首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxiredoxin 2 (Prdx2) is a ubiquitous antioxidant enzyme in mammalian brain. Although a protective role of Prdx2 has been established in cerebral ischemia and several neurodegenerative diseases, its contribution against iron-induced neurocytotoxicity still remains to be determined. Accordingly, in this study, we aimed to investigate the effects of Prdx2 on iron-induced cytotoxicity using an in vitro model in which PC12 cells are exposed to ferrous sulfate (FS). The FS treatment increased Prdx2 expression, and promoted lactate dehydrogenase (LDH) release and cell apoptosis in PC12 cells, accompanied by the increase in the Bax/Bcl2 ratio, cytochrome c release, and caspase-3 cleavage. FS exposure also increased the malondialdehyde content (lipid peroxidation), 3′-nitrotyrosine expression (protein nitration), γ-H2A.X formation (DNA oxidation), and promoted nuclear factor kappa B nuclear translocation, cyclooxygenase-2 expression, and release of tumor necrosis factor-α and interleukin-1β. Lentivirus-mediated Prdx2 knockdown intensified the FS-induced LDH release and cell apoptosis by aggravating the oxidative and inflammatory damage. In conclusion, our findings demonstrated that Prdx2 played a vital role in the protection against iron-induced cytotoxicity in PC12 cells.  相似文献   

2.
Neurodegenerative diseases are defined by progressive loss of specific neuronal cell populations and are associated with protein aggregates. Oxidative stress has been implicated in their pathological processes. Previous studies revealed that docosahexaenoic acid (DHA) is beneficial in neurodegenerative diseases. Phospholipids (PLs) derived from marine products are rich in DHA and eicosapentaenoic acid (EPA). In the present study, we investigated the neuroprotective effects of DHA-enriched and unenriched phosphatidylcholine (PC) and phosphatidylserine (PS) on oxidative stress induced by hydrogen peroxide (H2O2) and tert-butylhydroperoxide in PC12 cells. Cell viability and leakage of lactate dehydrogenase results showed that the neuroprotective effect of PS was superior to that of PC. DHA- and EPA-enriched PC and PS were superior to that without DHA or EPA; in addition, the improvement with n-3 polyunsaturated fatty acid-enriched PS (n-3 PS) was dose dependent. Acridine orange/ethidium bromide staining showed that DHA- and EPA-enriched PS (DHA/EPA-PS) could significantly inhibit apoptosis. Mechanistic studies revealed that EPA-PS and DHA-PS were effective to increase superoxide dismutase (SOD) levels by 48.4 and 58.2 % and total antioxidant capacity (T-AOC) level by 51 and 94 %, respectively, in the H2O2 model. Similar results for SOD and T-AOC levels were shown in the t-BHP model. EPA/DHA-PS could downregulate the messenger RNA level of Caspase-3, Caspase-9, and Bax, upregulate Bcl-2, inhibit Bax, and increase Bcl-2 at protein level. In conclusion, EPA/DHA-PS could protect PC12 cells from oxidative stress and prevent mitochondrial-mediated apoptosis. Our findings indicate that the neuroprotective effects of DHA/EPA-PLs depend on the molecular form. Further studies are necessary to reveal detailed mechanisms and structure–effect relationships.  相似文献   

3.
槲皮素广泛存在于许多药用植物中,属黄酮类化合物,在临床上常用于心血管疾病的治疗。采用四甲基偶氮唑盐比色法(MTT法)及DAPI染色,研究槲皮素(0.5、1、5、10μmol/L)对谷氨酸(10mmol/L)诱导的PC12细胞损伤作用的影响;并进一步研究槲皮素(0.3、3、30μmol/L)对急性分离的海马CA1锥体神经元离子通道的作用。MTT实验结果显示,槲皮素可提高谷氨酸处理组PC12细胞的存活率,并呈现为浓度和时间依赖性(P0.05);而槲皮素(5μmol/L)与谷氨酸(10mmol/L)共孵育PC12细胞后,DAPI染色结果表明槲皮素可减弱谷氨酸对PC12细胞的损伤。对电生理结果显示,槲皮素对瞬时外向钾电流(IA)和延迟整流钾电流(IK)有显著的抑制作用(P0.05),表现为浓度依赖性。以上结果提示,槲皮素可能通过抑制海马锥体神经元的外向钾电流进而对谷氨酸诱导的神经损伤起保护作用,这也说明了槲皮素对缺血样损伤的神经具有保护作用。  相似文献   

4.
Oxidative stress can induce neuronal apoptosis via the production of superoxide and hydroxyl radicals. This process is as a major pathogenic mechanism in neurodegenerative disorders. In this study, we aimed to clarify whether theaflavins protect PC12 cells from oxidative stress damage induced by H2O2. A cell model of PC12 cells undergoing oxidative stress was created by exposing cells to 200 μM H2O2 in the presence or absence of varying concentrations of theaflavins (5, 10, and 20 μM). Cell viability was monitored using the MTT assay and Hoechst 33258 staining, showing that 10 μM theaflavins enhanced cell survival following 200 μM H2O2 induced toxicity and increased cell viability by approximately 40?%. Additionally, we measured levels of intracellular reactive oxygen species (ROS) and antioxidant enzyme activity. This suggested that the neuroprotective effect of theaflavins against oxidative stress in PC12 cells is derived from suppression of oxidant enzyme activity. Furthermore, Western blot analyses indicated that theaflavins downregulated the ratio of pro-apoptosis/anti-apoptosis proteins Bax/Bcl-2. Theaflavins also downregulated the expression of caspase-3 compared with a H2O2-treated group that had not been treated with theaflavins. Interestingly, this is the first study to report that the four main components of theaflavins found in black tea can protect neural cells (PC12) from apoptosis induced by H2O2. These findings provide the foundations for a new field of using theaflavins or its source, black tea, in the treatment of neurodegenerative diseases caused by oxidative stress.  相似文献   

5.
6.
Stroke involves numerous pathophysiological processes and oxidative stress is considered as a main cellular event in its pathogenesis. The nuclear factor erythroid-2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway plays a key role in inducing phase II detoxifying enzymes and antioxidant proteins and is now considered as a interesting therapeutic target for the treatment of stroke. The objective of this study is to investigate the protective effect of Gualou Guizhi granule (GLGZG) against oxidative stress and explore the protective mechanism of the Nrf2/ARE pathway. In vivo, administration of GLGZG in a rat model of focal cerebral ischemia significantly suppressed oxidative injury by increasing the activity of superoxide dismutase and glutathione level and decreasing reactive oxygen species and malondialdehyde levels. Western blot analysis showed that GLGZG induced nuclear translocation of Nrf2, and combined with real-time PCR results, which indicated that GLGZG up-regulated the Nrf2/ARE pathway. In addition, in cultured PC12 cells, GLGZG protected against H2O2 induced oxidative injury and activated the Nrf2/ARE pathway. All the results demonstrated that GLGZG in the management of cerebral ischemia and H2O2 induced oxidative injury may be associated with activation of Nrf2/ARE signaling pathway.  相似文献   

7.
In an attempt to understand the neuroprotective effect of Fructus Alpinia oxyphylla (AOE) and to elucidate its underlying mechanism of action, the ethanolic extract of AOE was investigated using zebrafish and PC12 cell models. AOE prevented and restored 6-hydroxydopamine (6-OHDA)-induced dopaminergic (DA) neuron degeneration and attenuated a deficit of locomotor activity in a zebrafish (Danio rerio) model of Parkinson’s disease (PD). Treatment with AOE increased the viability of 6-OHDA-treated PC12 cells in vitro in a dose-dependent manner by attenuating cellular apoptosis. However, protocatechuic acid (PCA) and chrysin, two known polyphenol components of AOE, could not reproduce the neuroprotective activity of AOE in the PD zebrafish or PC12 cell models. A mechanistic study found that the protective effect of AOE against 6-OHDA-induced neuronal injury involved anti-inflammatory action (down-regulation of gene expression of IL-1β and TNF-α) and anti-oxidative action (inhibition of NO production and iNOS expression in PC12 cells). Moreover, the PI3K-AKT pathway might be part of the mechanism of neuroprotection of AOE. The results of this research are expected to provide a scientific rationale for the use of AOE in the treatment of PD. However, it is important that the active components that contribute to the neuroprotective action of AOE are identified and characterized.  相似文献   

8.
Xie  Wanqiu  Lv  Ai  Li  Ruyue  Tang  Zequn  Ma  Dexing  Huang  Xiaodan  Zhang  Ruili  Ge  Ming 《Biological trace element research》2018,184(1):247-258
Biological Trace Element Research - Agaricus blazei Murill polysaccharide (ABP) has exhibited antioxidant and immunoregulatory activity. The aim of this study was to investigate the effect of ABP...  相似文献   

9.
10.
1. Aims: Agmatine is an endogenous guanido amine and has been shown to be neuroprotective in vitro and in vivo. The aims of this study are to investigate whether agmatine is protective against cell death induced by different agents in cultured neurons and PC12 cells.2. Methods: Cell death in neurons, cultured from neonatal rat cortex, was induced by incubating with (a) NMDA (100 M) for 10 min, (b) staurosporine (protein kinase inhibitor, 100 nM) for 24 h, and (c) calcimycin (calcium ionophore, 100 nM) for 24 h in the presence and absence of agmatine (1 M to 1 mM). Cell death in PC12 cells was induced by exposure to glutamate (10 mM), staurosporine (100 nM), and calcimycin (100 nM). The activity of lactate dehydrogenase (LDH) in the medium was measured as the marker of cell death and normalized to cellular LDH activity.3. Results: Agmatine significantly reduced the medium LDH in NMDA-treated neurons but failed to reduce the release of LDH induced by staurosporin or calcimycin. In PC12 cells, agmatine significantly reduced LDH release induced by glutamate exposure, but not by staurosporine or calcimycin. Agmatine itself neither increased LDH release nor directly inhibited the enzyme activity.4. Conclusion: We conclude that agmatine protects against NMDA excitotoxicity in neurons and PC12 cells but not the cell death induced by protein kinase blockade or increase in cellular calcium.  相似文献   

11.
12.

Methamphetamine (METH) is a potent psychomotor stimulant that has a high potential for abuse in humans. In addition, it is neurotoxic, especially in dopaminergic neurons. Long-lasting exposure to METH causes psychosis and increases the risk of Parkinson’s disease. Apelin-13 is a novel endogenous ligand which studies have shown that may have a neuroprotective effect. Therefore, we hypothesized that Apelin-13 might adequately prevent METH-induced neurotoxicity via the inhibition of apoptotic, autophagy, and ROS responses. In this study, PC12 cells were exposed to both METH (0.5, 1, 2, 3, 4, 6 mmol/L) and Apelin-13 (0.5, 1.0, 2.0, 4.0, 8.0 μmol/L) in vitro for 24 h to measure determined dose, and then downstream pathways were measured to investigate apoptosis, autophagy, and ROS responses. The results have indicated that Apelin-13 decreased the apoptotic response post-METH exposure in PC12 cells by increasing cell viability, reducing apoptotic rates. In addition, the study has revealed Apelin-13 decreased gene expression of Beclin-1 by Real-Time PCR and LC3-II by western blotting in METH-induced PC12 cells, which demonstrated autophagy is reduced. In addition, this study has shown that Apelin-13 reduces intracellular ROS of METH-induced PC12 cells. These results support Apelin-13 to be investigated as a potential drug for treatment of neurodegenerative diseases. It is suggested that Apelin-13 is beneficial in reducing oxidative stress, which may also play an important role in the regulation of METH-triggered apoptotic response. Hence, these data indicate that Apelin-13 could potentially alleviate METH-induced neurotoxicity via the reduction of oxidative damages, apoptotic, and autophagy cell death.

  相似文献   

13.
Selol is an organic selenitetriglyceride formulation containing selenium at +4 oxidation level that can be effectively incorporated into catalytic sites of of Se-dependent antioxidants. In the present study, the potential antioxidative and cytoprotective effects of Selol against sodium nitroprusside (SNP)-evoked oxidative/nitrosative stress were investigated in PC12 cells and the underlying mechanisms analyzed. Spectrophoto- and spectrofluorimetic methods as well as fluorescence microscopy were used in this study; mRNA expression was quantified by real-time PCR. Selol dose-dependently improved the survival and decreased the percentage of apoptosis in PC12 cells exposed to SNP. To determine the mechanism of this protective action, the effect of Selol on free radical generation and on antioxidative potential was evaluated. Selol offered significant protection against the elevation of reactive oxidative species (ROS) evoked by SNP. Moreover, this compound restored glutathione homeostasis by ameliorating the SNP-evoked disturbance of GSH/GSSG ratio. The protective effect exerted by Selol was associated with the prevention of SNP-mediated down-regulation of antioxidative enzymes: glutathione peroxidase (Se-GPx), glutathione reductase (GR), and thioredoxin reductase (TrxR). Finally, GPx inhibition significantly abolished the cytoprotective effect of Selol. In conclusion, these results suggest that Selol effectively protected PC12 cells against SNP-induced oxidative damage and death by adjusting free radical levels and antioxidant system, and suppressing apoptosis. Selol could be successfully used in the treatments of diseases that involve oxidative stress and resulting apoptosis.  相似文献   

14.
以自组装方法制备了Trolox(6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic Acid)-壳聚糖纳米颗粒,通过形态观察、MTT、MDA和活性氧荧光检测实验,研究了该纳米抗氧化剂对CoCl2诱导的氧化应激损伤中PC12细胞的保护效果。结果表明,与Trolox单体相比,纳米抗氧化剂能够更加有效地保护细胞形态、显著提高细胞活性和减轻细胞脂质过氧化损伤、高效地淬灭活性氧自由基。此外,通过荧光标记法还证明了PC12细胞能够吞噬该纳米抗氧化剂颗粒。综合实验结果认为,该纳米抗氧化剂可高效地保护PC12细胞缺氧引发的氧化损伤,这为纳米技术进一步应用于神经系统中缺氧相关疾病的抗氧化应激治疗提供了新的实验依据。  相似文献   

15.
Neurochemical Research - A new era for neuroprotective strategies is emerging in ischemia/reperfusion. This has forced to review the studies existing to date based in neuroprotection against...  相似文献   

16.
Pan  Qiong  Ma  Jiezhi  Guo  Ke 《Neurochemical research》2022,47(7):1865-1877
Neurochemical Research - Alzheimer’s disease (AD) is an irreversible neurodegenerative disorder characterized by complex pathogenesis, of which oxidative stress has long been regarded as a...  相似文献   

17.
We previously reported that fasudil mesylate (FM) improves neurological deficit and neuronal damage in rats with ischemia following middle cerebral artery occlusion and reperfusion in vivo. In this study, the properties of FM on hydrogen peroxide (H2O2)-induced oxidative stress insult in cultured PC12 cells as well as the underlying mechanisms were investigated in vitro. Pretreatment with FM (5, 10 μM) prior to H2O2 exposure significantly elevated cell viability, reduced cell apoptosis by MTT assay, LDH assay, Hoechst 33258 dye staining, and FM also decreased the accumulation of reactive oxygen species (ROS) by DCFH-DA staining and NBT test. Furthermore, FM also reversed the upregulation of Bax/Bcl-2 ratio, the downstream cascade following ROS. FM protected PC12 cells from oxidative stress insult via down-regulating the Bax/Bcl-2 ratio. These findings indicate that a direct effect of fasudil mesylate on PC12 cells may be partly responsible for its protective effect against oxidative stress injury.  相似文献   

18.
Nicotine has been reported to exert certain protective effect in the Parkinson’s and Alzheimer’s diseases. Whether it has a similar action in focal cerebral ischemia was unclear. In the present study, rats received either an injection of (?)-nicotine hydrogen tartrate salt (1.2 mg/kg, i.p.) or the vehicle 2 h before the 120 min middle cerebral artery occlusion. Neurological deficits and histological injury were assessed at 24 h after reperfusion. The content of endocannabinoids and the expression of cannabinoid receptor CB1 in brain tissues were determined at different time points after nicotine administration. Results showed that nicotine administration ameliorated neurological deficits and reduced infarct volume induced by cerebral ischemia in the rats. The neuroprotective effect was partially reversed by CB1 blockage. The content of the endocannabinoids N-arachidonylethanolamine and 2-arachidonoylglycerol, as well as the expression of cannabinoid receptor CB1 were up-regulated in brain tissues after nicotine delivery. These results suggest that endogenous cannabinoid system is involved in the nicotine-induced neuroprotection against transient focal cerebral ischemia.  相似文献   

19.
Amyloid beta-protein (Aβ) is the major component of senile plaques and cerebrovascular amyloid deposits in individuals with Alzheimer’s disease. Aβ is known to increase free radical production in neuronal cells, leading to oxidative stress and cell death. Recently, considerable attention has been focused on dietary antioxidants that are able to scavenge reactive oxygen species (ROS), thereby offering protection against oxidative stress. Walnuts are rich in components that have anti-oxidant and anti-inflammatory properties. The inhibition of in vitro fibrillization of synthetic Aβ, and solubilization of preformed fibrillar Aβ by walnut extract was previously reported. The present study was designed to investigate whether walnut extract can protect against Aβ-induced oxidative damage and cytotoxicity. The effect of walnut extract on Aβ-induced cellular damage, ROS generation and apoptosis in PC12 pheochromocytoma cells was studied. Walnut extract reduced Aβ-mediated cell death assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reduction, and release of lactate dehydrogenase (membrane damage), DNA damage (apoptosis) and generation of ROS in a concentration-dependent manner. These results suggest that walnut extract can counteract Aβ-induced oxidative stress and associated cell death.  相似文献   

20.
Abstract: Previous research has suggested that the initial effects of cellular free radical neurotoxic insult involve large increases in intracellular Ca2+. However, the exact role of oxidative stress on the various parameters involved in these increases has not been specified. The present experiments were performed to examine these parameters in PC12 cells exposed to 5, 25, or 300 µM H2O2 for 30 min in growth medium alone or containing either nifedipine (L-type Ca2+ antagonist), conotoxin (N-type antagonist), Trolox (vitamin E analogue), or α-phenyl-n-tert-butylnitrone (nitrone trapping agent; PBN). The concentrations of H2O2 were chosen by examining the degree of cell killing induced by exposure to graded concentrations of H2O2. The 5 and 25 µM concentrations of H2O2 produced no significant cell killing at either 30 min or 24 h after treatment, whereas the 300 µM concentration produced a moderate degree of cell killing that did not increase between the two times. Fluorescent imaging was used to visualize intracellular Ca2+ changes in fura-2-loaded cells. Baseline (pre-30 mM KCI) Ca2+ levels were increased significantly by H2O2 treatment (e.g., 300 µM, 200%), but the rise in the level of free intracellular Ca2+ after KCI stimulation (i.e., peak) was decreased (e.g., 300 µM, 50%) and the cell's ability to sequester or extrude the excess Ca2+ (i.e., Ca2+ recovery time) after depolarization was decreased significantly. All compounds prevented baseline Ca2+ increases and, with the exception of conotoxin, antagonized the peak decreases in Ca2+. It is interesting that after 300 µM H2O2 exposure, only Trolox was partially effective in preventing these deficits in recovery. Conotoxin increased the decrement recovery in the absence of H2O2. However, in cells exposed to 5 or 25 µM H2O2, conotoxin as well as the other agents were effective in preventing the deficits in recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号