首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Oxidative deamination of dopamine produces the highly toxic aldehyde 3,4-dihydroxyphenylacetaldehyde (DOPAL), enhanced production of which is found in post-mortem brains of Parkinson disease patients. When injected into the substantia nigra of rat brains, DOPAL causes the loss of dopaminergic neurons accompanied by the accumulation of potentially toxic oligomers of the presynaptic protein α-synuclein (aS), potentially explaining the synergistic toxicity described for dopamine metabolism and aS aggregation. In this work, we demonstrate that DOPAL interacts with aS via formation of Schiff-base and Michael-addition adducts with Lys residues, in addition to causing oxidation of Met residues to Met-sulfoxide. DOPAL modification leads to the formation of small aS oligomers that may be cross-linked by DOPAL. Both monomeric and oligomeric DOPAL adducts potently inhibit the formation of mature amyloid fibrils by unmodified aS. The binding of aS to either lipid vesicles or detergent micelles, which results in a gain of α-helix structure in its N-terminal lipid-binding domain, protects the protein against DOPAL adduct formation and, consequently, inhibits DOPAL-induced aS oligomerization. Functionally, aS-DOPAL monomer exhibits a reduced affinity for small unilamellar vesicles with lipid composition similar to synaptic vesicles, in addition to diminished membrane-induced α-helical content in comparison with the unmodified protein. These results suggest that DOPAL could compromise the functionality of aS, even in the absence of protein oligomerization, by affecting the interaction of aS with lipid membranes and hence its role in the regulation of synaptic vesicle traffic in neurons.  相似文献   

2.
Sharma SK  Singh BR 《Biochemistry》2004,43(16):4791-4798
In botulism disease, neurotransmitter release is blocked by a group of structurally related neurotoxin proteins produced by Clostridium botulinum. Botulinum neurotoxins (BoNT, A-G) enter nerve terminals and irreversibly inhibit exocytosis via their endopeptidase activities against synaptic proteins SNAP-25, VAMP, and Syntaxin. Type A C. botulinum secretes the neurotoxin along with 5 other proteins called neurotoxin associated proteins (NAPs). Here, we report that hemagglutinin-33 (Hn-33), one of the NAP components, enhances the endopeptidase activity of not only BoNT/A but also that of BoNT/E, both under in vitro conditions and in rat synaptosomes. BoNT/A endopeptidase activity in vitro is about twice as high as that of BoNT/E under disulfide-reduced conditions. Addition of Hn-33 separately to nonreduced BoNT/A and BoNT/E (which otherwise have only residual endopeptidase activity) enhanced their in vitro endopeptidase activity by 21- and 25-fold, respectively. Cleavage of rat-brain synaptosome SNAP-25 by BoNTs was used to assay endopeptidase activity under nerve-cell conditions. Reduced BoNT/A and BoNT/E cleaved synaptosomal SNAP-25 by 20% and 15%, respectively. Addition of Hn-33 separately to nonreduced BoNT/A and BoNT/E enhanced their endopeptidase activities by 13-fold for the cleavage of SNAP-25 in synaptosomes, suggesting a possible functional role of Hn-33 in association with BoNTs. We believe that Hn-33 could be used as an activator in the formulation of the neurotoxin for therapeutic use.  相似文献   

3.
Johnston K  Sharp P  Clifford M  Morgan L 《FEBS letters》2005,579(7):1653-1657
The effect of different classes of dietary polyphenols on intestinal glucose uptake was investigated using polarised Caco-2 intestinal cells. Glucose uptake into cells under sodium-dependent conditions was inhibited by flavonoid glycosides and non-glycosylated polyphenols whereas aglycones and phenolic acids were without effect. Under sodium-free conditions, aglycones and non-glycosylated polyphenols inhibited glucose uptake whereas glycosides and phenolic acids were ineffective. These data suggest that aglycones inhibit facilitated glucose uptake whereas glycosides inhibit the active transport of glucose. The non-glycosylated dietary polyphenols appear to exert their effects via steric hindrance, and (-)-epigallochatechingallate, (-)-epichatechingallate and (-)-epigallochatechin are effective against both transporters.  相似文献   

4.
In recent years a catechol-thioether metabolite of dopamine, 5-S-cysteinyl-dopamine, has been identified in certain dopaminergic regions of the brain, notably the Substantia Nigra. 5-S-Cysteinyl-dopamine has received great attention in view of its possible significance as an index of oxidative stress in aging and in neurodegenerative processes, particularly in Parkinson's disease. In the present study the effect of 5-S-cysteinyl-dopamine on human dopaminergic neuroblastoma SH-SY5Y cells is investigated. The substance is highly cytotoxic, even at a concentration as low as 30 microM. Treatment of the cells with 5-S-cysteinyl-dopamine induce the following intracellular responses: a decrease of the mitochondrial transmembrane potential, an increase in reactive oxygen species such as superoxide anion and peroxides, a marked decrease of reduced glutathione and an inhibition of the complex I activity. Caspase-3-like protease activation and oligonucleosomal DNA fragmentation have also been observed. These data are indicative of the onset of apoptotic processes due to 5-S-cysteinyl-dopamine.  相似文献   

5.
Mechanisms of nigral cell injury in Parkinson’s disease remain unclear, although a combination of increased oxidative stress, the formation of catecholamine-quinones and the subsequent formation of neurotoxic cysteinyl-catecholamine conjugates may contribute. In the present study, peroxynitrite was observed to generate both 2-S- and 5-S-cysteinyl-dopamine and a dihydrobenzothiazine species, DHBT-1, following the reaction of dopamine with l-cysteine. The formation of 5-S-cysteinyl-dopamine and DHBT-1 in the presence of peroxynitrite induced significant neuronal injury. Pre-treatment of cortical neurons with pelargonidin, quercetin, hesperetin, caffeic acid, the 4′-O-Me derivatives of catechin and epicatechin (0.1-3.0 μM) resulted in concentration dependant protection against 5-S-cysteinyl-dopamine-induced neurotoxicity. These data suggest that polyphenols may protect against neuronal injury induced by endogenous neurotoxins relevant to the aetiology of the Parkinson disease.  相似文献   

6.
The formation of covalent adducts obtained from the reaction of the polyphenols, trans-3,3',4',5,7-pentahydroxyflavan (catechin) and 1,3,5-trihydroxybenzene (phloroglucinol), with ABTS radicals is reported. Two adducts derived from (+)-catechin and three adducts from phloroglucinol were isolated and identified using reversed-phase high performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS). The molecular masses of the (+)-catechin-derived adducts (I(c) and II(c)) were found to be 802 and 559 Da, respectively, whereas the masses of phloroglucinol-derived adducts (I(p), II(p), and III(p)) were 638, 395, and 381 Da, respectively. The initially formed adducts (I(c), I(p)) were unstable and degraded to secondary adducts (II(c), II(p), and III(p)) releasing part of the ABTS molecule. The structures of these adducts were elucidated by interpreting the results of MS/MS analysis of prominent ions generated by both positive and negative ion ESI-MS. The adducts were found to scavenge ABTS radicals, an observation that could explain the complex kinetic behaviour manifested by the reactions of ABTS radicals with polyphenols. A mechanism, which accounts for both the formation of the adducts and the degradation products of ABTS radicals, is proposed.  相似文献   

7.
8.
Treatment of botulinic neurotoxin A with cyclohexanedione demonstrated that modification of 5 to 10 arginine residues does not change the neurotoxin toxicity, while after modification of 15-20 arginine residues the toxicity is decreased by 40-50% of the original value. Butanedione exerts a stronger detoxicating effect on neurotoxin than cyclohexanedione. The molecular conformation of the modified toxin derivatives and their precipitability upon interaction with antisera against toxin and toxin fragments does not change thereby. The non-toxic derivatives of toxin containing 40 modified arginine residues possess a partial serological affinity for the original toxin in a reaction with antiserum against toxin but do not interact with the antifragment sera. The molecular conformation of these preparations is changed considerably. It is assumed that one or two arginine residues are located near the toxic site of the neurotoxin molecule and are also components of its antigenic determinants. Modification of histidine residues in the neurotoxin molecule by diethylpyrocarbonate is accompanied by a decrease of its toxicity. An additional 10% toxicity is revealed upon modification of 11-13 histidine residues. The molecular conformation of the modified derivatives of neurotoxin and their precipitability do not change thereby. It is probable that 1 or 2 histidine residues are located at or near the toxic site. The data obtained suggest that histidine residues are not localized in antigenic determinants of the neurotoxin molecule.  相似文献   

9.
Hepatic ischemia-reperfusion (I/R) can lead to liver failure in association with remote organ damage, both of which have significant rates of morbidity and mortality. In this study, novel spin trapping and histopathological techniques have been used to investigate in vivo free radical formation in a rat model of warm liver I/R injury. 5,5-Dimethyl-1-pyrroline N-oxide (DMPO) was administered to rats via intraperitoneal injection at a single dose of 1.5g of pure DMPO/kg body wt 2h before the initiation of liver ischemia. Blood vessels supplying the median and left lateral hepatic lobes were occluded with an arterial clamp for 60min, followed by 60min reperfusion. The effects of DMPO on I/R injury were evaluated by assessing the hepatic ultrastructure via transmission electron microscopy and by histopathological scoring. Immunoelectron microscopy was performed to determine the cellular localization of DMPO nitrone adducts. Levels of nitrone adducts were also measured to determine in situ scavenging of protein and DNA radicals. Total histopathological scoring of cellular damage was significantly decreased in hepatic I/R injury after DMPO treatment. DMPO treatment significantly decreased the hepatic conversion of xanthine oxidase and 4-hydroxynonenal formation in I/R injury compared to the untreated I/R group. The distribution of gold-nanoparticle-labeled DMPO nitrone adducts was observed in mitochondria, cytoplasm, and nucleus of hepatocytes. The formation of protein- and DNA-nitrone adducts was increased in DMPO-treated I/R livers compared to DMPO controls, indicating increased in situ protein and DNA radical formation and scavenging by DMPO. These results suggest that DMPO reduces I/R damage via protection against oxidative injury.  相似文献   

10.
Antimutagenic activity of green tea (Camellia sinensis) was studied using Salmonella typhimurium strains (TA 102) (Ames test). Aqueous tobacco extract was found to be mutagenic to S. typhimurium TA 102 at concentration of 50 mg/plate. Green tea polyphenols was found to inhibit the mutagenicity of tobacco in a concentration-dependent manner. Concentrations needed for 50% inhibition of mutagen-induced revertant formation was found to be 5 mg/plate. Green tea polyphenols was also found to inhibit the urinary mutagenicity in rats induced by tobacco extract. Moreover green tea polyphenols were found to inhibit in vitro nitrosation reaction produced by reaction sodium nitrite and methyl urea and further inhibition of mutagenicity indicating that green tea has dual action to bring out a reduction in the mutagenic and carcinogenic potential of tobacco.  相似文献   

11.
Liu D  Pozharski E  Fu M  Silverman RB  Ringe D 《Biochemistry》2010,49(49):10507-10515
As a potential drug to treat neurological diseases, the mechanism-based inhibitor (S)-4-amino-4,5-dihydro-2-furancarboxylic acid (S-ADFA) has been found to inhibit the γ-aminobutyric acid aminotransferase (GABA-AT) reaction. To circumvent the difficulties in structural studies of a S-ADFA-enzyme complex using GABA-AT, l-aspartate aminotransferase (l-AspAT) from Escherichia coli was used as a model PLP-dependent enzyme. Crystal structures of the E. coli aspartate aminotransferase with S-ADFA bound to the active site were obtained via cocrystallization at pH 7.5 and 8. The complex structures suggest that S-ADFA inhibits the transamination reaction by forming adducts with the catalytic lysine 246 via a covalent bond while producing 1 equiv of pyridoxamine 5'-phosphate (PMP). Based on the structures, formation of the K246-S-ADFA adducts requires a specific initial binding configuration of S-ADFA in the l-AspAT active site, as well as deprotonation of the ε-amino group of lysine 246 after the formation of the quinonoid and/or ketimine intermediate in the overall inactivation reaction.  相似文献   

12.
13.
Li HT  Lin DH  Luo XY  Zhang F  Ji LN  Du HN  Song GQ  Hu J  Zhou JW  Hu HY 《The FEBS journal》2005,272(14):3661-3672
Fibrillization of alpha-synuclein (alpha-Syn) is closely associated with the formation of Lewy bodies in neurons and dopamine (DA) is a potent inhibitor for the process, which is implicated in the causative pathogenesis of Parkinson's disease (PD). To elucidate any molecular mechanism that may have biological relevance, we tested the inhibitory abilities of DA and several analogs including chemically synthetic and natural polyphenols in vitro. The MS and NMR characterizations strongly demonstrate that DA and its analogs inhibit alpha-Syn fibrillization by a mechanism where the oxidation products (quinones) of DA analogs react with the amino groups of alpha-Syn chain, generating alpha-Syn-quinone adducts. It is likely that the amino groups of alpha-Syn undergo nucleophilic attack on the quinone moiety of DA analogs to form imino bonds. The covalently cross-linked alpha-Syn adducts by DA are primarily large molecular mass oligomers, while those by catechol and p-benzoquinone (or hydroquinone) are largely monomers or dimers. The DA quinoprotein retains the same cytotoxicity as the intact alpha-Syn, suggesting that the oligomeric intermediates are the major elements that are toxic to the neuronal cells. This finding implies that the reaction of alpha-Syn with DA is relevant to the selective dopaminergic loss in PD.  相似文献   

14.
Glutathione induces the rapid isomerization of (Z,Z)-muconaldehyde to (E,E)-muconaldehyde via (E,Z)-muconaldehyde, probably via reversible Michael addition of the thiol to one of the enal moieties of the muconaldehyde. Reactions of (E,E)-muconaldehyde with glutathione (in the presence and absence of equine glutathione S-transferase), phenylmethanethiol, N-acetyl-l-cysteine, and N-acetyl-l-cysteine methyl ester were investigated using mass spectrometric techniques. In each case, evidence was obtained for the formation of Michael adducts, e.g., reaction between (E,E)-muconaldehyde and glutathione gave 4-glutathionyl-hex-2-enedial and 3,4-bis-glutathionyl-hexanedial. These experiments suggest that (Z,Z)-muconaldehyde, a putative metabolite of benzene, could lead to the long established urinary metabolite of benzene, (E,E)-muconic acid, via glutathione-mediated isomerization to (E,E)-muconaldehyde.  相似文献   

15.
We have examined DNA adduct formation in myeloperoxidase containing HL-60 cells treated with the toluene metabolite p-cresol. Treatment of HL-60 cells with the combination of p-cresol and H(2)O(2) produced four DNA adducts 1: (75.0%), 2: (9.1%), 3: (7.0%) and 4: (8.8%) and adduct levels ranging from 0.3 to 33.6 x 10(-7). The levels of DNA adducts formed by p-cresol were dependent on concentrations of p-cresol, H(2)O(2) and treatment time. In vitro incubation of p-cresol with myeloperoxidase and H(2)O(2) produced three DNA adducts 1: (40.5%), 2: (28.4%) and 3: (29.7%) with a relative adduct level of 0.7x10(-7). The quinone methide derivative of p-cresol (PCQM) was prepared by Ag(I)O oxidation. Reaction of calf thymus DNA with PCQM produced four adducts 1: (18.5%), 2: (36.4%), 3: (29.0%) and 5: (16.0%) with a relative adduct level 1.6x10(-7). Rechromatography analyses indicates that DNA adducts 1-3 formed in HL-60 cells treated with p-cresol and after myeloperoxidase activation of p-cresol were similar to those formed by reaction of DNA with PCQM. This observation suggests that p-cresol is activated to a quinone methide intermediate in each of these activation systems. Taken together, these results suggest PCQM is the reactive intermediate leading to the formation of DNA adducts in HL-60 cells treated with p-cresol. Furthermore, the DNA adducts formed by PCQM may provide a biomarker to assess occupational exposure to toluene.  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAH) are recognized as common environmental pollutants released into the environment from many natural as well as man-made sources, and some have been classified as potent carcinogens. The main representative of the carcinogenic PAH is benzo(a)pyrene (B(a)P) which is known to induce genotoxic effects in vitro and in vivo, detected as PAH-DNA adducts. Long-term PAH exposure may be accompanied by an immunological response with the formation of antibodies against PAH as well as against PAH-DNA adducts. This paper describes the use of four PAH-keyhole-limpet haemocyanin (KLH) conjugates for the induction of specific and cross-reactive anti-PAH antibodies and focuses on the potential protective effects of anti-PAH antibodies produced after immunization of mice. In the in vitro experiments with HepG-2 cells, the genotoxicity of the PAH-KLH conjugates and the neutralizing effect of induced anti-PAH antibodies were evaluated. The titer of specific anti-PAH antibodies in sera and the amounts of DNA adducts in liver homogenates from immunized mice were investigated in vivo. The results show that anti-PAH antibodies of class IgG were induced during immunization. All the PAH-KLH conjugates tested were non-genotoxic and did not induce detectable DNA adducts in HepG2 cells or in the liver of immunized mice. The results show that only B(a)P-specific and B(a)P cross-reactive antibodies are able to neutralize B(a)P or its activated metabolites, which was revealed by a sudden decrease in the titer of anti-B(a)P antibodies in mouse sera after exposure to B(a)P. Furthermore, the anti-B(a)P antibodies produced by immunization were effective in reducing the amount of DNA adducts in mouse livers after intraperitoneal (i.p.) exposure to B(a)P. The results suggest that immunization with PAH-KLH conjugates can protect organisms against the adverse effects of carcinogenic PAH.  相似文献   

17.
18.
Surfactant protein-A (SP-A) is the best studied and most abundant of the protein components of lung surfactant and plays an important role in host defense of the lung. It has been shown that ozone-induced oxidation of SP-A protein changes its functional and biochemical properties. In the present study, eight plant polyphenols (three flavonoids, three hydroxycinnamic acids, and two hydroxybenzoic acids) known as strong antioxidants, were tested for their ability to inhibit ozone-induced SP-A oxidation as a mechanism for chemoprevention against lung damage. SP-A isolated from alveolar proteinosis patients was exposed to ozone (1 ppm) for 4 h. The flavonoids protected SP-A from oxidation in a dose dependent manner. ( - )-Epicatechin was the most potent flavonoid and exhibited inhibition of ozone-induced formation of carbonyls by 35% at a concentration as low as 5 μM. Hydroxybenzoic acids inhibited SP-A oxidation in a dose-dependent manner although they were less potent than flavonoids. On the other hand, hydroxycinnamic acids exhibited a different inhibitory pattern. Inhibition was observed only at medium concentrations. The results indicate that inhibition of SP-A oxidation by plant polyphenols may be a mechanism accounting for the protective activity of natural antioxidants against the effects of ozone exposure on lungs.  相似文献   

19.
The gastric digestion of food containing oxidizable lipids and iron catalysts for peroxide decomposition such as (met)myoglobin from muscle meat can be accompanied by an extensive formation of potentially toxic lipid hydroperoxides. An early protective action by dietary antioxidants in the gastro-intestinal tract is plausible, especially for poorly bioavailable antioxidants such as polyphenols. Hence, the ability of antioxidants to inhibit lipid peroxidation initiated by dietary iron in mildly acidic emulsions is a valuable and general model. In this work, the ability of some ubiquitous dietary antioxidants representative of the main antioxidant classes (alpha-tocopherol, the flavonol quercetin, beta-carotene) to inhibit the metmyoglobin-induced peroxidation of linoleic acid is investigated by UV-visible spectroscopy and HPLC in mildly acidic emulsions. The phenolic antioxidants quercetin and alpha-tocopherol come up as the most efficient peroxidation inhibitors. Inhibition by quercetin essentially proceeds in the aqueous phase via a fast reduction of an unidentified activated iron species (with a partially degraded heme) produced by reaction of metmyoglobin with the lipid hydroperoxides. This reaction is faster by, at least, a factor 40 than the reduction of ferrylmyoglobin (independently prepared by reacting metmyoglobin with hydrogen peroxide) by quercetin. By contrast, alpha-tocopherol mainly acts in the lipid phase by reducing the propagating lipid peroxyl radicals. The poorer inhibition afforded by beta-carotene may be related to both its slower reaction with the lipid peroxyl radicals and its competitive degradation by autoxidation and/or photo-oxidation.  相似文献   

20.
Enhancement of acetaldehyde-protein adduct formation by L-ascorbate   总被引:5,自引:0,他引:5  
The effect of L-ascorbate on the binding of [14C]acetaldehyde to bovine serum albumin was examined. In the absence of ascorbate, acetaldehyde reacted with albumin to form both unstable (Schiff bases) and stable adducts. Ascorbate (5 mM) caused a time-dependent increase in the formation of total acetaldehyde-albumin adducts, which were comprised mainly of stable adducts. Significant enhancement of adduct formation by ascorbate was observed at acetaldehyde concentrations as low as 5 microM. An ascorbate concentration as low as 0.5 mM was still effective in stimulating stable adduct formation. The electron acceptor, 2,6 dichlorophenolindophenol, prevented the ascorbate-induced increase in albumin-adduct formation. Ascorbate also caused enhanced acetaldehyde adduct formation with other purified proteins, including cytochrome c and histones, as well as the polyamino acid, poly-L-lysine. These results indicate that ascorbate, acting as a reducing agent, can convert unstable acetaldehyde adducts to stable adducts, and can thereby increase and stabilize the binding of acetaldehyde to proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号