首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lectin-like, oxidized low-density lipoprotein (LDL) receptor 1, LOX-1, is the major receptor for oxidized LDL (OxLDL) in endothelial cells. We have determined the crystal structure of the ligand binding domain of LOX-1, with a short stalk region connecting the domain to the membrane-spanning region, as a homodimer linked by an interchain disulfide bond. In vivo assays with LOX-1 mutants revealed that the "basic spine," consisting of linearly aligned arginine residues spanning over the dimer surface, is responsible for ligand binding. Single amino acid substitution in the dimer interface caused a severe reduction in LOX-1 binding activity, suggesting that the correct dimer arrangement is crucial for binding to OxLDL. Based on the LDL model structure, possible binding modes of LOX-1 to OxLDL are proposed.  相似文献   

2.
Lectin-like oxidized low-density lipoprotein (OxLDL) receptor 1 (LOX-1) is the major OxLDL receptor of vascular endothelial cells and is involved in an early step of atherogenesis. LOX-1 exists as a disulfide-linked homodimer on the cell surface, which contains a pair of the ligand-binding domains (CTLD; C-type lectin-like domain). Recent research using living cells has suggested that the clustered state of LOX-1 dimer on the cell is functionally required. These results questioned how LOX-1 exists on the cell to achieve OxLDL binding. In this study, we revealed the functional significance of the clustered organization of the ligand-binding domain of LOX-1 with surface plasmon resonance. Biotinylated CTLD was immobilized on a streptavidin sensor chip to make CTLD clusters on the surface. In this state, the CTLD had high affinity for OxLDL with a dissociation constant (K(D)) in the nanomolar range. This value is comparable to the K(D) measured for LOX-1 on the cell. In contrast, a single homodimeric LOX-1 extracellular domain had lower affinity for OxLDL in the supra-micromolar range of K(D). Monomeric CTLD showed marginal binding to OxLDL. In combination with the analyses on the loss-of-binding mutant W150A, we concluded that the clustered organization of the properly formed homodimeric CTLD is essential for the strong binding of LOX-1 to OxLDL.  相似文献   

3.
Lectin-like oxidized lipoprotein (OxLDL) receptor 1, LOX-1, is the major OxLDL receptor expressed on vascular endothelial cells. We have previously reported the ligand-recognition mode of LOX-1 based on the crystal structure of the ligand binding domain (C-type lectin-like domain, CTLD) and surface plasmon resonance analysis, which suggested that the functional significance of the CTLD dimer (the 'canonical' dimer) is to harbor the characteristic "basic spine" on its surface. In this study, we have identified the key inter-domain interactions in retaining the canonical CTLD dimer by X-ray structural analysis of the inactive mutant W150A CTLD. The canonical CTLD dimer forms through tight hydrophobic interactions, in which W150 engages in a lock-and-key manner and represents the main interaction. The loss of the Trp ring by mutation to Ala prevents the formation of the canonical dimer, as elucidated from docking calculations using the crystal structure of W150A CTLD. The results emphasize that the canonically formed CTLD dimer is essential for LOX-1 to bind to OxLDL, which supports our proposed view that the basic spine surface present in the correctly formed dimer plays a primal role in OxLDL recognition. This concept provides insight into the pathogenic pattern recognized by LOX-1 as a member of the pattern recognition receptors.  相似文献   

4.
LOX-1 (lectin-like oxidized low-density lipoprotein receptor 1) is the major oxidized LDL (OxLDL) receptor on endothelial cells. The extracellular part of LOX-1 comprises an 82-residue stalk region (NECK) and a C-type lectin-like ligand-binding domain (CTLD). The NECK displays sequence similarity to the coiled-coil region of myosin, having been suggested it adopts a rod-like structure. In this article, we report the structural analyses of human LOX-1 NECK using a variety of approaches including limited proteolysis, chemical cross-linking, circular dichroism (CD) and NMR. Our analysis reveals a unique structural feature of the LOX-1 NECK. Despite significant sequence similarity with the myosin coiled-coil, LOX-1 NECK does not form a uniform rod-like structure. Although not random, one-third of the N-terminal NECK is less structured than the remainder of the protein and is highly sensitive to cleavage by a variety of proteases. The coiled-coil structure is localized at the C-terminal part of the NECK, but is in dynamic equilibrium among multiple conformational states on a mus-ms time scale. This chimeric structural property of the NECK region may enable clustered LOX-1 on the cell surface to recognize OxLDL.  相似文献   

5.
Oxidized low-density lipoprotein particles is a pro-atherogenic factor implicated in atherosclerotic plaque formation. The LOX-1 scavenger receptor binds OxLDL and is linked to atherosclerotic plaque initiation and progression. We tested the hypothesis that the LOX-1 cytoplasmic domain contains a transplantable signal for membrane protein endocytosis. Structural modeling of the LOX-1 cytoplasmic domain reveals that a tripeptide motif (DDL) implicated in LOX-1 endocytosis is part of a curved β-pleated sheet structure. The two aspartic acid residues within this structural model are highly solvent-accessible enabling recognition by cytosolic factor(s). A triple alanine substitution of the DDL motif within the LOX-1 scavenger receptor substantially reduced endocytosis of OxLDL. Transplantation of the LOX-1 cytoplasmic domain into a transferrin receptor reporter molecule conferred efficient endocytosis on this hybrid protein. Mutation of the DDL motif within the hybrid LOX-1-TfR protein also substantially reduced receptor-mediated endocytosis. Thus a transplantable endocytic motif within the LOX-1 cytoplasmic domain is needed to ensure efficient internalization of pro-atherogenic OxLDL particles.  相似文献   

6.
Lectin-like oxidized low-density lipoprotein receptor (LOX-1), a type II membrane protein that can recognize a variety of structurally unrelated macromolecules, plays an important role in host defense and is implicated in atherogenesis. To understand the interaction between human LOX-1 and its ligands, in this study the functional C-type lectin-like domain (CTLD) of LOX-1 was reconstituted at high efficiency from inactive aggregates in Escherichia coli using a refolding technique based on an artificial chaperone. The CD spectra of the purified domain suggested that the domain has alpha-helical structure and the blue shift of Trp residues was observed on refolding of the domain. Like wild-type hLOX-1, the refolded CTLD domain was able to bind modified LDL. Thus, even though CTLD contains six Cys residues that form disulfide bonds, it recovered its specific binding ability on refolding. This suggests that the correct disulfide bonds in CTLD were formed by the artificial chaperone technique. Although the domain lacked N-glycosylation, it showed high affinity for its ligand in surface plasmon resonance experiments. Thus, unglycosylated CTLD is sufficient for binding modified LDL.  相似文献   

7.

Background  

Dimeric lectin-like oxidized low-density lipoprotein receptor-1 LOX-1 is the target receptor for oxidized low density lipoprotein in endothelial cells. In vivo assays revealed that in LOX-1 the basic spine arginine residues are important for binding, which is lost upon mutation of Trp150 with alanine. Molecular dynamics simulations of the wild-type LOX-1 and of the Trp150Ala mutant C-type lectin-like domains, have been carried out to gain insight into the severe inactivating effect.  相似文献   

8.
Lectin-like oxidized low-density lipoprotein receptor (LOX-1) is a scavenger receptor that binds oxidized low-density lipoprotein (OxLDL) and has a role in atherosclerosis development. The N-terminus intracellular region (cytoplasmic domain) of LOX-1 mediates receptor internalization and trafficking, potentially through intracellular protein interactions. Using affinity isolation, we identified 6 of the 8 components of the chaperonin-containing TCP-1 (CCT) complex bound to LOX-1 cytoplasmic domain, which we verified by coimmunoprecipitation and immunostaining in human umbilical vein endothelial cells. We found that the interaction between CCT and LOX-1 is direct and ATP-dependent and that OxLDL suppressed this interaction. Understanding the association between LOX-1 and the CCT complex may facilitate the design of novel therapies for cardiovascular disease.  相似文献   

9.
Oxidized low density lipoprotein (OxLDL) is one of the most important risk factors of cardiovascular disease. Here, we study the impact of OxLDL on endothelial progenitor cells (EPCs) and determine whether OxLDL affects EPCs by an inhibitory effect on endothelial nitric oxide synthase (eNOS). It was found that OxLDL decreased EPC survival and impaired its adhesive, migratory, and tube-formation capacities in a dose-dependent manner. However, all of the detrimental effects of OxLDL were attenuated by pretreatment of EPCs with lectin-like oxidized low density lipoprotein receptor (LOX-1) monoclonal antibody or l-arginine. Western blot analysis revealed that OxLDL dose-dependently decreased Akt phosphorylation and eNOS protein expression and increased LOX-1 protein expression. Furthermore, OxLDL caused a decrease in eNOS mRNA expression and an increase in LOX-1 mRNA expression. These data indicate that OxLDL inhibits EPC survival and impairs its function, and this action is attributable to an inhibitory effect on eNOS.  相似文献   

10.
Intimal infiltration by monocytes and accumulation of lipids represent a critical step in the formation of fatty streaks during atherogenesis. Because elevated plasma levels of asymmetric dimethylarginine (ADMA), a potent nitric oxide (NO) synthase (NOS) inhibitor, are prevalent in diverse cardiovascular diseases, the goal of this study was to examine the contribution of NO deficiency to macrophage lipid accumulation. Inhibition of NO synthesis in PMA-primed human monocytic leukemia HL-60 cells resulted in a twofold increase in expression of the receptor for oxidized LDL (OxLDL), termed the lectin-like OxLDL receptor (LOX-1). Blockade of inducible NOS in activated macrophages resulted in 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-OxLDL accumulation and imparted macrophages with a foamy appearance as detected with oil-red O lipid staining. ADMA (15 microM) or N(G)-nitro-l-arginine methyl ester (l-NAME, 300 microM), both of which suppress inducible NOS activity, increased oil-red staining 1.9- and 2.8-fold, respectively. Macrophages treated with ADMA or l-NAME showed a 2.4-fold increase in accumulation of DiI-OxLDL. To examine the role of LOX-1 in this process, we used small interfering RNA (siRNA) duplex-mediated LOX-1 gene silencing. LOX-1 expression was suppressed twofold by siRNA as shown by Western blot analysis. This suppression was associated with a two- to fourfold decrease in DiI-OxLDL uptake as identified by fluorescence microscopy and decreased oil-red O staining by activated macrophages. In conclusion, accumulation of ADMA (a competitive inhibitor of NOS) in patients with chronic renal failure may be responsible for upregulation of LOX-1 receptor and increased OxLDL uptake, thus contributing to lipidosis and foam cell formation. The data illustrate an additional nonendothelial mode of antiatherogenic action of NO: prevention of LOX-1 induction and lipid accumulation by macrophages.  相似文献   

11.
LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) is an endothelial scavenger receptor that is important for the uptake of OxLDL (oxidized low-density lipoprotein) and contributes to the pathogenesis of atherosclerosis. However, the precise structural motifs of OxLDL that are recognized by LOX-1 are unknown. In the present study, we have identified products of lipid peroxidation of OxLDL that serve as ligands for LOX-1. We used CHO (Chinese-hamster ovary) cells that stably express LOX-1 to evaluate the ability of BSA modified by lipid peroxidation to compete with AcLDL (acetylated low-density lipoprotein). We found that HNE (4-hydroxy-2-nonenal)-modified proteins most potently inhibited the uptake of AcLDL. On the basis of the findings that HNE-modified BSA and oxidation of LDL resulted in the formation of HNE-histidine Michael adducts, we examined whether the HNE-histidine adducts could serve as ligands for LOX-1. The authentic HNE-histidine adduct inhibited the uptake of AcLDL in a dose-dependent manner. Furthermore, we found the interaction of LOX-1 with the HNE-histidine adduct to have a dissociation constant of 1.22×10(-8) M using a surface plasmon resonance assay. Finally, we showed that the HNE-histidine adduct stimulated the formation of reactive oxygen species and activated extracellular-signal-regulated kinase 1/2 and NF-κB (nuclear factor κB) in HAECs (human aortic endothelial cells); these signals initiate endothelial dysfunction and lead to atherosclerosis. The present study provides intriguing insights into the molecular details of LOX-1 recognition of OxLDL.  相似文献   

12.
The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), the major receptor for oxidized low-density lipoprotein (ox-LDL) in endothelial cells, is overexpressed in atherosclerotic lesions. LOX-1 specific inhibitors, urgently necessary to reduce the rate of atherosclerotic and inflammation processes, are not yet available. We have designed and synthesized a new modified oxidized phospholipid, named PLAzPC, which plays to small scale the ligand-receptor recognition scheme. Molecular docking simulations confirm that PLAzPC disables the hydrophobic component of the ox-LDL recognition domain and allows the interaction of the l-lysine backbone charged groups with the solvent and with the charged/polar residues located around the edges of the LOX-1 hydrophobic tunnel. Binding assays, in a cell model system expressing human LOX-1 receptors, confirm that PLAzPC markedly inhibits ox-LDL binding to LOX-1 with higher efficacy compared to previously identified inhibitors.  相似文献   

13.
14.
Proanthocyanidins are oligomers of catechins that exhibit potent antioxidative activity and inhibit binding of oxidized low-density lipoprotein (OxLDL) to the lectin-like oxidized LDL receptor (LOX-1), which is involved in the onset and development of arteriosclerosis. Previous attempts aimed at developing proanthocyanidin derivatives with more potent antioxidative activity and stronger inhibition for LOX-1 demonstrated the synthesis of a novel proanthocyanidin derivative (1), in which the geometry of one catechin molecule in procyanidin B3 was constrained to a planar orientation. The radical scavenging activity of 1 was 1.9-fold higher than that of procyanidin B3. Herein, we synthesized another procyanidin B3 analogue (2), in which the geometries of both catechin molecules in the dimer were constrained to planar orientations. The radical scavenging activity of 2 was 1.5-fold higher than that of 1, suggesting that 2 may be a more effective candidate than 1 as a therapeutic agent to reduce oxidative stress induced in arteriosclerosis or related cerebrovascular disease.  相似文献   

15.
The lectin-like oxidized low-density lipoprotein scavenger receptor (LOX-1) is a pro-inflammatory marker and Type II membrane protein expressed on vascular cells and tissues. The LOX-1 extracellular domain mediates recognition of oxidized low-density lipoprotein (oxLDL) particles that are implicated in the development of atherosclerotic plaques. To study the molecular basis for LOX-1-mediated ligand recognition, we have expressed, purified and refolded a recombinant LOX-1 protein and assayed for its biological activity using a novel fluorescence-based assay to monitor binding to lipid particles. Overexpression of a hexahistidine-tagged cysteine-rich LOX-1 extracellular domain in bacteria leads to the formation of aggregates that accumulated in bacterial inclusion bodies. The hexahistidine-tagged LOX-1 molecule was purified by affinity chromatography from solubilized inclusion bodies. A sequential dialysis procedure was used to refold the purified but inactive and denatured LOX-1 protein into a functionally active form that mediated recognition of oxLDL particles. This approach allowed slow LOX-1 refolding and assembly of correct intrachain disulfide bonds. Circular dichroism analysis of the refolded LOX-1 molecule demonstrated a folded state with substantial alpha-helical content. Using immobilized recombinant, refolded LOX-1 we demonstrated a 70-fold preferential recognition for oxLDL over native LDL particles. Thus, a protein domain containing intrachain disulfide bonds can be reconstituted into a functionally active state using a relatively simple dialysis-based technique.  相似文献   

16.
《MABS-AUSTIN》2013,5(4):357-363
Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is the major receptor for oxidized LDL (oxLDL), and plays a key role in the pathogenesis of atherosclerosis and cardiovascular diseases. Monoclonal antibodies (mAbs) specific for human LOX-1 (hLOX-1) were generated by a phage display technique using chickens immunized with recombinant hLOX-1 (rhLOX-1). A total of 53 independent scFv clones reactive for rhLOX-1 were obtained. Of the 53 clones, 49 recognized the C-type lectin-like domain (CTL domain), which contributes to the binding of oxLDL. Of these, 45 clones inhibited oxLDL-binding with LOX-1. Furthermore, some of these clones cross-reacted with rabbit, pig and/or mouse LOX-1. For possible application as therapeutic agents in the future, two cross-reactive mAbs were re-constructed as chicken-human chimeric antibodies. The chimeric antibodies showed similar characteristics compared to the original antibodies, and inhibited oxLDL binding to LOX-1 expressed on CHO cells. The results obtained in this study indicate that anti-LOX-1 mAbs might be useful tools for functional analyses and development of therapeutic agents for cardiovascular indications such as atherosclerosis.  相似文献   

17.
The lectin-like oxidized low density lipoprotein receptor-1 (Lox-1) mediates the recognition and internalization of oxidatively modified low density lipoprotein by vascular endothelial cells. This interaction results in a number of pro-atherogenic cellular responses that probably play a significant role in the pathology of atherosclerosis. The 1.4 angstrom crystal structure of the extracellular C-type lectin-like domain of human Lox-1 reveals a heart-shaped homodimer with a ridge of six basic amino acids extending diagonally across the apolar top of Lox-1, a central hydrophobic tunnel that extends through the entire molecule, and an electrostatically neutral patch of 12 charged residues that resides next to the tunnel at each opening. Based on the arrangement of critical binding residues on the Lox-1 structure, we propose a binding mode for the recognition of modified low density lipoprotein and other Lox-1 ligands.  相似文献   

18.
Increased levels of low-density lipoproteins are well-established risk factors of endothelial dysfunction and the metabolic syndrome. In this study, we evaluated the effect of native low-density lipoprotein (nLDL) and oxidized LDL (oxLDL) on the expression of genes of the renin-angiotensin system (angiotensin-converting enzyme, ACE; angiotensin II type 1 receptor, AT(1)) and their receptors (low-density lipoprotein receptor: LDLR; lectin-like oxLDL receptor: LOX-1; toll-like receptor 4: TLR4) in primary cultures of human umbilical vein endothelial cells. ACE and AT(1) expressions were significantly increased after stimulation with nLDL and oxLDL. OxLDL receptor LOX-1 showed a maximum induction after 7 hours. Increased LOX-1 protein expression in response to oxLDL could be blocked by a LOX-1-specific antibody. TLR4 expression was increased by nLDL and oxLDL as well. We conclude that LDL and oxLDL can activate the renin-angiotensin system and their receptors LDLR, LOX-1, and TLR4 in human endothelial cells. These data suggest a novel link between hypercholesterolemia and hypertension in patients with the metabolic syndrome.  相似文献   

19.
The human lectin-like oxidized low density lipoprotein receptor 1 LOX-1, encoded by the ORL1 gene, is the major scavenger receptor for oxidized low density lipoprotein in endothelial cells. Here we report on the functional effects of a coding SNP, c.501G>C, which produces a single amino acid change (K>N at codon 167). Our study was aimed at elucidating whether the c.501G>C polymorphism changes the binding affinity of LOX-1 receptor altering its function. The presence of p.K167N mutation reduces ox-LDL binding and uptake. Ox-LDL activated extracellular signal-regulated kinases 1 and 2 (ERK 1/2) is inhibited. Furthermore, ox-LDL induced biosynthesis of LOX-1 receptors is dependent on the p.K167N variation. In human macrophages, derived from c.501G>C heterozygous individuals, the ox-LDL induced LOX-1 46 kDa band is markedly lower than in induced macrophages derived from c.501G>C controls. Investigation of p.K167N mutation through molecular dynamics simulation and electrostatic analysis suggests that the ox-LDL binding may be attributed to the coupling between the electrostatic potential distribution and the asymmetric flexibility of the basic spine residues. The N/N-LOX-1 mutant has either interrupted electrostatic potential and asymmetric fluctuations of the basic spine arginines.  相似文献   

20.
Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is the major receptor for oxidized LDL (oxLDL), and plays a key role in the pathogenesis of atherosclerosis and cardiovascular diseases. Monoclonal antibodies (mAbs) specific for human LOX-1 (hLOX-1) were generated by a phage display technique using chickens immunized with recombinant hLOX-1 (rhLOX-1). A total of 53 independent scFv clones reactive for rhLOX-1 were obtained. Of the 53 clones, 49 recognized the C-type lectin-like domain (CTL domain), which contributes to the binding of oxLDL. Of these, 45 clones inhibited oxLDL-binding with LOX-1. Furthermore, some of these clones cross-reacted with rabbit, pig and/or mouse LOX-1. For possible application as therapeutic agents in the future, two cross-reactive mAbs were re-constructed as chicken-human chimeric antibodies. The chimeric antibodies showed similar characteristics compared to the original antibodies, and inhibited oxLDL binding to LOX-1 expressed on CHO cells. The results obtained in this study indicate that anti-LOX-1 mAbs might be useful tools for functional analyses and development of therapeutic agents for cardiovascular indications such as atherosclerosis.Key words: LOX-1, oxLDL, chicken monoclonal antibody, chimeric antibody, neutralizing antibody  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号