首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Warm temperatures decrease insect developmental time and body size. Social life could buffer external environmental variations, especially in large social groups, either through behavioral regulation and compensation or through specific nest architecture. Mean worker size and distribution of worker sizes within colonies are important parameters affecting colony productivity as worker size is linked to division of labor in insect societies. In this paper, we investigate the effect of stressful warm temperatures and the role of social environment (colony size and size of nestmate workers) on the mean size and size variation of laboratory-born workers in the small European ant Temnothorax nylanderi. To do so, we reared field-collected colonies under medium or warm temperature treatments after having marked the field-born workers and removed the brood except for 30 first instar larvae. Warm temperature resulted in the production of fewer workers and a higher adult mortality, confirming that this regime was stressful for the ants. T. nylanderi ants followed the temperature size rule observed in insects, with a decreased developmental time and mean size under warm condition. Social environment appeared to play an important role as we observed that (i) larger colonies buffered the effect of temperature better than smaller ones (ii) colonies with larger workers produced larger workers whatever the rearing temperature and (iii) the coefficient of variation of worker size was similar in the field and under medium laboratory temperature. This suggests that worker size variation is not primarily due to seasonal environmental fluctuations in the field. Finally, we observed a higher coefficient of variation of worker size under warm temperature. We propose that this results from a disruption of social regulation, i.e. the control of nestmate workers over developing larvae and adult worker size, under stressful conditions.  相似文献   

2.
We examined the relationship between colony performance and the distribution of worker sizes within colonies in the ant species, Formica obscuripes. We manipulated the distribution of worker sizes within colonies and found that experimental colonies whose distributions mimicked the natural distributions retained a larger percentage of colony biomass over three weeks when fed on honeydew, relative to colonies composed of only large or only small workers. In natural colonies most of the variation in worker sizes was found within, as opposed, to between colonies, suggesting that homeostatic mechanisms within colonies regulated the distribution of worker sizes. While there were no disjunctions in the distribution of worker sizes within colonies, the distribution tended to be bimodal. This study demonstrates that the distribution of worker sizes within colonies is important even for ant species that lack discrete worker castes. Received 31 October 2006; revised 26 December 2006; accepted 4 January 2007.  相似文献   

3.
1. Bumble bees exhibit worker size polymorphisms; highly related workers within a colony may vary up to 10‐fold in body mass. As size variation is an important life history feature in bumble bees, the distribution of body sizes within the colony and how it fluctuates over the colony cycle were analysed. 2. Ten commercially purchased colonies of Bombus impatiens (Cresson) were reared in ad libitum conditions. The size of all workers present and newly emerging workers (callows) was recorded each week. 3. The average size of bumble bee workers did not change with colony age, but variation in body size tended to decrease over time. The average size of callows did not change with population size, but did tend to decrease with colony age. In all measures, there was considerable variation among colonies. 4. Colonies of B. impatiens usually produced workers with normally distributed body sizes throughout the colony life cycle. Unlike most polymorphic ants, there was no increase in worker body size with colony age or colony size. This provides the first, quantitative data on the ontogeny of bumble bee worker size distribution. The potential adaptive significance of this size variation is discussed.  相似文献   

4.
Summary: I examined the use of a mark-recapture technique to measure colony size and colony growth in the ant species Formica neorufibarbis. I addressed three questions: 1) Is the method reasonably accurate?, 2) is the method precise?, and 3) how many workers does the method kill? I found that estimates of colony sizes based on mark-recapture were similar to those estimated by colony excavation. The error in estimates of worker and cocoon number due to the binomial nature of the mark-recapture method was relatively small, with a mean coefficient of variation of twelve percent for workers and nine percent for cocoons. I estimated that the method killed less than two percent of the workers in a nest.  相似文献   

5.
Morphological diversification of workers is predicted to improve the division of labor within social insect colonies, yet many species have monomorphic workers. Individual-level selection on the reproductive capacities of workers may counter colony-level selection for diversification, and life-history differences between species (timing of caste determination, colony size, genetic variation available) may mediate the strength of this selection. We tested this through phylogenetically independent contrast analyses on a new data set for 35 ant species. Evidence was found that early divergence of queen-worker developmental pathways may facilitate the evolution of worker diversity because queen-worker dimorphism was strongly positively associated with diversity. By contrast, risks for colonies that invest in specialized workers and colony size effects on costs of worker reproduction seem unlikely to strongly affect the evolution of worker diversity because there was no significant association between colony size and diversity when controlling statistically for queen-worker dimorphism. Finally, worker diversity was greater in species with multiple lineages per colony, and it was negatively associated with relatedness in monogynous species. This could be due to high intracolonial genetic variance favoring the expression and evolution of great worker diversity or to diversity evolving more easily when there is selection for repression of worker reproduction (worker policing).  相似文献   

6.
Summary: Do colony attributes modulate individual behavior? The effects of colony size and worker:brood ratio on the rate of worker-to-larva trophallaxis in the fire ant, Solenopsis invicta, were investigated. Neither colony size ranging from 100 to 10,000 nor worker:brood ratio ranging from 1:1 to 16:1 affected the density of workers on the brood pile, nor the rate or duration of worker-to-larva trophallaxis. The demands of hungry larvae were met even in groups as small as 100 workers in worker:brood ratios as small as 1. Only when the worker:brood ratio was less than 1, were larvae tended or fed at reduced rates. Under natural conditions, this occurs only in incipient colonies. Otherwise, in post-incipient colonies, the flow of food to larvae was unmodified by colony attributes. The implications of this finding are two-fold: First, it reinforces previous research demonstrating that social feeding in the fire ant emerges from localized interactions rather than mass communication. Second, it highlights the resiliency of this weedy species. Hypothetically, colonies drastically reduced by catastrophic events such as flooding should still be able to produce sexuals.  相似文献   

7.
Social insects are well-known for their ability to achieve robust collective behaviours even when individuals have limited information. It is often assumed that such behaviours rely on very large group sizes, but many insect colonies start out with only a few workers. Here we investigate the influence of colony size on collective decision-making in the house-hunting of the ant Temnothorax albipennis. In experiments where colony size was manipulated by splitting colonies, we show that worker number has an influence on the speed with which colonies discover new nest sites, but not on the time needed to make a decision (achieve a quorum threshold) or total emigration time. This occurred because split colonies adopted a lower quorum threshold, in fact they adopted the same threshold in proportion to their size as full-size colonies. This indicates that ants may be measuring relative quorum, i.e. population in the new nest relative to that of the old nest, rather than the absolute number. Experimentally reduced colonies also seemed to gain more from experience through repeated emigrations, as they could then reduce nest discovery times to those of larger colonies. In colonies of different sizes collected from the field, total emigration time was also not correlated with colony size. However, quorum threshold was not correlated with colony size, meaning that individuals in larger colonies adopted relatively lower quorum thresholds. Since this is a different result to that from size-manipulated colonies, it strongly suggests that the differences between natural small and large colonies were not caused by worker number alone. Individual ants may have adjusted their behaviour to their colony’s size, or other factors may correlate with colony size in the field. Our study thus shows the importance of experimentally manipulating colony size if the effect of worker number on the emergence of collective behaviour is to be studied. Received 13 December 2005; revised 9 May 2006; accepted 15 May 2006.  相似文献   

8.
In the thermophilic ant genus Cataglyphis, species differing in their physical caste system have developed alternative mechanisms to face extreme heat by physiological and/or behavioural adaptations. In this study, we tested whether thermal tolerance is related to worker size in the ant Cataglyphis cursor that presents intermediate worker size compared with previously studied species (size range 3.5–10 mm). Thermal tolerance at two temperatures was tested in the laboratory on colonies originating from two habitats (seaside versus vineyard), known to differ in average worker size. As expected large workers were more resistant to high temperature than small workers, but the effect of worker size on thermal resistance was less pronounced under the more extreme temperatures. The pattern of thermal tolerance was similar in the two habitat types. After controlling for worker size, worker thermal tolerance significantly varied amongst colonies, but this variation was not related to colony size. Our results suggest that a higher thermal tolerance can confer an advantage to larger workers especially during foraging and are discussed in the context of the evolution of worker size in ants.  相似文献   

9.
Summary: Queens of the pharaoh's ant Monomorium pharaonis (L.), like several other ant species, feed on larval secretions as their main nourishment and their fecundity is positively correlated with the number of large larvae present in the nest. The surplus of secretions produced by larvae is stored in a temporary caste of replete workers, which comprises young workers who remain in the nest and store liquid nourishment. Repletes are characterised by a conspicuously large gaster, caused by large amounts of liquid food stored in the crop, from which it may be regurgitated and distributed among colony members. In this study, repletes of pharaoh's ants were demonstrated to be functioning as buffers, smoothing fluctuations in availability of high quality food to the reproductive queens when larvae are scarce or missing, thus temporarily keeping up the egg production of queens.¶In undisturbed two-queen colonies with 20 large worker larvae and 30 workers (15 young and 15 old workers), approximately 10 repletes developed (one replete per two larvae). Development of older workers into repletes, when some or all repletes had been removed from the colonies, demonstrated that their temporal polyethism exhibits great plasticity in this trait.¶This study confirmed that, in pharaoh's ants, the regulation of fecundity depends not only on the food flow to the queen from larvae or from repletes but also on an unknown larval stimulus.¶The term crop repletes is suggested for replete workers which use their crop to store nourishment, as opposed to fat-body repletes, which store nourishment in their fat body.¶The presence of brood tending crop repletes in nests in several European ant species of Leptothorax, Myrmica, and Lasius, show that repletism is a common trait in ants, and that it may play an important role in regulation of nutrition in ant colonies, as demonstrated in Monomorium pharaonis.  相似文献   

10.
Clémencet J  Doums C 《Oecologia》2007,152(2):211-218
In social insects, colony size is a crucial life-history trait thought to have major implications for the evolution of social complexity, especially in relation to worker size polymorphism. Yet, little is known about how ecological factors can affect and constrain colony. Here, we explored the pattern of colony-size and worker-size variation in the Mediterranean ant Cataglyphis cursor, in relation to the type of habitats colonized (seaside vs. vineyard). The high level of the water table in the seaside habitat could constrain the depth of C. cursor underground nests and directly constrain its colony size. If worker size increases with colony size, as observed in other ant species, larger colony size and larger workers should be found in the vineyard populations. By comparing worker size among 16 populations, we verified that workers were significantly larger in the vineyard populations. We further determined that the morphological similarities detected among populations from the same habitat type were not due to geographic or genetic proximity. In two populations from each habitat type, the depth of nests was positively correlated with colony size and colony size with worker size. Using a type II regression approach, we further showed that the difference between the two populations in the depth of nest was sufficient to explain the difference in colony size, and similarly, variation in colony size was sufficient to explain variation in worker size. Our results suggest that a single proximate ecological factor could lead to significant variation in major life-history parameters.  相似文献   

11.
Summary. The ability of worker ants to adapt their behaviour depending on the social environment of the colony is imperative for colony growth and survival. In this study we use the greenhead ant Rhytidoponera metallica to test for a relationship between colony size and foraging behaviour. We controlled for possible confounding ontogenetic and age effects by splitting large colonies into small and large colony fragments. Large and small colonies differed in worker number but not worker relatedness or worker/brood ratios. Differences in foraging activity were tested in the context of single foraging cycles with and without the opportunity to retrieve food. We found that workers from large colonies foraged for longer distances and spent more time outside the nest than foragers from small colonies. However, foragers from large and small colonies retrieved the first prey item they contacted, irrespective of prey size. Our results show that in R. metallica, foraging decisions made outside the nest by individual workers are related to the size of their colony.Received 23 March 2004; revised 3 June 2004; accepted 4 June 2004.  相似文献   

12.
Theory predicts that altruism is only evolutionarily stable if it is preferentially directed towards relatives, so that any such behaviour towards seemingly unrelated individuals requires scrutiny. Queenless army ant colonies, which have anecdotally been reported to fuse with queenright foreign colonies, are such an enigmatic case. Here we combine experimental queen removal with population genetics and cuticular chemistry analyses to show that colonies of the African army ant Dorylus molestus frequently merge with neighbouring colonies after queen loss. Merging colonies often have no direct co-ancestry, but are on average probably distantly related because of overall population viscosity. The alternative of male production by orphaned workers appears to be so inefficient that residual inclusive fitness of orphaned workers might be maximized by indiscriminately merging with neighbouring colonies to increase their reproductive success. We show that worker chemical recognition profiles remain similar after queen loss, but rapidly change into a mixed colony Gestalt odour after fusion, consistent with indiscriminate acceptance of alien workers that are no longer aggressive. We hypothesize that colony fusion after queen loss might be more widespread, especially in spatially structured populations of social insects where worker reproduction is not profitable.  相似文献   

13.
Abstract In a colony headed by a single monandrous foundress, theories predict that conflicts between a queen and her workers over both sex ratio and male production should be intense. If production of males by workers is a function of colony size, this should affect sex ratios, but few studies have examined how queens and workers resolve both conflicts simultaneously. We conducted field and laboratory studies to test whether sex-ratio variation can be explained by conflict over male production between queen and workers in the primitively eusocial wasp Polistes chinensis antennalis.
Worker oviposition rate increased more rapidly with colony size than did queen oviposition. Allozyme and micro-satellite markers revealed that the mean frequency of workers' sons among male adults in queen-right colonies was 0.39 ± 0.08 SE (n = 22). Genetic relatedness among female nestmates was high (0.654–0.796), showing that colonies usually had a single, monandrous queen. The mean sex allocation ratio (male investment/male and gyne investments) of 46 queen-right colonies was 0.47 ± 0.02, and for 25 orphaned colonies was 0.86 ± 0.04. The observed sex allocation ratio was likely to be under queen control. For queen-right colonies, the larger colonies invested more in males and produced reproductives protandrously and/or simultaneously, whereas the smaller colonies invested more in females and produced reproductives protogynously. Instead of positive relationships between colony size and worker oviposition rate, the frequency of workers' sons within queen-right colonies did not increase with colony size. These results suggest that queens control colony investment, even though they allow worker oviposition in queen-right colonies. Eggs laid by workers may be policed by the queen and/or fellow workers. Worker oviposition did not influence the outcome of sex allocation ratio as a straightforward function of colony size.  相似文献   

14.
1. Ants are among the most abundant terrestrial organisms, yet little is known of how ant communities divide resources because it is difficult to measure the number of individuals in colonies and the density of colonies. 2. The body size–abundance relationships of the ants of five upland ecosystems in Florida were examined. The study tested whether abundance, energy use, and total biomass were distributed among species and body sizes as predicted by Damuth's energetic equivalence rule. Estimates of average worker body size, colony size, colony mass, and field metabolic rates were used to examine the relationships among body sizes, energy use, and total biomass. 3. Analyses revealed significant variation in energy use and did not support the energetic equivalence hypothesis. Specifically, the energy use and total standing biomass of species with large workers and colonies was much greater than smaller species. 4. These results suggest that larger species with larger colonies account for a disproportionate fraction of the total abundance and biomass of ants. A general model of resource allocation in colonies provides a possible explanation for why ants do not conform to the predictions of the energetic equivalence rule and for why ants are so abundant.  相似文献   

15.
Increasing evidence has shown that the energy use of ant colonies increases sublinearly with colony size so that large colonies consume less per capita energy than small colonies. It has been postulated that social environment (e.g., in the presence of queen and brood) is critical for the sublinear group energetics, and a few studies of ant workers isolated from queens and brood observed linear relationships between group energetics and size. In this paper, we hypothesize that the sublinear energetics arise from the heterogeneity of activity in ant groups, that is, large groups have relatively more inactive members than small groups. We further hypothesize that the energy use of ant worker groups that are allowed to move freely increases more slowly than the group size even if they are isolated from queen and brood. Previous studies only provided indirect evidence for these hypotheses due to technical difficulties. In this study, we applied the automated behavioral monitoring and respirometry simultaneously on isolated worker groups for long time periods, and analyzed the image with the state‐of‐the‐art algorithms. Our results show that when activity was not confined, large groups had lower per capita energy use, a lower percentage of active members, and lower average walking speed than small groups; while locomotion was confined, however, the per capita energy use was a constant regardless of the group size. The quantitative analysis shows a direct link between variation in group energy use and the activity level of ant workers when isolated from queen and brood.  相似文献   

16.
The success of an ant colony depends on the simultaneous presence of reproducing queens and non-reproducing workers in a ratio that will maximize colony growth and reproduction. Despite its presumably crucial role, queen–worker caste ratios (the ratio of adult queens to workers) and the factors affecting this variable remain scarcely studied. Maintaining polygynous pharaoh ant (Monomorium pharaonis) colonies in the laboratory has provided us with the opportunity to experimentally manipulate colony size, one of the key factors that can be expected to affect colony level queen–worker caste ratios and body size of eclosing workers, gynes and males. We found that smaller colonies produced more new queens relative to workers, and that these queens and workers both tended to be larger. However, colony size had no effect on the size of males or on the sex ratio of the individuals reared. Furthermore, for the first time in a social insect, we confirmed the general life history prediction by Smith and Fretwell (Am Nat 108:499–506, 1974) that offspring number varies more than offspring size. Our findings document a high level of plasticity in energy allocation toward female castes and suggest that polygynous species with budding colonies may adaptively adjust caste ratios to ensure rapid growth.  相似文献   

17.
Kenneth G.  Ross 《Journal of Zoology》1985,205(3):411-424
The question of male production by workers in social wasp colonies (Vespinae) has long concerned researchers. Its occurrence would suggest that queen control of colony reproduction is not absolute and that the evolution and maintenance of eusociality in vespines may have been promoted through direct reproductive ability of the worker caste. Dissections of over 3,300 workers from 34 Paravespula and Vespula colonies failed to reveal a significant contribution to male production by workers in most colonies. In those colonies which did contain ovary-developed workers, the wasps tended to be larger than their nestmates in two of the species. On the other hand, ovary-developed workers could not be characterized as specializing in intra- or extranidal tasks in any species. The onset of worker ovarian development was associated with increased size of nests and occurred predominantly in late-season colonies. The near-complete sterility of workers through most of the season suggests that models invoking mutualism and characterizing workers as 'hopeful reproductives' cannot explain the maintenance of eusociality in vespine wasps.  相似文献   

18.
Incipient ant colonies are often under fierce competition, making fast growth crucial for survival. To increase production, colonies can adopt multiple queens (pleometrosis), fuse with other colonies or rob brood from neighboring colonies. However, different adoption strategies might have different impacts such as future queen fecundity or future colony size. O. smaragdina queen production was measured in incipient colonies with 2, 3 or 4 founding queens, following the transplantation of 0, 30 or 60 pupae from a donor colony. Pupae developed into mature workers, resulting in increased worker/queen ratios in pupae transplanted treatments and leading to increases in the per capita queen production. Conversely, more queens did not induce increased per capita fecundity. Thus, brood robbing added individuals to the worker force and increased future production of resident queens, whereas queen adoption increased the colony’s future production, but not the production of individual queens.  相似文献   

19.
Colony size can affect individual- and colony-level behavioral and physiological traits in social insects. Changes in behavior and physiology in response to colony growth and development can affect productivity and fitness. Here, we used respirometry to study the relationship between colony size and colony energy consumption in Temnothorax rugatulus ants. In addition, we examined the relationship between colony size and worker productivity measured as per capita brood production. We found that colony metabolic rate scales with colony size to the 0.78 power and the number of brood scales with the number of workers to the 0.49 power. These regression analyses reveal that larger ant colonies use proportionally less energy and produce fewer brood per worker. Our findings provide new information on the relationships between colony size and energetic efficiency and productivity in a model ant genus. We discuss the potential mechanisms giving rise to allometric scaling of metabolic rate in ant colonies and the influence of colony size on energy consumption and productivity in general.  相似文献   

20.
1. Multiple mating by queens has been shown to enhance disease resistance in insect societies, because higher genetic diversity among nestmates improves collective immune defences or offers a certain level of herd immunity. However, it has remained ambiguous whether polygynous societies with large numbers of queens also benefit from increased genetic diversity. 2. We used one of the very few ant species that can be reared across generations, the pharaoh ant, Monomorium pharaonis Linnaeus, to create experimental colonies with two types of enhanced genetic diversity: (i) mixed workers from three divergent inbred lineages representing the ‘polygyny‐equivalent' of multiple mating by queens (i.e. increased between‐worker variation); and (ii) uniform workers whose overall heterozygosity was increased by two subsequent generations of crossing between the same divergent inbred lineages (i.e. increased within‐worker variation). 3. We found significant differences in worker survival among the three inbred lineages, with exposure to conidiospores of the fungal pathogen Beauveria bassiana causing significant mortality to the workers independently of their diversity type. Increased diversity did not improve the resistance to Beauveria. 4. Enhanced heterozygosity colonies had worker survival rates similar to the most resistant inbred lineage, whereas colonies with mixed workers from the three inbred lineages had lower worker and larval survival. Workers did not show any infection‐avoidance behaviour. 5. Average larval survival appeared unaffected by the presence of conidiospores. It benefitted from increased heterozygosity but was reduced in mixed colonies independent of infection. This suggests that negative, but cryptic social interactions in mixed colonies may affect overall survival. 6. The present results do not provide evidence for or against a link between increased genetic variation and increased disease resistance in pharaoh ants, but show that colonies differ considerably in general survival. Thus, increasing the genetic diversity of pharaoh ant colonies may not provide survival advantages in the face of pathogen exposure, and polygyny and polyandry may not be directly comparable mechanisms for creating adaptive resistance towards pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号