首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ornithine carbamoyltransferase (OCT) from spinach (Spinacea oleracea L.) was purified to homogeneity and studied for some kinetic and structural properties. The enzyme showed a specific activity of 436 U mg–1, its molecular mass was approximately 118 kDa as estimated by Sephacryl S-200 gel filtration chromatography, the purified protein ran as a single band of 38 kDa in sodium dodecyl sulfate-polyacryamide gel electrophoresis. The enzyme catalyses an ordered bi-bi-sequential reaction in which carbamoyl phosphate binds first, followed by L-ornithine; L-citrulline leaves first, followed by phosphate. The Michaelis constant was 0.19 mM for L-ornithine and 13.1 µM for carbamoyl phosphate; the dissociation constant for the enzyme and carbamoyl phosphate complex was of 19 µM. The Km of the reaction decreases from pH 6.0 to pH 10.4. The enzyme is heat-labile, but it was protected from thermal inactivation by substrates; more by ornithine alone than by two substrates acting together.  相似文献   

2.
Citrulline synthesis from ammonia by hepatic mitochondria in elasmobranchs involves intermediate formation of glutamine as the result of the presence of high levels of glutamine synthetase and a unique glutamine- and N-acetyl-glutamate-dependent carbamoyl phosphate synthetase, both of which have properties unique to the function of glutamine-dependent synthesis of urea, which is retained in the tissues of elasmobranchs at high concentrations for the purpose of osmoregulation [P.M. Anderson and C.A. Casey (1984) J. Biol. Chem. 259, 456-462; R.A. Shankar and P.M. Anderson (1985) Arch. Biochem. Biophys. 239, 248-259]. The objective of this study was to determine if ornithine carbamoyl transferase, which catalyzes the last step of mitochondrial citrulline synthesis and which has not been previously isolated from any species of fish, also has properties uniquely related to this function. Ornithine carbamoyl transferase was highly purified from isolated liver mitochondria of Squalus acanthias, a representative elasmobranch. The purified enzyme is a trimer with a subunit molecular weight of 38,000 and a native molecular weight of about 114,000. The effect of pH is significantly influenced by ornithine concentration; optimal activity is at pH 7.8 when ornithine is saturating. The apparent Km values for ornithine and carbamoyl phosphate at pH 7.8 are 0.71 and 0.05 mM, respectively. Ornithine displays considerable substrate inhibition above pH 7.8. The activity is not significantly affected by physiological concentrations of the osmolyte urea or trimethylamine-N-oxide or by a number of other metabolites. The results of kinetic studies are consistent with a steady-state ordered addition of substrates (carbamoyl phosphate binding first) and rapid equilibrium random release of products. Except for an unusually low specific activity, the properties of the purified elasmobranch enzyme are similar to the properties of ornithine carbamoyl transferase from mammalian ureotelic and other species and do not appear to be unique to its role in glutamine-dependent synthesis of urea for the purpose of osmoregulation.  相似文献   

3.
Ornithine transcarbamoylase (carbamoyl phosphate:l-ornithine carbamoyltransferase, EC 2.1.3.3) has been partially purified from the blue-green alga Nostoc muscorum Kützing, an organism in which the enzyme seems to be involved in a bicarbonate-fixing pathway leading to citrulline. Pertinent to possible regulation of this pathway, the enzyme shows hyperbolic substrate kinetics, has a molecular weight estimated at 75,000 daltons, and its catalytic capability is little influenced by a selection of metabolites that might conceivably act as regulators in vivo. Thus it seems unlikely that this enzyme is the control point for bicarbonate fixation. In terms of energy of activation (12.3 kcal/mole), size and Km for carbamoylphosphate, the Nostoc enzyme resembled preparations from liver and higher plants more than preparations from Streptococcus and Mycoplasma. The enzymes from Streptococcus and Mycoplasma are probably specialized for citrulline breakdown rather than citrulline synthesis. The Km for ornithine was 2.5 mm at a saturating concentration of carbamoylphosphate and the Km for carbamoylphosphate was 0.7 mm at an ornithine concentration of 2 mm. Ornithine was inhibitory at concentrations greater than 2 mm. Phosphate was a competitive inhibitor with respect to carbamoylphosphate. The pH optimum for citrulline synthesis was 9.5.  相似文献   

4.
Ornithine carbamoyltransferase has been purified from the liver of the loggerhead turtle Caretta caretta by a single-step procedure using chromatography on an affinity column to which the transition-state analogue, delta-N-(phosphonoacetyl)-L-ornithine (delta-PALO), was covalently bound. The procedure employed yielded an enzyme which was purified 373-fold and was judged to be homogeneous by nondenaturing and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme showed a specific activity of 224. The molar mass of the C. caretta enzyme was approximately 112 kDa, the single band obtained by SDS-PAGE indicated a subunit molar mass of 39.5 kDa; hence, the enzyme is a trimer of identical subunits. It catalyzes an ordered sequential mechanism in which carbamoyl phosphate binds first, followed by L-ornithine. The Michaelis constants were 0.858 mM for L-ornithine and 0.22 mM for carbamoyl phosphate, the dissociation constant of the enzyme-carbamoyl phosphate complex was 0.50 mM.  相似文献   

5.
6.
1. Aspartate transcarbamoylase from 4-day-old radicles of Phaseolus aureus was purified 190-fold by (NH(4))(2)SO(4) fractionation, DEAE-cellulose and DEAE-Sephadex chromatography and Sephadex-gel filtration. The partially purified enzyme, which required P(i) for maximum stability, had an apparent molecular weight of 83000+/-5000. 2. Uridine nucleotides were found to inhibit the activity; UMP was the most potent inhibitor, followed by UDP and UTP. No other nucleotide was found to affect the enzyme, nor could UMP inhibition be overcome by adding another nucleotide. Aspartate gives a hyperbolic substrate-saturation curve, both with and without UMP. The nucleotide inhibitor is non-competitive with respect to this substrate. Carbamoyl phosphate also yields a hyperbolic substrate-saturation curve in the absence of feedback inhibitor, but when UMP is added a sigmoidal pattern results, and the inhibition is competitive with carbamoyl phosphate. 3. The degree of inhibition by UMP is not affected by p-chloromercuribenzoate, urea, mild heat pretreatment or change in pH over the range 8.5-10.5, but is affected by temperature. 4. The aspartate analogue, succinate, both activates and inhibits the reaction, depending on the concentrations of aspartate and succinate used. 5. Kinetic studies with the partially purified enzyme showed that the K(m) for carbamoyl phosphate (0.091 mm) is much lower than that for aspartate (1.7mm). A sequential reaction mechanism was inferred from product-inhibition kinetics, with carbamoyl phosphate binding to the enzyme before aspartate, and the product, carbamoylaspartate, being released ahead of P(i). Initial-velocity studies gave a set of parallel reciprocal plots, compatible with an essentially irreversible step occurring before the binding of aspartate.  相似文献   

7.
Chicken ornithine transcarbamylase: purification and some properties   总被引:1,自引:0,他引:1  
Ornithine transcarbamylase [EC 2.1.3.3] has been purified from chick kidney to homogeneity. The molecular weight is 110,000 as determined by gel filtration. Sodium dodecylsulfate polyacrylamide gel electrophoresis of the enzyme showed that the enzyme exists as a trimer of identical subunits of 36,000 daltons like other mammalian species ornithine transcarbamylases. In 0.1 M triethanolamine/HCl, the apparent optimum pH of the purified enzyme was 7.5 in the presence of 5 mM ornithine. The curve shifted toward a more alkaline region with a decrease in ornithine concentration. The specific activity of the purified enzyme as 77 units at pH 7.5. The Km for carbamyl phosphate was 0.11 mM and the Km for ornithine was 1.21 mM. With an increase in pH, a decrease in Km values for ornithine and an increase in the extent of inhibition by ornithine were observed. On using antibody against bovine liver ornithine transcarbamylase, the precipitin lines for the chick and bovine enzymes showed a spur pattern. Even when excess amounts of the antibody were added, the chick enzyme did not lose the activity while the bovine enzyme activity was inhibited completely.  相似文献   

8.
1. Aspartate transcarbamoylase from 4-day-old radicles of Phaseolus aureus was purified 190-fold by (NH4)2SO4 fractionation, DEAE-cellulose and DEAE-Sephadex chromatography and Sephadex-gel filtration. The partially purified enzyme, which required Pi for maximum stability, had an apparent molecular weight of 83000±5000. 2. Uridine nucleotides were found to inhibit the activity; UMP was the most potent inhibitor, followed by UDP and UTP. No other nucleotide was found to affect the enzyme, nor could UMP inhibition be overcome by adding another nucleotide. Aspartate gives a hyperbolic substrate-saturation curve, both with and without UMP. The nucleotide inhibitor is non-competitive with respect to this substrate. Carbamoyl phosphate also yields a hyperbolic substrate-saturation curve in the absence of feedback inhibitor, but when UMP is added a sigmoidal pattern results, and the inhibition is competitive with carbamoyl phosphate. 3. The degree of inhibition by UMP is not affected by p-chloromercuribenzoate, urea, mild heat pretreatment or change in pH over the range 8.5–10.5, but is affected by temperature. 4. The aspartate analogue, succinate, both activates and inhibits the reaction, depending on the concentrations of aspartate and succinate used. 5. Kinetic studies with the partially purified enzyme showed that the Km for carbamoyl phosphate (0.091 mm) is much lower than that for aspartate (1.7mm). A sequential reaction mechanism was inferred from product-inhibition kinetics, with carbamoyl phosphate binding to the enzyme before aspartate, and the product, carbamoylaspartate, being released ahead of Pi. Initial-velocity studies gave a set of parallel reciprocal plots, compatible with an essentially irreversible step occurring before the binding of aspartate.  相似文献   

9.
The mechanism of inhibition of ornithine transcarbamoylase by the bacterial toxin phaseolotoxin [N-delta-(phosphosulphamyl)ornithylalanylhomoarginine] was investigated. Ornithine transcarbamoylase was purified by affinity chromatography from Escherichia coli W argR- by using N-delta-(phosphonoacetyl)ornithine as the ligand. Under steady-state conditions phaseolotoxin inhibition was reversible and exhibited mixed kinetics with respect to carbamoyl phosphate. The apparent Ki and apparent K'i were 0.2 microM and 10 microM respectively. Inhibition with respect to ornithine was noncompetitive, with an apparent Ki of 0.9 microM. These data are consistent with competitive binding of phaseolotoxin to the carbamoyl phosphate-binding site of the enzyme. The toxin also appears to be able to bind to the enzyme-carbamoyl phosphate complex, although, since K'i is 50 times greater than Ki, this event is kinetically much less significant. In the presence of phaseolotoxin ornithine transcarbamoylase exhibited a transient phase of activity before a steady state. This is consistent with low rates of association and dissociation for the toxin with enzyme and the enzyme-toxin complex. Rate constants of 2.5 X 10(4)M-1 X s-1 and 5 X 10(-3)s-1 were estimated for the association and dissociation constants respectively.  相似文献   

10.
L C Kuo  A W Miller  S Lee  C Kozuma 《Biochemistry》1988,27(24):8823-8832
In the carbamoyl-transfer reaction catalyzed by ornithine transcarbamoylase, an arginine residue in the active site of the Escherichia coli enzyme has been suggested to bind the phosphate moiety of the substrate carbamoyl phosphate. With the application of site-specific mutagenesis, the most likely arginine residue among three candidates at the binding site of carbamoyl phosphate, Arg-57, has been replaced with a glycine. The resultant Gly-57 mutant enzyme is drastically inefficient in catalysis. In the synthesis of L-citrulline from carbamoyl phosphate and L-ornithine with the release of inorganic phosphate, the turnover rate of the mutant is 21,000-fold lower than that of the wild type. However, the mutation of Arg-57 affects only moderately the binding of carbamoyl phosphate; the dissociation constant of this substrate, measured under steady-state turnover condition, is increased from 0.046 to 3.2 mM by the mutation. On the other hand, ornithine binding is substantially affected as estimated by the change in the dissociation constant of its analogue L-norvaline. The dissociation constant of L-norvaline increases about 500-fold from 54 microM for the wild type to 25 mM for the mutant. Since Arg-57 is expected to be distal from the ornithine site and the amino acid (both ornithine and norvaline) binds only after carbamoyl phosphate in the wild-type reaction, the poor norvaline affinity to the mutant suggests that Arg-57 is involved in interactions essential for productive addition of the amino acid. This interpretation is supported by difference ultraviolet absorption spectra which show that the conformational changes induced in the wild type by carbamoyl phosphate upon binding are absent in the mutant. Furthermore, steady-state kinetic data reveal that the ordered binding mechanism of the wild-type enzyme is transformed into a random binding mechanism in the mutant. Thus, the presence of carbamoyl phosphate in the mutant active site is no longer a requisite for ornithine binding. In the 5-50 degrees C temperature range, transcarbamoylation catalyzed by either the wild type or the mutant observes the Arrhenius rate law with almost identical enthalpies of activation, 11 and 10 kcal/mol, respectively. The entropy of activation is -5.5 eu for the wild-type reaction and -29 eu for the mutant reaction, accounting for a loss of 6-7 kcal/mol in the rate-determining step of the enzymic reaction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Ornithine decarboxylase from calf liver. Purification and properties   总被引:5,自引:0,他引:5  
M K Haddox  D H Russell 《Biochemistry》1981,20(23):6721-6729
Ornithine decarboxylase (ODC) was purified 25000-fold from calf liver to apparent homogeneity by methods developed to circumvent the lability of the enzyme. Appropriate ratios of sample protein applied to column size and/or gradient size were derived for each purification procedure (ion-exchange, gel filtration ahd hydroxylapatite chromatography, electrophoresis, and thiol affinity chromatography) to maintain enzymatic activity. The enzyme was labile to dilution at all steps of the purification; the inclusion of poly(ethylene glycol) or additional protein decreased but did not eliminate the activity loss. The purified enzyme had a Stokes radius of 3.14 and a molecular weight of 54000. The Km for ornithine was 0.12 mM, and pyridoxal phosphate was 2.0 microM; the pH optimum for the decarboxylation reaction was 7.0. Analysis by sievorptive ion-exchange chromatography indicated the presence of three ionic forms. In the presence of Tris-barbital buffer containing thioglycolic acid, the ODC preparation assumed an apparent molecular weight of 100000 and a Stokes radius of 4.5 and retained full catalytic activity.  相似文献   

12.
Glutamine and ornithine were found to stabilize effectively carbamoyl phosphate synthase (CPSase) partially purified from the larvae of Aldrichina grahami reared aseptically.

Glutamine, ATP. and Mg ion were required for the enzyme reaction. A high concentration of ammonia could replace the requirement of glutamine; N-acetylglutamate could not enhance the reaction. The apparent Km for ammonium ion, however, was much higher than that for glutamine. The concentration of ATP required for half maximal velocity was 1.0×10?2 m.

Various kinds of nucleotides of pyrimidines and purines inhibited the enzyme reaction. The reaction product in the assay system radioautographically coincided with citrulline.  相似文献   

13.
Ornithine decarboxylase, the rate-limiting enzyme in the polyamine biosynthetic pathway has been purified 7,600 fold from Plasmodium falciparum by affinity chromatography on a pyridoxamine phosphate column. The partially purified enzyme was specifically tagged with radioactive DL-alpha-difluoromethylornithine and subjected to polyacrylamide gel electrophoresis under denaturing conditions. A major protein band of 49 kilodalton was obtained while with the purified mouse enzyme, a typical 53 kilodalton band, was observed. The catalytic activity of parasite enzyme was dependent on pyridoxal 5'-phosphate and was optimal at pH 8.0. The apparent Michaelis constant for L-ornithine was 52 microM. DL-alpha-difluoromethylornithine efficiently and irreversibly inhibited ornithine decarboxylase activity from P. falciparum grown in vitro or Plasmodium berghei grown in vivo. The Ki of the human malarial enzyme for this inhibitor was 16 microM. Ornithine decarboxylase activity in P. falciparum cultures was rapidly lost upon exposure to the direct product, putrescine. Despite the profound inhibition of protein synthesis with cycloheximide in vitro, parasite enzyme activity was only slightly reduced by 75 min of treatment, suggesting a relatively long half-life for the malarial enzyme. Ornithine decarboxylase activity from P. falciparum and P. berghei was not eliminated by antiserum prepared against purified mouse enzyme. Furthermore, RNA or DNA extracted from P. falciparum failed to hybridize to a mouse ornithine decarboxylase cDNA probe. These results suggest that ODC from P. falciparum bears some structural differences as compared to the mammalian enzyme.  相似文献   

14.
Abstract The enzyme ornithine carbamoyltransferase was purified from Streptomyces fradiae . A 1200-fold increase in specific activity was achieved by ammonium sulphate precipitation, DEAE-cellulose and aminohexyl-agarose chromatography and gel filtration. The purified enzyme has a M r of 87 000. Its isoelectric point is 5.3 as determined by isoelectric focusing. Apparent K m values at pH 7.7 for ornithine and carbamoyl phosphate are 1.8 and 1.2 mM, respectively.  相似文献   

15.
The ability of activity modulators of ornithine transcarbamoylase (OCT) from the liver of the thresher shark Alopias vulpinus to stabilize the enzyme against thermal denaturation was investigated in the tri-buffer at pH 7.8, at temperatures ranging from 60 to 70 (o)C, in the presence of polyhydroxylic molecules such as glycerol and sugars. The study indicated that in the presence of 0.5 M sugars and 1.6 M glycerol in the preincubation medium the OCT activity increases. When trehalose is introduced directly in the reaction mixture in a range of concentration of 0.25-0.5 M, the activity is lower than that with maltose, glycerol and buffer alone. Kinetic data for carbamoyl phosphate and ornithine with and without maltose and glycerol are similar, whereas trehalose increases the kinetic values. Arrhenius plots show an increase of activation energy due to trehalose, whereas values obtained with maltose and glycerol are similar to the control.  相似文献   

16.
Ornithine transcarbamylase of rat liver has been purified to homogeneity. The purified enzyme of specific activity 870 to 920 focuses as a single protein at pH 7.2. At pH 7.7, the Km for carbamyl phosphate is 0.026 mM, and the Km for ornithine is 0.04 mM. The inhibition constants of a number of amino acids that act as competitive inhibitors of the enzyme are reported. The native enzyme of Mr = 112,000 is composed of three subunits of Mr = 39,600 +/- 1,000. Chemical evidence indicates that the subunits are identical in amino acid composition and amino acid sequence. The amino acid sequence of the NH2-terminal region of ornithine transcarbamylase is Ser-Gln-Val-Gln-Leu-Lys-Gly-Ser-Asp-Leu-Leu-Thr-Leu-Lys-Asn-(Phe)-X-Thr-X-Glu-Ile-Gln-Tyr-Met-.  相似文献   

17.
Carbamoyl phosphate synthetase from the cyanobacterium Anabaenacylindrica was purified by the following procedures: ammoniumsulfate fractionation, DEAE-Toyo-pearl, Affi-gel Blue, SephacrylS-300 HR, and Mono Q column chromatography. The molecular weightof the holoenzyme was estimated to be 166,000 by gel permeationchromatography. SDS-PAGE showed that the enzyme consisted oftwo subunits with molecular weights of 130,000 and 43,000. Optimal pH of this enzyme was 7.8 in HEPES buffer. Its MgATPsaturation curve was sigmoidal, yielding a Hill coefficientof 1.9 and an apparent Km of 4.5 mM. The Km values for glutamine,NH4C1 and NaHC03 were 55 µM, 182 mM and 2.5 mM, respectively.A high concentration of K+ (100 mM) was required for maximumactivity. The enzyme was activated by ornithine, IMP, GMP, andGDP, and inhibited by UMP and UDP. Ornithine increased the affinityof the enzyme to ATP by acting as a positive allosteric effector,whereas UMP reduced it by acting as a negative allosteric effector. (Received December 24, 1996; Accepted April 10, 1997)  相似文献   

18.
Ornithine transcarbamylase from Escherichia coli, strain W, exhibits negative cooperativity with respect to ornithine, and the enzymatic activity is further regulated by orotate. The effect of orotate on ornithine transcarbamylase is dependent not only upon the carbamylphosphate concentration, but also upon the concentration of ornithine. At high concentrations of carbamylphosphate (10 mM), a conversion from negative cooperativity to positive cooperativity is observed with 10 mM orotate. At 1 mM carbamylphosphate, however, 10 mM orotate activates the enzyme at low ornithine concentrations, but as the ornithine concentration is increased above 5 mM, inhibition is observed. Thus, a regulatory link has been established between the pathways of arginine biosynthesis and pyrimidine biosynthesis, each of which utilizes carbamylphosphate.  相似文献   

19.
Ornithine transcarbamylase catalyzes the synthesis of citrulline from carbamyl phosphate and ornithine. This enzyme is involved in the biosynthesis of arginine in many organisms and participates in the urea cycle of mammals. The biosynthetic ornithine transcarbamylase has been purified from the filamentous fungus, Neurospora crassa. It was found to be a homotrimer with an apparent subunit molecular weight of 37,000 and a native molecular weight of about 110,000. Its catalytic activity has a pH optimum of 9.5 and Km's of about 5 and 2.5 mM for the substrates, ornithine and carbamyl phosphate, respectively, at pH 9.5. The Km's and pH optimum are much higher than those of previously characterized enzymes from bacteria, other fungi, and mammals. These unusual kinetic properties may be of significance with regard to the regulation of ornithine transcarbamylase in this organism, especially in the avoidance of a futile ornithine cycle. Polyclonal antibodies were raised against the purified enzyme. These antibodies and antibody raised against purified rat liver ornithine transcarbamylase were used to examine the structural similarities of the enzyme from a number of organisms. Cross-reactivity was observed only for mitochondrial ornithine transcarbamylases of related organisms.  相似文献   

20.
Control of ureogenesis   总被引:3,自引:0,他引:3  
Control of urea synthesis was studied in rat hepatocytes incubated with physiological mixtures of amino acids in which arginine was replaced by equimolar amounts of ornithine. The following observations were made. Intramitochondrial carbamoyl phosphate was always below 0.1 mM. Only when ornithine was absent and when, in addition, the concentration of amino acids was higher than four times their plasma concentration, intramitochondrial carbamoyl phosphate rose up to about 3 mM; under these conditions ammonia accumulated in the medium. The relationship between ornithine-cycle flux and the concentration of the cycle intermediates at varying amino acid concentration indicated that under near-physiological conditions the ornithine-cycle enzymes are far from being saturated with their subsidiaries. Moderate concentrations of norvaline had no effect on the rate of urea synthesis unless the cells were severely depleted of ornithine. Activation of carbamoyl-phosphate synthetase (ammonia) by addition of N-carbamoylglutamate only slightly stimulated urea production at all amino acid concentrations. However, in the presence of the activator the curve relating ornithine-cycle flux to the steady-state ammonia concentration was shifted to lower concentrations of ammonia. The intramitochondrial concentration of carbamoyl phosphate in rat liver in vivo was below 0.1 mM. This value is far below the concentration required for substantial inhibition of carbamoyl-phosphate synthetase. It is concluded that in vivo the function of activity changes in carbamoyl-phosphate synthetase, via the well-documented alterations in the intramitochondrial concentration of N-acetylglutamate, is to buffer the intrahepatic ammonia concentration rather than to affect urea production per se. At constant concentration of ammonia the rate of urea production is entirely controlled by the activity of carbamoyl-phosphate synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号