L4-10aEnT as their closest neighbor, showing 97.4% 16S rRNA gene sequence similarity. The predominant respiratory quinone of both strains was Q-9, with Q-8 as a minor component. The major fatty acids of both strains were C18:1ω6c/C18:1ω7c, C16:1ω6c/C16:1ω7c, C16:0, and C12:0 3OH. The polar lipids of both strains consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, glycolipid, phospholipids of unknown structure containing glucosamine, and unidentified phospholipids. The DNA G + C content of pyc13T and ZGT13 were 62.6 and 63.4 mol%, respectively. The DNA-DNA hybridization values of strain pyc13T were 34, 41, 61, 35, and 35% with the reference strains H. alkalicola 56-L4-10aEnT, H. sediminicola CPS11T, H. mongoliensis Z-7009T, H. ventosae Al12T, and H. fontilapidosi 5CRT, respectively. Phenotypic, biochemical, genotypic, and DNA-DNA hybridization data showed that strains pyc13T and ZGT13 represent a new species within the genus Halomonas, for which the name H. tibetensis sp. nov. is proposed. The type strain is pyc13T (= CGMCC 1.15949T = KCTC 52660T).  相似文献   

19.

Background

Double-strand breakage of chromosomal DNA is obviously a serious threat to cells because various activities of the chromosome depend on its integrity. However, recent experiments suggest that such breakage may occur frequently during "normal" growth in various organisms – from bacteria through vertebrates, possibly through arrest of a replication fork at some endogenous DNA damage.

Results

In order to learn how the recombination processes contribute to generation and processing of the breakage, large (> 2000 kb) linear forms of Escherichia coli chromosome were detected by pulsed-field gel electrophoresis in various recombination-defective mutants. The mutants were analyzed in a rich medium, in which the wild-type strain showed fewer of these huge broken chromosomes than in a synthetic medium, and the following results were obtained: (i) Several recB and recC null mutants (in an otherwise rec+ background) accumulated these huge linear forms, but several non-null recBCD mutants (recD, recC1001, recC1002, recC1003, recC1004, recC2145, recB2154, and recB2155) did not. (ii) In a recBC sbcA background, in which RecE-mediated recombination is active, recA, recJ, recQ, recE, recT, recF, recO, and recR mutations led to their accumulation. The recJ mutant accumulated many linear forms, but this effect was suppressed by a recQ mutation. (iii) The recA, recJ, recQ, recF and recR mutations led to their accumulation in a recBC sbcBC background. The recJ mutation showed the largest amount of these forms. (iv) No accumulation was detected in mutants affecting resolution of Holliday intermediates, recG, ruvAB and ruvC, in any of these backgrounds.

Conclusion

These results are discussed in terms of stepwise processing of chromosomal double-strand breaks.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号