首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamate receptors in mesolimbic areas such as the nucleus accumbens, ventral tegmental area, prefrontal cortex (PFC), and hippocampus (HIP) are a component of the mechanisms of drug-induced reward and can modulate the firing pattern of dopaminergic neurons in the reward system. In addition, several lines of study have indicated that cAMP response element-binding protein (CREB) and c-fos have important role in morphine-induced conditioned place preference (CPP) induced by drugs of abuse, such as morphine, cocaine, nicotine, and alcohol. Therefore, in the present study, we investigated the changes in phosphorylated CREB (p-CREB) and c-fos induction within the nucleus accumbens (NAc), HIP, and PFC after intracerebroventricular (ICV) administration of different doses of CNQX or vehicle during extinction period or reinstatement of morphine-induced CPP. In all groups, the CPP procedure was done; afterward, the conditioning scores were recorded by Ethovision software. After behavioral test recording, we dissected out the NAc, HIP, and PFC regions and measured the p-CREB/CREB ratio and c-fos level by Western blot analysis. Our results showed that administration of CNQX significantly shortened the extinction of morphine CPP. Besides, ICV microinjection of CNQX following extinction period decreased the reinstatement of morphine CPP in extinguished rats. In molecular section, in treatment group, all mentioned factors were dose-dependently decreased in comparison with vehicle group (DMSO) after ICV microinjection of different doses of CNQX but not in pre-extinction microinjection. These findings suggested that antagonism of AMPA receptor decreased p-CREB/CREB ratio and c-fos level in the PFC, NAc, and HIP. Modulation of the drug memory reconsolidation may be useful for faster extinction of drug-induced reward and attenuation of drug-seeking behavior.  相似文献   

2.
Brown RM  Short JL  Lawrence AJ 《PloS one》2010,5(12):e15889
Relapse prevention represents the primary therapeutic challenge in the treatment of drug addiction. As with humans, drug-seeking behaviour can be precipitated in laboratory animals by exposure to a small dose of the drug (prime). The aim of this study was to identify brain nuclei implicated in the cocaine-primed reinstatement of a conditioned place preference (CPP). Thus, a group of mice were conditioned to cocaine, had this place preference extinguished and were then tested for primed reinstatement of the original place preference. There was no correlation between the extent of drug-seeking upon reinstatement and the extent of behavioural sensitization, the extent of original CPP or the extinction profile of mice, suggesting a dissociation of these components of addictive behaviour with a drug-primed reinstatement. Expression of the protein product of the neuronal activity marker c-fos was assessed in a number of brain regions of mice that exhibited reinstatement (R mice) versus those which did not (NR mice). Reinstatement generally conferred greater Fos expression in cortical and limbic structures previously implicated in drug-seeking behaviour, though a number of regions not typically associated with drug-seeking were also activated. In addition, positive correlations were found between neural activation of a number of brain regions and reinstatement behaviour. The most significant result was the activation of the lateral habenula and its positive correlation with reinstatement behaviour. The findings of this study question the relationship between primed reinstatement of a previously extinguished place preference for cocaine and behavioural sensitization. They also implicate activation patterns of discrete brain nuclei as differentiators between reinstating and non-reinstating mice.  相似文献   

3.
Liang J  Ma SS  Li YJ  Ping XJ  Hu L  Cui CL 《Neurochemical research》2012,37(7):1482-1489
Our previous study demonstrated that morphine dose- and time-dependently elevated dopamine (DA) concentrations in the nucleus accumbens (NAc) during the expression of morphine-induced conditioned place preference (CPP) in rats. However, still unknown are how DA concentrations dynamically change during the morphine-induced CPP test and whether tyrosine hydroxylase (TH) activity in the ventral tegmental area (VTA) plays a vital role in this process. In the present study, we measured dynamic changes in TH and phosphorylated TH serine 40 (pTH Ser(40)) and pTH Ser(31) proteins in the VTA, and DA concentrations in the NAc at 5 min intervals during a 30 min morphine-induced CPP test. Rats that underwent morphine-induced CPP training significantly preferred the morphine-paired chamber during the CPP expression test, an effect that lasted at least 30 min in the drug-free state. DA concentrations in the NAc markedly increased at 15 min when the rats were returned to the CPP boxes to assess the expression of preference for the previously drug-paired chamber. DA concentrations then declined 2 h after the CPP test. TH and pTH Ser(40) levels, but not pTH Ser(31) levels, in the VTA were enhanced during the CPP test. These results indicated that TH and the phosphorylation of TH Ser(40) in the VTA may be responsible for DA synthesis and release in the NAc during the behavioral expression of conditioned reward elicited by a drug-associated context.  相似文献   

4.
Research on the inhibition of learned fear currently relies almost exclusively on one specific procedure, namely extinction of the conditioned stimulus (CS). Importantly, however, learned fear responses can be reduced by a number of other procedures, including habituation of the unconditioned stimulus (US). We recently demonstrated that reductions in learned fear following US habituation, like CS extinction, were subject to both renewal and reinstatement (Storsve et al., 2010). The present study further investigates the associative and non-associative processes shared between habituation and extinction. Given that habituation is typically context-independent (Mackintosh, 1987), in the present study we directly compared renewal and reinstatement of both a conditioned response (CR; freezing) and an unconditioned response (UR; startle) following habituation. It was found that the reduction in conditioned freezing resulting from habituation was context specific (i.e., a change in context led to a renewal of the conditioned fear response; Experiment 1) and was attenuated when a pre-test shock was given (i.e., reinstatement of conditioned fear was observed; Experiment 2). In contrast, habituation of an unconditioned response elicited by the US (i.e., a startle response) was unaffected by either a change in test context or administration of a pre-test shock. This dissociation in the effects of habituation on learned and unlearned responses is discussed in relation to theories of fear extinction.  相似文献   

5.
Ma YY  Yu P  Guo CY  Cui CL 《Neurochemical research》2011,36(3):383-391
Drug addiction, as well as learning and memory, share common mechanisms in terms of neural circuits and intracellular signaling pathways. In the present study, the role of N-methyl-D-aspartate (NMDA) receptors, particularly those containing NR2B subunits, in morphine-induced conditioned place preference (CPP) and Morris water maze (MWM) learning and memory task was investigated. CPP was used as a paradigm for assessing the rewarding effect of morphine, and MWM was used to measure spatial learning and memory in male Sprague–Dawley rats. We found that ifenprodil, an antagonist highly selective for NR2B-containing NMDA receptors, dose-dependently blocked the development, maintenance and reinstatement of morphine-induced CPP, without evident impairment of the acquisition and retrieval of spatial memory in the MWM task. However, the consolidation of spatial memory was disrupted by a high dose (10 mg/kg) of ifenprodil. These results clearly demonstrate that NR2B-containing NMDA receptors are actively involved in addiction memory induced by morphine conditioning, but not in the acquisition and retrieval of spatial learning and memory. In conclusion, NR2B-containing NMDA receptors can be considered potential targets for the treatment of opiate addiction.  相似文献   

6.
Fear conditioning is relevant for elucidating the pathophysiology of anxiety, but may also be useful in the context of chronic pain syndromes which often overlap with anxiety. Thus far, no fear conditioning studies have employed aversive visceral stimuli from the lower gastrointestinal tract. Therefore, we implemented a fear conditioning paradigm to analyze the conditioned response to rectal pain stimuli using fMRI during associative learning, extinction and reinstatement.In N = 21 healthy humans, visual conditioned stimuli (CS+) were paired with painful rectal distensions as unconditioned stimuli (US), while different visual stimuli (CS) were presented without US. During extinction, all CSs were presented without US, whereas during reinstatement, a single, unpaired US was presented. In region-of-interest analyses, conditioned anticipatory neural activation was assessed along with perceived CS-US contingency and CS unpleasantness.Fear conditioning resulted in significant contingency awareness and valence change, i.e., learned unpleasantness of a previously neutral stimulus. This was paralleled by anticipatory activation of the anterior cingulate cortex, the somatosensory cortex and precuneus (all during early acquisition) and the amygdala (late acquisition) in response to the CS+. During extinction, anticipatory activation of the dorsolateral prefrontal cortex to the CS was observed. In the reinstatement phase, a tendency for parahippocampal activation was found.Fear conditioning with rectal pain stimuli is feasible and leads to learned unpleasantness of previously neutral stimuli. Within the brain, conditioned anticipatory activations are seen in core areas of the central fear network including the amygdala and the anterior cingulate cortex. During extinction, conditioned responses quickly disappear, and learning of new predictive cue properties is paralleled by prefrontal activation. A tendency for parahippocampal activation during reinstatement could indicate a reactivation of the old memory trace. Together, these findings contribute to our understanding of aversive visceral learning and memory processes relevant to the pathophysiology of chronic abdominal pain.  相似文献   

7.
The regulation of adult neurogenesis by opiates has been implicated in modulating different addiction cycles. At which neurogenesis stage opiates exert their action remains unresolved. We attempt to define the temporal window of morphine’s inhibition effect on adult neurogenesis by using the POMC-EGFP mouse model, in which newborn granular cells (GCs) can be visualized between days 3–28 post-mitotic. The POMC-EGFP mice were trained under the 3-chambers conditioned place preference (CPP) paradigm with either saline or morphine. We observed after 4 days of CPP training with saline, the number of EGFP-labeled newborn GCs in sub-granular zone (SGZ) hippocampus significantly increased compared to mice injected with saline in their homecage. CPP training with morphine significantly decreased the number of EGFP-labeled GCs, whereas no significant difference in the number of EGFP-labeled GCs was observed with the homecage mice injected with the same dose of morphine. Using cell-type selective markers, we observed that morphine reduced the number of late stage progenitors and immature neurons such as Doublecortin (DCX) and βIII Tubulin (TuJ1) positive cells in the SGZ but did not reduce the number of early progenitors such as Nestin, SOX2, or neurogenic differentiation-1 (NeuroD1) positive cells. Analysis of co-localization between different cell markers shows that morphine reduced the number of adult-born GCs by interfering with differentiation of early progenitors, but not by inducing apoptosis. In addition, when NeuroD1 was over-expressed in DG by stereotaxic injection of lentivirus, it rescued the loss of immature neurons and prolonged the extinction of morphine-trained CPP. These results suggest that under the condition of CPP training paradigm, morphine affects the transition of neural progenitor/stem cells to immature neurons via a mechanism involving NeuroD1.  相似文献   

8.
Chen  Yanmei  Du  Miaomiao  Kang  Na  Guan  Xin  Liang  Bixue  Chen  Zhuangfei  Zhang  Jichuan 《Neurochemical research》2022,47(8):2317-2332

The effects of prenatal opioid exposure in adult animals has been widely studied, but little is known about the effects of prenatal opioid on adolescents. Most of the risk behaviors associated with drug abuse are initiated during adolescence. The developmental state of the adolescent brain makes it vulnerable to initiate drug use and susceptible to drug-induced brain changes. In this study, pregnant rats were subcutaneously injected with an increasing dose of morphine (5 mg/kg, 7 mg/kg, 10 mg/kg) for 9 days since the gestation day 11. The effects of prenatal morphine (PNM) on learning and memory, anxiety- and depressive- like behavior, morphine induced conditioned place preference (CPP) as well as locomotor sensitization were tested in both adolescent and adult rats. The results showed that: (1) PNM decreased anxiety-like behavior in both adolescent and adult female rats, but not males; (2) PNM decreased depressive-like behavior in adolescent but increased depressive -like behavior in adult females; (3) PNM increased low dose morphine induced locomotor sensitization in females; (4) PNM decreased tyrosine hydroxylase (TH) expression in the prefrontal cortex but decreased dopamine D1 receptor expression in the nucleus-accumbens (NAc) in female rats. These results suggested that PNM altered the emotional and addictive behavior mainly in female rats, with female rats being less anxiety and depressive during adolescence, but more depressive in adult, and more sensitive to low dose morphine induced locomotor activity sensitization, which might be mediated in part by the differential expression of the TH, dopamine D1 receptors in the female brain.

  相似文献   

9.
Pharmacological activation of group II metabotropic glutamate receptors (mGluR2/3) inhibits cocaine self‐administration and reinstatement of drug‐seeking behavior, suggesting a possible use of mGluR2/3 agonists in the treatment of cocaine dependence. In this study, we investigated whether elevation of the endogenous mGluR2/3 ligand N‐acetyl‐aspartatylglutamate (NAAG) levels by the N‐acetylated‐alpha‐linked‐acidic dipeptidase inhibitor 2‐(phosphonomethyl)pentanedioic acid (2‐PMPA) attenuates cocaine self‐administration and cocaine‐induced reinstatement of drug seeking. N‐acetylated‐alpha‐linked‐acidic dipeptidase is a NAAG degradation enzyme that hydrolyzes NAAG to N‐acetylaspartate and glutamate. Systemic administration of 2‐PMPA (10‐100 mg/kg, i.p.) inhibited intravenous self‐administration maintained by low unit doses of cocaine and cocaine (but not sucrose)‐induced reinstatement of drug‐seeking behavior. Microinjections of 2‐PMPA (3–5 μg/side) or NAAG (3–5 μg/side) into the nucleus accumbens (NAc), but not into the dorsal striatum, also inhibited cocaine‐induced reinstatement, an effect that was blocked by intra‐NAc injection of LY341495, a selective mGluR2/3 antagonist. In vivo microdialysis demonstrated that 2‐PMPA (10‐100 mg/kg, i.p.) produced a dose‐dependent reduction in both extracellular dopamine (DA) and glutamate, an effect that was also blocked by LY341495. Finally, pre‐treatment with 2‐PMPA partially attenuated cocaine‐enhanced extracellular NAc DA, while completely blocking cocaine‐enhanced extracellular NAc glutamate in rats during reinstatement testing. Intra‐NAc perfusion of LY341495 blocked 2‐PMPA‐induced reductions in cocaine‐enhanced extracellular NAc glutamate, but not DA. These findings suggest that 2‐PMPA is effective in attenuating cocaine‐induced reinstatement of drug‐seeking behavior, likely by attenuating cocaine‐induced increases in NAc DA and glutamate via pre‐synaptic mGluR2/3s.  相似文献   

10.
Liang J  Li Y  Ping X  Yu P  Zuo Y  Wu L  Han JS  Cui C 《Peptides》2006,27(12):3307-3314
Previous studies suggested that electroacupuncture (EA) can suppress opioid dependence by the release of endogenous opioid peptides. To explore the site of action and the receptors involved, we tried to inject highly specific agonists for μ-, δ- and κ-opioid receptors into the CNS to test whether it can suppress morphine-induced conditioned place preference (CPP) in the rat. Male Sprague–Dawley rats were trained with 4 mg/kg morphine, i.p. for 4 days to establish the CPP model. This CPP can be prevented by (a) i.p. injection of 3 mg/kg dose of morphine, (b) intracerebroventricular (i.c.v.) injection of micrograms doses of the selective μ-opioid receptor agonist DAMGO, δ-agonist DPDPE or κ-agonist U-50,488H or (c) microinjection of DAMGO, DPDPE or U50488H into the shell of the nucleus accumbens (NAc). The results suggest that the release of endogenous μ-, δ- and κ-opioid agonists in the NAc shell may play a role for EA suppression of opiate addiction.  相似文献   

11.
The present study examined the ability of clitoral stimulation (CLS) to induce conditioned place preference (CPP) and Fos protein in the brain. Ovariectomized, hormone-primed Long-Evans rats were randomly assigned to receive either distributed CLS (1 stimulation every 5 s for 1 min prior to being placed in one distinctive side of a nonbiased CPP box for 2 min, after which the cycle of stimulation and CPP exposure were repeated for 4 more cycles, totaling 60 stimulations) or continuous CLS (1 stimulation per second for 1 min with 2 min in one side of the CPP box, repeated for 4 more cycles, totaling 300 stimulations). Two days later, females were placed into the other side of the CPP box without prior stimulation. CPP was tested after 5 sequential exposures each of CLS and no stimulation. Females given distributed stimulation developed a significant CPP whereas females given continuous stimulation did not. CLS induced Fos in hypothalamic and limbic structures, including the nucleus accumbens, piriform cortex, arcuate nucleus, and dorsomedial portion of the ventromedial hypothalamus, compared to no stimulation. However, distributed CLS induced more Fos in the medial preoptic area than continuous CLS or no stimulation. In contrast, continuous CLS induced more Fos in the posteroventral medial amygdala compared to no stimulation. These data indicate that CLS induces a reward state in the rat and a pattern of Fos activation in regions of the brain that process genitosensory input, incentive salience, and reward.  相似文献   

12.
Exposure to cocaine generates silent synapses in the nucleus accumbens (NAc), whose eventual unsilencing/maturation by recruitment of calcium‐permeable AMPA‐type glutamate receptors (CP‐AMPARs) after drug withdrawal results in profound remodeling of NAc neuro‐circuits. Silent synapse‐based NAc remodeling was shown to be critical for several drug‐induced behaviors, but its role in acquisition and retention of the association between drug rewarding effects and drug‐associated contexts has remained unclear. Here, we find that the postsynaptic proteins PSD‐93, PSD‐95, and SAP102 differentially regulate excitatory synapse properties in the NAc. Mice deficient for either of these scaffold proteins exhibit distinct maturation patterns of silent synapses and thus provided instructive animal models to examine the role of NAc silent synapse maturation in cocaine‐conditioned place preference (CPP). Wild‐type and knockout mice alike all acquired cocaine‐CPP and exhibited increased levels of silent synapses after drug‐context conditioning. However, the mice differed in CPP retention and CP‐AMPAR incorporation. Collectively, our results indicate that CP‐AMPAR‐mediated maturation of silent synapses in the NAc is a signature of drug–context association, but this maturation is not required for establishing or retaining cocaine‐CPP.  相似文献   

13.
Radial glial cells play a significant role in the repair of spinal cord injuries as they exert critical role in the neurogenesis and act as a scaffold for neuronal migration. Our previous study showed that mature astrocytes of spinal cord can undergo a de-differentiation process and further transform into pluripotential neural precursors; the occurrence of these complex events arise directly from the induction of diffusible factors released from scratch-insulted astrocytes. However, it is unclear whether astrocytes can also undergo rejuvenation to revert to a radial glial progenitor phenotype after the induction of scratch-insulted astrocytes conditioned medium (ACM). Furthermore, the mechanism of astrocyte de-differentiation to the progenitor cells is still unclear. Here we demonstrate that upon treating mature astrocytes with ACM for 10 days, the astrocytes exhibit progressive morphological and functional conversion to radial glial cells. These changes include the appearance of radial glial progenitor cells, changes in the immunophenotypical profiles, characterized by the co-expression of nestin, paired homeobox protein (Pax6) and RC2 as well as enhanced capability of multipotential differentiation. Concomitantly, ErbB2 protein level was progressively up-regulated. Thereby these results provide a potential mechanism by which ACM could induce mature astrocytes to regain the profile of radial glial progenitors due to activating the ErbB2 signaling pathways.  相似文献   

14.
It has been shown that orexin A in the ventral tegmental area (VTA) is necessary for development of morphine place preference. Additionally, D1 and D2 dopamine receptors in the nucleus accumbens (NAc) have critical roles in motivation and reward. However, little is known about the function of orexin in conditioned place preference (CPP) in rats and involvement of D1/D2 receptors in the NAc. In the present study, we investigated the effect of direct administration of orexin A into the VTA, and examined the role of intra-accumbal dopamine receptors in development (acquisition) of reward-related behaviors in the rats. Adult male Wistar rats were unilaterally implanted by two separate cannulae into the VTA and NAc. The CPP paradigm was used, and, conditioning score and locomotor activity were recorded by Ethovision software. The results showed that unilateral intra-VTA administration of orexin A (27, 53 and 107ng/0.3μl saline) during conditioning phase induced CPP in a dose-dependent manner. The most effective dose of intra-VTA orexin-A in eliciting CPP was 107ng. However, intra-NAc administration of SCH 23390 (0.25, 1 and 4μg/0.5μl saline), a D1 receptor antagonist, and sulpiride (0.25, 1 and 4μg/0.5μl DMSO), a D2 receptor antagonist, inhibited the development of orexin-induced CPP. The inhibitory effect of D2 but not D1 receptor antagonist was exerted in a dose-dependent manner. It is supposed that the activation of VTA dopaminergic neuron by orexin impresses the D2 receptors more than D1 receptors in the NAc.  相似文献   

15.
Earlier studies in our laboratory have shown that C-6 glial cells in culture exhibit astrocytic properties with increasing cell passage. In this study, we tested the responsiveness of early and late passage C-6 glial cells to various cultures conditions: culture substrata (collagen, poly-L-lysine, plastic), or supplements for the culture medium, DMEM, [fetal calf, or heat inactivated (HI) serum, or media conditioned from mouse neuroblastoma cells (NBCM) or primary chick embryo cultured neurons (NCM)]. Glutamine synthetase (GS) and cyclic nucleotide phosphohydrolase (CNP), astrocytic and oligodendrocytic glial markers, were used. Cell numer and protein content increased exponentially with days in culture regardless of the type of the substratum or cell passage. Differences in cell morphology among the three types of substratum were also reflected on GS activity, which rose by three-fold on culture day 3 for cells grown on collagen; thereafter, GS profiles were similar for all substrata. This early rise in GS is interpreted to reflect differential cell adhesion processes on the substrata; specifically, cell adhesion on the collagen stimulated differentiation into astrocytic phenotype.Analogous to immature glia cells in primary cultures, early passage C-6 glial cells responded to neuronal factors supplied either from NCM or NBCM by expressing reduced GS activity, the astrocytic marker and enhanced CNP activity, the oligodendrocytic marker. Thus, early passage cells can be induced to express either astrocytic or oligodendrocytic phenotype. In accordance with our previous reports on primary glial cells, late passage C-6 cells exhibit their usual astrocytic behavior, responding to serum factors with GS activity. Moreover, whereas NCM or NBCM alone markedly lowered GS activity, a combination with serum restored activity. The present findings confirm our previous observations and further establish the C-6 glial cells as a reliable model to study immature glia.Special issue dedicated to Dr. Paola S. Timiras.  相似文献   

16.

Background

The rewarding effects of 3,4-methylenedioxy-metamphetamine (MDMA) have been demonstrated in conditioned place preference (CPP) procedures, but the involvement of the dopaminergic system in MDMA-induced CPP and reinstatement is poorly understood.

Methodology/Principal Findings

In this study, the effects of the DA D1 antagonist SCH 23390 (0.125 and 0.250 mg/kg), the DA D2 antagonist Haloperidol (0.1 and 0.2 mg/kg), the D2 antagonist Raclopride (0.3 and 0.6 mg/kg) and the dopamine release inhibitor CGS 10746B (3 and 10 mg/kg) on the acquisition, expression and reinstatement of a CPP induced by 10 mg/kg of MDMA were evaluated in adolescent mice. As expected, MDMA significantly increased the time spent in the drug-paired compartment during the post-conditioning (Post-C) test, and a priming dose of 5 mg/kg reinstated the extinguished preference. The higher doses of Haloperidol, Raclopride and CGS 10746B and both doses of SCH 23390 blocked acquisition of the MDMA-induced CPP. However, only Haloperidol blocked expression of the CPP. Reinstatement of the extinguished preference was not affected by any of the drugs studied. Analysis of brain monoamines revealed that the blockade of CPP acquisition was accompanied by an increase in DA concentration in the striatum, with a concomitant decrease in DOPAC and HVA levels. Administration of haloperidol during the Post-C test produced increases in striatal serotonin, DOPAC and HVA concentrations. In mice treated with the higher doses of haloperidol and CGS an increase in SERT concentration in the striatum was detected during acquisition of the CPP, but no changes in DAT were observed.

Conclusions/Significance

These results demonstrate that, in adolescent mice, the dopaminergic system is involved in the acquisition and expression of MDMA-induced CPP, but not in its reinstatement.  相似文献   

17.
Background

Clinical research on arrhythmogenic cardiomyopathy (ACM) is typically limited by small patient numbers, retrospective study designs, and inconsistent definitions.

Aim

To create a large national ACM patient cohort with a vast amount of uniformly collected high-quality data that is readily available for future research.

Methods

This is a multicentre, longitudinal, observational cohort study that includes (1) patients with a definite ACM diagnosis, (2) at-risk relatives of ACM patients, and (3) ACM-associated mutation carriers. At baseline and every follow-up visit, a medical history as well information regarding (non-)invasive tests is collected (e. g. electrocardiograms, Holter recordings, imaging and electrophysiological studies, pathology reports, etc.). Outcome data include (non-)sustained ventricular and atrial arrhythmias, heart failure, and (cardiac) death. Data are collected on a research electronic data capture (REDCap) platform in which every participating centre has its own restricted data access group, thus empowering local studies while facilitating data sharing.

Discussion

The Netherlands ACM Registry is a national observational cohort study of ACM patients and relatives. Prospective and retrospective data are obtained at multiple time points, enabling both cross-sectional and longitudinal research in a hypothesis-generating approach that extends beyond one specific research question. In so doing, this registry aims to (1) increase the scientific knowledge base on disease mechanisms, genetics, and novel diagnostic and treatment strategies of ACM; and (2) provide education for physicians and patients concerning ACM, e. g. through our website (www.acmregistry.nl) and patient conferences.

  相似文献   

18.
Tian W  Zhao M  Li M  Song T  Zhang M  Quan L  Li S  Sun ZS 《PloS one》2012,7(3):e33435
Analysis of global methylation in cells has revealed correlations between overall DNA methylation status and some biological states. Recent studies suggest that epigenetic regulation through DNA methylation could be responsible for neuroadaptations induced by addictive drugs. However, there is no investigation to determine global DNA methylation status following repeated exposure to addictive drugs. Using mice conditioned place preference (CPP) procedure, we measured global DNA methylation level in the nucleus accumbens (NAc) and the prefrontal cortex (PFC) associated with drug rewarding effects. We found that cocaine-, but not morphine- or food-CPP training decreased global DNA methylation in the PFC. Chronic treatment with methionine, a methyl donor, for 25 consecutive days prior to and during CPP training inhibited the establishment of cocaine, but not morphine or food CPP. We also found that both mRNA and protein level of DNMT (DNA methytransferase) 3b in the PFC were downregulated following the establishment of cocaine CPP, and the downregulation could be reversed by repeated administration of methionine. Our study indicates a crucial role of global PFC DNA hypomethylation in the rewarding effects of cocaine. Reversal of global DNA hypomethylation could significantly attenuate the rewarding effects induced by cocaine. Our results suggest that methionine may have become a potential therapeutic target to treat cocaine addiction.  相似文献   

19.
We previously reported that Yulangsan polysaccharide (YLSP), which was isolated from the root of Millettia pulchra Kurz, attenuates withdrawal symptoms of morphine dependence by regulating the nitric oxide pathway and modulating monoaminergic neurotransmitters. In this study, we investigated the effects and mechanism of YLSP on the reinstatement of morphine-induced conditioned place preference (CPP) in rats. A CPP procedure was employed to assess the behavior of rats, and indicators of serum and four brain regions (nucleus accumbens, ventral tegmental area, hippocampus and prefrontal cortex) were determined to explore its underlying mechanism. YLSP inhibited priming morphine-induced reinstatement of CPP in a dose-dependent manner. YLSP markedly reduced nitric oxide and nitric oxide synthase levels in the brain. Moreover, YLSP significantly decreased the dopamine and norepinephrine levels in the serum and brain. Furthermore, YLSP significantly decreased cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) concentrations, inhibited the expression of dopamine D1 receptors and cAMP response element binding protein mRNA, and improved the expression of dopamine D2 receptor mRNA in the four brain regions. Our findings indicated that YLSP could inhibit the reinstatement of morphine-induced CPP possibly by modulating the NO-cGMP and D1R-cAMP signaling pathways.  相似文献   

20.
In order to explore a novel method for the treatment of drug abuse, we evaluated the effect of chronic deep brain stimulation (DBS) of the rat nucleus accumbens (NAc) on morphine reinforcement, using a DBS apparatus and an implant method we developed. Thirty-two adult rats weighing 240-260 g were divided into three groups, which included a DBS group (n = 10, administration of surgery, morphine and DBS), a sham DBS group (n = 12, administration of surgery and morphine) and a control group (n = 10, administration of physiological saline). The DBS electrode was stereotaxically implanted into the core of unilateral NAc and connected to an implantable pulse generator. Then, they were fixed to the rat skull. One week later, the rats in each group were intraperitoneally injected with morphine at an increasing dose (10-60 mg/kg) once daily. The rats in the DBS group were administered a 130-Hz high-frequency stimulation (HFS) once daily. A 900-second conditioned place preference (CPP) paradigm was used for determining the effect of electrical stimulation on morphine reinforcement in rats. The data showed that 7-10 days later, the preference score of the DBS group was significantly lower than that of the sham DBS group. The results suggest that chronic HFS of the rat NAc can block CPP induced by morphine and attenuate morphine reinforcement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号