首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The urokinase‐type plasminogen activator receptor (uPAR) is a non‐integrin vitronectin (VN) cell adhesion receptor linked to the plasma membrane by a glycolipid anchor. Through structure–function analyses of uPAR, VN and integrins, we document that uPAR‐mediated cell adhesion to VN triggers a novel type of integrin signalling that is independent of integrin–matrix engagement. The signalling is fully active on VN mutants deficient in integrin binding site and is also efficiently transduced by integrins deficient in ligand binding. Although integrin ligation is dispensable, signalling is crucially dependent upon an active conformation of the integrin and its association with intracellular adaptors such as talin. This non‐canonical integrin signalling is not restricted to uPAR as it poses no structural constraints to the receptor mediating cell attachment. In contrast to canonical integrin signalling, where integrins form direct mechanical links between the ECM and the cytoskeleton, the molecular mechanism enabling the crosstalk between non‐integrin adhesion receptors and integrins is dependent upon membrane tension. This suggests that for this type of signalling, the membrane represents a critical component of the molecular clutch.  相似文献   

2.
The extracellular matrix (ECM) is a complex structural entity surrounding and supporting cells present in all tissue and organs. Cell-matrix interactions play fundamental roles during embryonic development, morphogenesis, tissue homoeostasis, wound healing, and tumourigenesis. Cell-matrix communication is kept in balance by physical contact and by transmembrane integrin receptors providing the dynamic link between the extracellular and intracellular environments through bi-directional signalling. The urokinase-type plasminogen activator receptor (uPAR) is a plasma membrane receptor overexpressed during inflammation and in almost all human cancers. One of its functions is to endorse ECM remodelling through the activation of plasminogen and downstream proteases, including matrix-metalloproteases (MMPs). Beside its role in ECM degradation, uPAR modulates cell-matrix contact through a direct engagement with the ECM component, vitronectin (Vn), and by regulating the activity state of integrins thus promoting or inhibiting integrin signalling and integrin-mediated cell adhesion to other ECM components, like fibronectin and collagen. In this review we have centred our attention on the non-proteolytic function of uPAR as a mediator of cell adhesion and downstream signalling.  相似文献   

3.
Adhesion and migration are integrated cell functions that build, maintain and remodel the multicellular organism. In migrating cells, integrins are the main transmembrane receptors that provide dynamic interactions between extracellular ligands and actin cytoskeleton and signalling machineries. In parallel to integrins, other adhesion systems mediate adhesion and cytoskeletal coupling to the extracellular matrix (ECM). These include multifunctional cell surface receptors (syndecans and CD44) and discoidin domain receptors, which together coordinate ligand binding with direct or indirect cytoskeletal coupling and intracellular signalling. We review the way that the different adhesion systems for ECM components impact cell migration in two- and three-dimensional migration models. We further discuss the hierarchy of these concurrent adhesion systems, their specific tasks in cell migration and their contribution to migration in three-dimensional multi-ligand tissue environments.  相似文献   

4.
Interactions between cells and microenvironments are essential to cellular functions such as survival, exocytosis and differentiation. Cell adhesion to the extracellular matrix (ECM) evokes a variety of biophysical changes in cellular organization, including modification of the cytoskeleton and plasma membrane. In fact, the cytoskeleton and plasma membrane are structures that mediate adherent contacts with the ECM; therefore, they are closely correlated. Considering that the mechanical properties of the cell could be affected by cell adhesion-induced changes in the cytoskeleton, the purpose of this study was to investigate the influence of the ECM on the elastic properties of fixed macrophage cells using atomic force microscopy. The results showed that there was an increase (~50 %) in the Young’s modulus of macrophages adhered to an ECM-coated substrate as compared with an uncoated glass substrate. In addition, cytochalasin D-treated cells had a 1.8-fold reduction of the Young’s modulus of the cells, indicating the contribution of the actin cytoskeleton to the elastic properties of the cell. Our findings show that cell adhesion influences the mechanical properties of the plasma membrane, providing new information toward understanding the influence of the ECM on elastic alterations of macrophage cell membranes.  相似文献   

5.
Transmembrane adhesion receptors, such as integrins, mediate cell adhesion by interacting with intracellular proteins that connect to the cytoskeleton. Talin, one such linker protein, is thought to have two roles: mediating inside-out activation of integrins, and connecting extracellular matrix (ECM)-bound integrins to the cytoskeleton. Talin's amino-terminal head, which consists of a FERM domain, binds an NPxY motif within the cytoplasmic tail of most integrin beta subunits. This is consistent with the role of FERM domains in recruiting other proteins to the plasma membrane. We tested the role of the talin-head-NPxY interaction in integrin function in Drosophila. We found that introduction of a mutation that perturbs this binding in vitro into the isolated talin head disrupts its recruitment by integrins in vivo. Surprisingly, when engineered into the full-length talin, this mutation did not disrupt talin recruitment by integrins nor its ability to connect integrins to the cytoskeleton. However, it reduced the ability of talin to strengthen integrin adhesion to the ECM, indicating that the function of the talin-head-NPxY interaction is solely to regulate integrin adhesion.  相似文献   

6.
The extracellular matrix (ECM) physically supports cells and influences stem cell behaviour, modulating kinase-mediated signalling cascades. Cell-derived ECMs have emerged in bone regeneration as they reproduce physiological tissue-architecture and ameliorate mesenchymal stromal cell (MSC) properties. Titanium scaffolds show good mechanical properties, facilitate cell adhesion, and have been routinely used for bone tissue engineering (BTE). We analyzed the kinomic signature of human MSCs in adhesion to an osteopromotive osteoblast-derived ECM, and compared it to MSCs on titanium. PamChip kinase-array analysis revealed 63 phosphorylated peptides on ECM and 59 on titanium, with MSCs on ECM exhibiting significantly higher kinase activity than on titanium. MSCs on the two substrates showed overlapping kinome profiles, with activation of similar signalling pathways (FAK, ERK, and PI3K signalling). Inhibition of PI3K signalling in cells significantly reduced adhesion to ECM and increased the number of nonadherent cells on both substrates. In summary, this study comprehensively characterized the kinase activity in MSCs on cell-derived ECM and titanium, highlighting the role of PI3K signalling in kinomic changes regulating osteoblast viability and adhesion. Kinome profile analysis represents a powerful tool to select pathways to better understand cell behaviour. Osteoblast-derived ECM could be further investigated as titanium scaffold-coating to improve BTE.  相似文献   

7.
The adhesion of leukocytes to the extracellular matrix (ECM) depends on their responses to variations in the chemotactic signals in their milieu, as well as on the functioning of cytoskeletal and context-specific receptors. Ezrin, radixin, and moesin constitute a family of proteins that link the plasma membrane to the actin cytoskeleton. The surface expression of moesin on T cells and its role in cell adhesion has not been fully elucidated. Recently, we found that IL-2 peptides generated by elastase modified the adhesion of activated T cells to ECM ligands. Here, we further examined the adhesion regulatory effects of EFLNRWIT, one of the IL-2 peptides, as well as the existence and putative function of its receptor on T cells. We found that when presented to T cells in the absence of another activator, the EFLNRWIT peptide induced cell adhesion to vessel wall and ECM components. Binding of a radiolabeled peptide to T cells, precipitation with the immobilized peptide, and amino acid sequencing of the precipitated protein revealed that EFLNRWIT exerts its function via a cell surface-expressed moesin-like moiety, whose constitutive expression on T cells was increased after activation. This notion was further supported by our findings that: 1) anti-moesin mAb inhibited the binding of T cells to the immobilized EFLNRWIT peptide, 2) immobilized recombinant moesin bound the IL-2 peptide, and 3) soluble moesin inhibited the EFLNRWIT-induced T cell adhesion to fibronectin. Interestingly, moesin appears to be generally involved in T cell responses to adhesion-regulating signals. Thus, the IL-2 peptide EFLNRWIT appears to exert its modulating capacities via an adhesion-regulating moesin-like receptor.  相似文献   

8.
The plant extracellular matrix (ECM) is complex and diverse, and is involved in cell-cell communication in a wide range of developmental, reproductive and pathogenic processes. Characterisation of integral ECM components is leading to improved understanding of their roles in signalling. Interactions between the extracellular domains of plant plasma membrane receptor kinases and their ligands are potentially regulated by the properties of the ECM. Several of these interactions, for example those involving the S-locus receptor kinase, are being characterised in some detail. Non-protein constituents are also implicated in regulating the movement of signalling molecules in the ECM, which is associated with developmental patterning. In contrast to the situation in animal cells, cytoskeleton-integrin-ECM signalling complexes appear not to be dominant features of signal transduction in plant cells. Nevertheless, structural adhesions between the plasma membrane and cell wall are important for a variety of functions.  相似文献   

9.
Focal adhesion kinase: in command and control of cell motility   总被引:15,自引:0,他引:15  
A central question in cell biology is how membrane-spanning receptors transmit extracellular signals inside cells to modulate cell adhesion and motility. Focal adhesion kinase (FAK) is a crucial signalling component that is activated by numerous stimuli and functions as a biosensor or integrator to control cell motility. Through multifaceted and diverse molecular connections, FAK can influence the cytoskeleton, structures of cell adhesion sites and membrane protrusions to regulate cell movement.  相似文献   

10.
Cell and extracellular matrix (ECM) interaction plays an important role in development and normal cellular function. Cell adhesion and cell spreading on ECM are two basic cellular behaviors related to cell-ECM interaction. Here we show that palladin, a novel actin cytoskeleton-associated protein, is actively involved in the regulation of cell-ECM interaction. It was found that palladin-deficient mouse embryonic fibroblasts (MEFs) display decreased cell adhesion and compromised cell spreading on various ECMs. Disorganized actin cytoskeleton architecture characterized by faint stress fibers, less lamellipodia and focal adhesions can account for the weakened cell-ECM interaction in palladin(-/-) MEFs. Furthermore, decreased polymerized filament actin and increased globular actin can be observed in palladin(-/-) MEFs, strongly suggesting that palladin is essential for the formation or stabilization of polymerized filament actin. Elevated phospho-cofilin level and proper responses in cofilin phosphorylation to either Rho signal agonist or antagonist in palladin(-/-) MEFs indicate that disrupted stress fibers in palladin(-/-) MEFs is not associated with cofilin phosphorylation. More interestingly, the protein level of ECM receptor beta1-integrin is dramatically decreased in MEFs lacking palladin. Down-regulation of beta1-integrin protein can be restored by proteasome inhibitor MG-132 treatment. All these data implicate that palladin is essential for cell-ECM interaction through maintaining normal actin cytoskeleton architecture and stabilizing beta1-integrin protein.  相似文献   

11.
Patterning of the membrane cytoskeleton by the extracellular matrix   总被引:2,自引:0,他引:2  
The extracellular matrices of different tissues contain components which affect the migration, morphology and differentiation of many types of cells. These forms of cell behavior often involve dramatic changes in cytoskeletal organization. Extracellular matrix components are recognized by specific cell surface receptors which span the membrane and interact with the actin cytoskeleton. In cultured cells, the matrix receptors are concentrated in sites of cell attachment called focal adhesions. Information that is conveyed from the extracellular matrix to the cytoskeleton may involve matrix components, cell surface receptors, as well as the proteins at the cytoplasmic face of the focal adhesion which link the receptors to the actin cytoskeleton.  相似文献   

12.
Focal adhesions (FAs) are complex plasma membrane‐associated macromolecular assemblies that serve to physically connect the actin cytoskeleton to integrins that engage with the surrounding extracellular matrix (ECM). FAs undergo maturation wherein they grow and change composition differentially to provide traction and to transduce the signals that drive cell migration, which is crucial to various biological processes, including development, wound healing and cancer metastasis. FA‐related signalling networks dynamically modulate the strength of the linkage between integrin and actin and control the organization of the actin cytoskeleton. In this review, we have summarized a number of recent investigations exploring how FA composition is affected by the mechanical forces that transduce signalling networks to modulate cellular function and drive cell migration. Understanding the fundamental mechanisms of how force governs adhesion signalling provides insights that will allow the manipulation of cell migration and help to control migration‐related human diseases.  相似文献   

13.
Chondrocyte differentiation is a multi-step process characterized by successive changes in cell morphology and gene expression. In addition to tight regulation by numerous soluble factors, these processes are controlled by adhesive events. During the early phase of the chondrocyte life cycle, cell-cell adhesion through molecules such as N-cadherin and neural cell adhesion molecule (N-CAM) is required for differentiation of mesenchymal precursor cells to chondrocytes. At later stages, for example in growth plate chondrocytes, adhesion signaling from extracellular matrix (ECM) proteins through integrins and other ECM receptors such as the discoidin domain receptor (DDR) 2 (a collagen receptor) and Annexin V is necessary for normal chondrocyte proliferation and hypertrophy. Cell-matrix interactions are also important for chondrogenesis, for example through the activity of CD44, a receptor for Hyaluronan and collagens. The roles of several signaling molecules involved in adhesive signaling, such as integrin-linked kinase (ILK) and Rho GTPases, during chondrocyte differentiation are beginning to be understood, and the actin cytoskeleton has been identified as a common target of these adhesive pathways. Complete elucidation of the pathways connecting adhesion receptors to downstream effectors and the mechanisms integrating adhesion signaling with growth factor- and hormone-induced pathways is required for a better understanding of physiological and pathological skeletal development.  相似文献   

14.
We investigated in a colon adenocarcinoma cell line, the exclusive role of extracellular matrix (ECM) components in the absence of soluble factors regarding the integrin clustering processes, and their implication in cell adhesion, spreading and organization of the actin cytoskeleton. Caco-2 cells were shown to express at the plasma membrane 11 integrins, some of which (e.g. alpha3beta1, alpha5beta1, alpha6beta1/beta4, alpha8beta1 and alpha(v)beta1/beta5/beta6) were identified for the first time in this cell line. Cell adhesion and spreading processes were governed essentially by lamellipodium, the regulation of which was shown to be induced by two types of integrin clustering processes mediated by ECM proteins alone. During these phenomena, alpha2beta1, alpha(v)beta6 and alpha6beta1 integrins, the Caco-2 cell specific receptors of type IV collagen, fibronectin and laminin, respectively, were clustered in small focal complexes (point contacts), whereas alpha(v)beta5, the vitronectin receptor in this cell line, was aggregated in focal adhesions. The two levels of integrin clustering induced only F-actin cortical web formation organized in thin radial and/or circular filaments. We conclude thus that ECM components per se through their action on integrin clustering are involved in cell adhesion, cortical actin cytoskeleton organization and cell spreading.  相似文献   

15.
Osteoblast cells synthesize collagen‐rich ECM (extracellular matrix) in response to various environmental cues, but little is known about ECM‐dependent variations in phosphorylation patterns. Using MC3T3 E1 osteoblast‐like cells and mouse whole‐genome microarrays, we investigated molecular signalling affected by collagen‐based ECMs. A genome‐wide expression analysis revealed that cells grown in the 3D collagen matrix partially suppressed the genes associated with cell adhesion and cell cycling. Western analysis demonstrated that the expression of the active (phosphorylated) form of p130Cas, FAK (focal adhesion kinase) and ERK1/2 (extracellular‐signal‐regulated protein kinase 1/2) was reduced in cells grown in the 3D matrix. Conversely, phosphorylation of p38 MAPK (p38 mitogen‐activated protein kinase) was elevated in the 3D matrix, and its up‐regulation was linked to an increase in mRNA levels of dentin matrix protein 1 and bone sialoprotein. Although multiple characteristics such as surface topography, chemical composition and mechanical properties differ in the preparations of our collagen‐rich milieu, our observations support the notion that geometrical alterations in ECM environments can alter the phosphorylation pattern of p130Cas, FAK, ERK1/2 and p38 MAPK and lead to a differential developmental fate.  相似文献   

16.
The extracellular matrix (ECM) is synthesized and secreted by embryonic cells beginning at the earliest stages of development. Our understanding of ECM composition, structure and function has grown considerably in the last several decades and this knowledge has revealed that the extracellular microenvironment is critically important for cell growth, survival, differentiation and morphogenesis. ECM and the cellular receptors that interact with it mediate both physical linkages with the cytoskeleton and the bidirectional flow of information between the extracellular and intracellular compartments. This review considers the range of cell and tissue functions attributed to ECM molecules and summarizes recent findings specific to key developmental processes. The importance of ECM as a dynamic repository for growth factors is highlighted along with more recent studies implicating the 3-dimensional organization and physical properties of the ECM as it relates to cell signaling and the regulation of morphogenetic cell behaviors. Embryonic cell and tissue generated forces and mechanical signals arising from ECM adhesion represent emerging areas of interest in this field.  相似文献   

17.
Integrins are ubiquitous trans-membrane adhesion molecules that mediate the interaction of cells with the extracellular matrix (ECM). Integrins link cells to the ECM by interacting with the cell cytoskeleton. In cases such as leukocyte binding, integrins mediate cell-cell interactions and cell-ECM interactions. Recent research indicates that integrins also function as signal transduction receptors, triggering a number of intracellular signaling pathways that regulate cell behavior and development. A number of integrins are known to stimulate changes in intracellular calcium levels, resulting in integrin activation. Although changes in intracellular calcium regulate a vast number of cellular functions, this review will discuss the stimulation of calcium signaling by integrins and the role of intracellular calcium in the regulation of integrin-mediated adhesion.  相似文献   

18.
Extracellular matrices (ECMs) of phylogenetically very distant organisms were tested for their ability to support cell adhesion, spreading and DNA replication in reciprocal xenograft adhesion tests. Mechanically dissociated cells of the medusa Podocoryne carnea (Cnidaria, Hydrozoa) were seeded on ECMs of polyps and medusa, and on several ECM glycoproteins or entire ECMs from vertebrates. In reciprocal experiments, cells from different vertebrate cell-lines were seeded on ECMs of polyps, medusae and also on electrophoresed and blotted extracts of both types of ECMs. The results demonstrate that medusa cells adhere and spread on polyp and medusa ECMs but do not recognize vertebrate ECMs or purified ECM glycoproteins. Vertebrate cells in contrast adhere, spread and proliferate on ECMs of polyps and medusae. The number of attached cells depends on the cell type, the type of ECM and, in certain cases, on the stage of the cell cycle. Cell adhesion experiments with pretreated ECMs of polyps and medusae, e.g. oxidation of carbohydrate residues with sodium-metaperiodate, or blocking of certain carbohydrate moieties with the lectin wheat germ agglutinin or a carbohydrate-specific monoclonal antibody, demonstrate that ECM carbohydrates are more important for cell-ECM interactions of medusa cells than for vertebrate cells. Furthermore, the experiments indicate that polyp and medusa ECMs contain different components which strongly modulate adhesion, spreading and DNA replication of vertebrate cells.  相似文献   

19.
We constructed photo-reactive epidermal growth factor (EGF) bearing p-azido phenylalanine at the C-terminal (HEGFP) by genetic engineering to investigate the possibility of immobilized EGF as a novel artificial extracellular matrix (ECM). The constructed recombinant protein was immobilized to glass surface by ultraviolet irradiation. A431 cells adhered both to HEGFP-immobilized and collagen-coated surfaces. Interaction between immobilized HEGFP and EGF receptors in the A431 cells was independent of Mg(2+) although integrin-mediated cell adhesion to natural ECMs is dependent on Mg(2+). Phosphorylation of EGF receptors in A431 cells was induced by immobilized HEGFP as same as soluble EGF. DNA uptake of hepatocytes decreased by immobilized HEGFP whereas it increased by soluble EGF. Liver-specific functions of hepatocytes were maintained for 3 days by immobilized HEGFP whereas they were not maintained by soluble EGF, indicating that immobilized HEGFP follows different signal transduction pathway from soluble EGF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号