首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amyloid fibrils are associated with multiple neurodegenerative disorders, such as Alzheimer's disease. Although biological membranes are involved in fibril plaque formation, the role of lipid membrane composition in fibril formation and toxicity is not well understood. We investigated the effect of cholesterol on the interaction of model lipid membranes with amyloid-β peptide (Aβ). With atomic force microscopy we demonstrated that binding of Aβ (1-42) to DOPC bilayer, enriched with 20% cholesterol, resulted in an intriguing formation of small nonuniform islands loaded with Aβ. We attribute this effect to the presence of nanoscale electrostatic domains induced by cholesterol in DOPC bilayers. Using frequency-modulated Kelvin probe force microscopy we were able to resolve these nanoscale electrostatic domains in DOPC monolayers. These findings directly affect our understanding of how the presence of cholesterol may induce targeted binding of amyloid deposits to biomembranes. We postulate that this nonhomogeneous electrostatic effect of cholesterol has a fundamental nature and may be present in other lipid membranes and monolayers.  相似文献   

2.
Amyloid-β protein (Aβ) aggregation into amyloid fibrils is central to the origin and development of Alzheimer's disease (AD), yet this highly complex process is poorly understood at the molecular level. Extensive studies have shown that Aβ fibril growth occurs through fibril elongation, whereby soluble molecules add to the fibril ends. Nevertheless, fibril morphology strongly depends on aggregation conditions. For example, at high ionic strength, Aβ fibrils laterally associate into bundles. To further study the mechanisms leading to fibril growth, we developed a single-fibril growth assay based on differential labeling of two Aβ42 variants with gold nanoparticles. We used this assay to study Aβ42 fibril growth under different conditions and observed that bundle formation is preceded by lateral interaction of soluble Aβ42 molecules with pre-existing fibrils. Based on this data, we propose template-assisted lateral fibril growth as an additional mechanism to elongation for Aβ42 fibril growth.  相似文献   

3.
Amyloid-β (Aβ) peptide aggregation is known to play a central role in the etiology of Alzheimer's disease (AD). Among various aggregates, low-molecular weight soluble oligomers of Aβ are increasingly believed to be the primary neurotoxic agents responsible for memory impairment. Anionic interfaces are known to influence the Aβ aggregation process significantly. Here, we report the effects of interfaces formed by medium-chain (C9-C12), saturated non-esterified fatty acids (NEFAs) on Aβ42 aggregation. NEFAs uniquely affected Aβ42 aggregation rates that depended on both the ratio of Aβ:NEFA as well the critical micelle concentration (CMC) of the NEFAs. More importantly, irrespective of the kind of NEFA used, we observed that two distinct oligomers, 12-18 mers and 4-5 mers were formed via different pathway of aggregation under specific experimental conditions: (i) 12-18 mers were generated near the CMC in which NEFAs augment the rate of Aβ42 aggregation towards fibril formation, and, (ii) 4-5 mers were formed above the CMC, where NEFAs inhibit fibril formation. The data indicated that both 12-18 mers and 4-5 mers are formed along an alternate pathway called 'off-pathway' that did not result in fibril formation and yet have subtle structural and morphological differences that distinguish their bulk molecular behavior. These observations, (i) reflect the possible mechanism of Aβ aggregation in physiological lipid-rich environments, and (ii) reiterate the fact that all oligomeric forms of Aβ need not be obligatory intermediates of the fibril formation pathway.  相似文献   

4.
Sheikh AM  Nagai A 《The FEBS journal》2011,278(4):634-642
Phospholipids are known to influence fibril formation of amyloid beta (Aβ) peptide. Here, we show that lysophosphatidylcholine (LPC), a polar phospholipid, enhances Aβ(1-42) fibril formation, by decreasing the lag time and the critical peptide concentration required for fibril formation, and increasing the fibril elongation rate. Conversely, LPC did not have an enhancing effect on Aβ(1-40) fibril formation, and appeared to be inhibitory. Tyrosine fluorescence spectroscopy showed that LPC altered the fluorescence spectra of Aβ(1-40) and Aβ(1-42) in opposite ways. Further, 8-anilino-1-naphthalene sulfonic acid fluorescence spectroscopy showed that LPC significantly increased the hydrophobicity of Aβ(1-42), but not of Aβ(1-40). Tris-tricine gradient SDS/PAGE revealed that LPC increased the formation of higher-molecular-weight species of Aβ(1-42), including trimers and tetramers. LPC had no such effect on Aβ(1-40), and thus may specifically influence the oligomerization and nucleation processes of Aβ(1-42) in a manner dependent on its native structure. Dot-blot assays confirmed that LPC induced Aβ(1-42) oligomer formation at an early time point. Thus our results indicate that LPC specifically enhances the formation of Aβ(1-42) fibrils, the main component of senile plaques in Alzheimer's disease patients, and may be involved in Alzheimer's disease pathology.  相似文献   

5.
Structure of amyloid β (Aβ) fibrils is rigidly stacked by β-sheet conformation, and the fibril state of Aβ is profoundly related to pathogenesis of Alzheimer’s disease (AD). Although mid-infrared light has been used for various biological researches, it has not yet been known whether the infrared light changes the fibril structure of Aβ. In this study, we tested the effect of irradiation of intense mid-infrared light from a free-electron laser (FEL) targeting the amide bond on the reduction of β-sheet content in Aβ fibrils. The FEL reduced entire contents of proteins exhibiting β-sheet structure in brain sections from AD model mice, as shown by synchrotron-radiation infrared microscopy analysis. Since Aβ1-42 fibril absorbed a considerable FEL energy at amide I band (6.17 μm), we irradiated the FEL at 6.17 μm and found that β-sheet content of naked Aβ1-42 fibril was decreased using infrared microscopic analysis. Consistent with the decrease in the β-sheet content, Congo-red signal is decreased after the irradiation to Aβ1-42 fibril. Furthermore, electron microscopy analysis revealed that morphologies of the fibril and proto-fibril were largely changed after the irradiation. Thus, mid-infrared light dissociates β-sheet structure of Aβ fibrils, which justifies exploration of possible laser-based therapy for AD.  相似文献   

6.
The aggregation of soluble amyloid‐beta (Aβ) peptide into oligomers/fibrils is one of the key pathological features in Alzheimer's disease (AD). The Aβ aggregates are considered to play a pivotal role in the pathogenesis of AD. Therefore, inhibiting Aβ aggregation and destabilizing preformed Aβ fibrils would be an attractive therapeutic target for prevention and treatment of AD. S14G‐humanin (HNG), a synthetic derivative of Humanin (HN), has been shown to be a strong neuroprotective agent against various AD‐related insults. Recent studies have shown that HNG can significantly improve cognitive deficits and reduce insoluble Aβ levels as well as amyloid plaque burden without affecting amyloid precursor protein processing and Aβ production in transgenic AD models. However, the potential mechanisms by which HNG reduces Aβ‐related pathology in vivo remain obscure. In the present study, we found that HNG could significantly inhibit monomeric Aβ1–42 aggregation into fibrils and destabilize preformed Aβ1–42 fibrils in a concentration‐dependent manner by Thioflavin T fluorescence assay. In transmission electron microscope study, we observed that HNG was effective in inhibiting Aβ1–42 fibril formation and disrupting preformed Aβ1–42 fibrils, exhibiting various types of amorphous aggregates without identifiable Aβ fibrils. Furthermore, HNG‐treated monomeric or fibrillar Aβ1–42 was found to significantly reduce Aβ1–42‐mediated cytotoxic effects on PC12 cells in a dose‐dependent manner by MTT assay. Collectively, our results demonstrate for the first time that HNG not only inhibits Aβ1–42 fibril formation but also disaggregates preformed Aβ1–42 fibrils, which provides the novel evidence that HNG may have anti‐Aβ aggregation and fibrillogenesis, and fibril‐destabilizing properties. Together with previous studies, we concluded that HNG may have promising therapeutic potential as a multitarget agent for the prevention and/or treatment of AD. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
The oligomerization of the amyloid-β protein (Aβ) is an important event in Alzheimer disease (AD) pathology. Developing small molecules that disrupt formation of early oligomeric states of Aβ and thereby reduce the effective amount of toxic oligomers is a promising therapeutic strategy for AD. Here, mass spectrometry and ion mobility spectrometry were used to investigate the effects of a small molecule, Z-Phe-Ala-diazomethylketone (PADK), on the Aβ42 form of the protein. The mass spectrum of a mixture of PADK and Aβ42 clearly shows that PADK binds directly to Aβ42 monomers and small oligomers. Ion mobility results indicate that PADK not only inhibits the formation of Aβ42 dodecamers, but also removes preformed Aβ42 dodecamers from the solution. Electron microscopy images show that PADK inhibits Aβ42 fibril formation in the solution. These results are consistent with a previous study that found that PADK has protective effects in an AD transgenic mouse model. The study of PADK and Aβ42 provides an example of small molecule therapeutic development for AD and other amyloid diseases.  相似文献   

8.
Amyloid-β (Aβ) proteins, which consist of 42 amino acids (Aβ1–42), are the major constituent of neuritic plaques that form in the brains of senile patients with Alzheimer’s disease (AD). Several reports state that three aspartic acid (Asp) residues at positions 1, 7, and 23 in Aβ1–42 in the plaques of patients with AD are highly isomerized from the l- to d-form. Using biophysical experiments, the present study shows that simultaneous d-isomerization of Asp residues at positions 7 and 23 (d-Asp7,23) enhances oligomerization, fibril formation, and neurotoxic effect of Aβ1–42. In addition, d-isomerization of Asp at position 1 (d-Asp1) suppresses malignant effects induced by d-Asp7,23 of Aβ1–42. These results provide fundamental information to elucidate molecular mechanisms of AD pathogenesis and to develop potent inhibitors of amyloid aggregates and Aβ neurotoxicity.  相似文献   

9.
Smaller, soluble oligomers of β-amyloid (Aβ) play a critical role in the pathogenesis of Alzheimer’s disease (AD). Selective inhibition of Aβ oligomer formation provides an optimum target for AD therapy. Some polyphenols have potent anti-amyloidogenic activities and protect against Aβ neurotoxicity. Here, we tested the effects of ellagic acid (EA), a polyphenolic compound, on Aβ42 aggregation and neurotoxicity in vitro. EA promoted Aβ fibril formation and significant oligomer loss, contrary to previous results that polyphenols inhibited Aβ aggregation. The results of transmission electron microscopy (TEM) and Western blot displayed more fibrils in Aβ42 samples co-incubated with EA in earlier phases of aggregation. Consistent with the hypothesis that plaque formation may represent a protective mechanism in which the body sequesters toxic Aβ aggregates to render them harmless, our MTT results showed that EA could significantly reduce Aβ42-induced neurotoxicity toward SH-SY5Y cells. Taken together, our results suggest that EA, an active ingredient in many fruits and nuts, may have therapeutic potential in AD.  相似文献   

10.
The production of amyloid-β (Aβ) is the key factor driving pathogenesis in Alzheimer's disease (AD). Increasing concentrations of Aβ within the brain cause synapse degeneration and the dementia that is characteristic of AD. Here the factors that affect the release of disease-relevant forms Aβ were studied in a cell model. 7PA2 cells expressing the human amyloid precursor protein released soluble Aβ oligomers that caused synapse damage in cultured neurons. Supernatants from 7PA2 cells treated with the cholesterol synthesis inhibitor squalestatin contained similar concentrations of Aβ42 to control cells but did not cause synapse damage in neuronal cultures. These supernatants contained reduced concentrations of Aβ42 oligomers and increased concentrations of Aβ42 monomers. Treatment of 7PA2 cells with platelet-activating factor (PAF) antagonists had similar effects; it reduced concentrations of Aβ42 oligomers and increased concentrations of Aβ42 monomers in cell supernatants. PAF activated cholesterol ester hydrolases (CEH), enzymes that released cholesterol from stores of cholesterol esters. Inhibition of CEH also reduced concentrations of Aβ42 oligomers and increased concentrations of Aβ42 monomers in cell supernatants. The Aβ monomers produced by treated cells protected neurons against Aβ oligomer-induced synapse damage. These studies indicate that pharmacological manipulation of cells can alter the ratio of Aβ monomer:oligomer released and consequently their effects on synapses.  相似文献   

11.
Zhai J  Lee TH  Small DH  Aguilar MI 《Biochemistry》2012,51(6):1070-1078
Alzheimer's disease (AD) is a common form of dementia, which is characterized by the presence of extracellular amyloid plaques comprising the amyloid β peptide (Aβ). Although the mechanism underlying AD pathogenesis remains elusive, accumulating evidence suggests that the process of amyloid fibril formation is a surface-mediated event, which plays an important role in AD onset and progression. In this study, the mechanism of Aβ aggregation on hydrophobic surfaces was investigated with dual polarization interferometry (DPI), which provides real-time information on early stages of the aggregation process. Aggregation was monitored on a hydrophobic C18 surface and a polar silicon oxynitride surface. The DPI results showed a characteristic Aβ aggregation pattern involving a decrease in the density of Aβ at the surface followed by an increase in the thickness on the hydrophobic C18 chip. Most importantly, the DPI measurements provided unique information on the early stages of Aβ aggregation, which is characterized by the presence of initially slow nucleus formation process followed by exponential fibril elongation. The dimensions of the putative nucleus corresponded to a thickness of ~5 nm for both Aβ40 and Aβ42, which may represent about 10-15 molecules. The results thus support the nucleation-dependent polymerization model as indicated by the presence of a nucleation phase followed by an exponential growth phase. These results are the first reported measurements of the real-time changes in Aβ molecular structure during the early stages of amyloid formation at the nanometer level.  相似文献   

12.
Enhanced production of a 42-residue beta amyloid peptide (Aβ(42)) in affected parts of the brain has been suggested to be the main causative factor for the development of Alzheimer's Disease (AD). The severity of the disease depends not only on the amount of the peptide but also its conformational transition leading to the formation of oligomeric amyloid-derived diffusible ligands (ADDLs) in the brain of AD patients. Despite being significant to the understanding of AD mechanism, no atomic-resolution structures are available for these species due to the evanescent nature of ADDLs that hinders most structural biophysical investigations. Based on our molecular modeling and computational studies, we have designed Met35Nle and G37p mutations in the Aβ(42) peptide (Aβ(42)Nle35p37) that appear to organize Aβ(42) into stable oligomers. 2D NMR on the Aβ(42)Nle35p37 peptide revealed the occurrence of two β-turns in the V24-N27 and V36-V39 stretches that could be the possible cause for the oligomer stability. We did not observe corresponding NOEs for the V24-N27 turn in the Aβ(21-43)Nle35p37 fragment suggesting the need for the longer length amyloid peptide to form the stable oligomer promoting conformation. Because of the presence of two turns in the mutant peptide which were absent in solid state NMR structures for the fibrils, we propose, fibril formation might be hindered. The biophysical information obtained in this work could aid in the development of structural models for toxic oligomer formation that could facilitate the development of therapeutic approaches to AD.  相似文献   

13.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cerebral deposition of amyloid fibrils formed by the amyloid β (Aβ) peptide. Aβ has a length of 39-43 amino acid residues; the predominant Aβ isoforms are Aβ1-40 and Aβ1-42. While the majority of AD cases occur spontaneously, a subset of early-onset familial AD cases is caused by mutations in the genes encoding the Aβ precursor protein or presenilin 1/presenilin 2. Recently, a deletion of glutamic acid at position 22 within the Aβ sequence (E22Δ) was identified in Japanese patients with familial dementia, but the aggregation properties of the deletion variant of Aβ are not well understood. We investigated the aggregation characteristics and neurotoxicity of recombinantly expressed Aβ isoforms 1-40 and 1-42 with and without the E22Δ mutation. We show that the E22Δ mutation strongly accelerates the fibril formation of Aβ1-42 E22Δ compared to Aβ1-42 wild type (wt). In addition, we demonstrate that fibrils of Aβ1-40 E22Δ form a unique quaternary structure characterized by a strong tendency to form fibrillar bundles and a strongly increased thioflavin T binding capacity. Aβ1-40 E22Δ was neurotoxic in rat primary neuron cultures as compared to nontoxic Aβ1-40 wt. Aβ1-42 E22Δ was less toxic than Aβ1-42 wt, but it significantly decreased neurite outgrowth per cell in neuronal primary cultures. Because Aβ1-40 is the major Aβ form in vivo, the gain of toxic function caused by the E22 deletion may explain the development of familial AD in mutation carriers.  相似文献   

14.
Pyroglutamate (pGlu)-modified amyloid peptides have been identified in sporadic and familial forms of Alzheimer's disease (AD) and the inherited disorders familial British and Danish Dementia (FBD and FDD). In this study, we characterized the aggregation of amyloid-β protein Aβ37, Aβ38, Aβ40, Aβ42 and ADan species in vitro, which were modified by N-terminal pGlu (pGlu-Aβ3-x, pGlu-ADan) or possess the intact N-terminus (Aβ1-x, ADan). The pGlu-modification confers rapid formation of oligomers and short fibrillar aggregates. In accordance with these observations, the pGlu-modified Aβ38, Αβ40 and Αβ42 species inhibit hippocampal long term potentiation of synaptic response, but pGlu-Aβ3-42 showing the highest effect. Among the unmodified Aβ peptides, only Aβ1-42 exhibites such propensity, which was similar to pGlu-Aβ3-38 and pGlu-Aβ3-40. Likewise, the amyloidogenic peptide pGlu-ADan impaired synaptic potentiation more pronounced than N-terminal unmodified ADan. The results were validated using conditioned media from cultivated HEK293 cells, which express APP variants favoring the formation of Aβ1-x, Aβ3-x or N-truncated pGlu-Aβ3-x species. Hence, we show that the ability of different amyloid peptides to impair synaptic function apparently correlates to their potential to form oligomers as a common mechanism. The pGlu-modification is apparently mediating a higher surface hydrophobicity, as shown by 1-anilinonaphtalene-8-sulfonate fluorescence, which enforces potential to interfere with neuronal physiology.  相似文献   

15.
Aggregations of proteins are in many cases associated with neurodegenerative diseases such as Alzheimer's (AD). Small compounds capable of inhibiting protein aggregation are expected to be useful for not only in the treatment of disease but also in probing the structures of aggregated proteins. In previous studies using phage display, we found that arginine-rich short peptides consisting of four or seven amino acids bound to soluble 42-residue amyloid β (Aβ42) and inhibited globulomer (37/48 kDa oligomer) formation. In the present study, we searched for arginine-containing small molecules using the SciFinder searching service and tested their inhibitory activities against Aβ42 aggregation, by sodium dodecyl sulfate (SDS)-PAGE and thioflavine T binding assay. Commercially available Arg-Arg-7-amino-4-trifluoromethylcoumarin was found to exhibit remarkable inhibitory activities to the formation of the globulomer and the fibril of Aβ42. This chimera-type tri-peptide is expected to serve as the seed molecule of a potent inhibitor of the Aβ aggregation process.  相似文献   

16.
Alzheimer's disease (AD) is a complex, multifactorial neurodegenerative disease. The aggregation of beta-amyloid (Aβ) into extracellular fibrillar deposition is a pathological hallmark of AD. The Aβ aggregate-induced neurotoxicity, inflammatory reactions and oxidative stress are linked strongly to the etiology of AD. The currently available hitting-one-target drugs are insufficient for the treatment of AD. Therefore, finding multipotent agents able to modulate multiple targets simultaneously is attracting more attention. Previous studies indicated that vitamin E or its constituent such as α-tocopherol (α-T) was able to attenuate the effects of several pathogenetic factors in AD. However, ineffective or detrimental results were obtained from a number of clinical trials of vitamin E. Here, we showed that naturally synthesized RRR-α-tocopherol quinone (α-TQ), a main derivative of α-T, could inhibit Aβ42 fibril formation dose-dependently. Further investigations indicated that α-TQ could attenuate Aβ42-induced neurotoxicity toward SH-SY5Y neuroblastoma cells, disaggregate preformed fibrils and interfere with natural intracellular Aβ oligomer formation. Moreover, α-TQ could decrease the formation of reactive oxygen species (ROS) and NO, and modulate the production of cytokines by decreasing TNF-α and IL-1β and increasing IL-4 formation in microglia. Taken together, α-TQ targeting multiple pathogenetic factors deserves further investigation for prevention and treatment of AD.  相似文献   

17.
Aggregation of the amyloid-β (Aβ) peptide is considered a central event in the pathogenesis of Alzheimer's disease (AD). In order to bypass methodological bias related to a variety of impurities commonly present in typical preparations of synthetic Aβ, we developed a simple, generally applicable method for recombinant production of human Aβ and Aβ variants in Escherichia coli that provides milligram quantities of Aβ in very high purity and yield. Amyloid fibril formation in vitro by human Aβ1-42, the key amyloidogenic Aβ species in AD, was completed threefold faster with recombinant Aβ1-42 compared to synthetic preparations. In addition, recombinant Aβ1-42 was significantly more toxic to cultured rat primary cortical neurons, and it was more toxic in vivo, as shown by strongly increased induction of abnormal phosphorylation of tau and tau aggregation into neurofibrillary tangles in brains of P301L tau transgenic mice. We conclude that even small amounts of impurities in synthetic Aβ—including a significant fraction of racemized peptides that cannot be avoided due to the technical limitations of peptide synthesis—prevent or slow Aβ incorporation into the regular quaternary structure of growing β-amyloid fibrils. The results validate the use of recombinant Aβ1-42 for both in vitro and in vivo studies addressing the mechanisms underlying Aβ aggregation and its related biological consequences for the pathophysiology, therapy, and prevention of AD.  相似文献   

18.
Aggregation and fibril formation of β-amyloid peptides (Aβ) is the key event in the pathogenesis of Alzheimer's disease. Many efforts have been made on the development of effective inhibitors to prevent Aβ fibril formation or disassemble the preformed Aβ fibrils. Peptide inhibitors with sequences homologous to the hydrophobic segments of Aβ can alter the aggregation pathway of Aβ, together with decrease of the cell toxicity. In this study, the conjugate of ferrocenoyl (Fc) with pentapeptide KLVFF (Fc-KLVFF), was synthesized by HBTU/HOBt protocol in solution. The inhibitory effect of Fc-KLVFF on Aβ(1-42) fibril formation was evaluated by thioflavin T fluorescence assay, and confirmed by atomic force microscopy (AFM) and transmission electron microscopy (TEM) analyses. Fc-KLVFF shows high inhibitory effect towards the fibril formation of Aβ(1-42). Additionally, the attachment of ferrocenoyl moiety onto peptides allows us to investigate the interaction between the inhibitor and Aβ(1-42) in real-time by electrochemical method. As expected, tethering of ferrocenoyl moiety onto pentapeptide shows improved lipophilicity and significant resistance towards proteolytic degradation compared to its parent peptide.  相似文献   

19.
The interaction of amyloid beta (Aβ) peptide with cell membranes has been shown to be influenced by Aβ conformation, membrane physicochemical properties and lipid composition. However, the effect of cholesterol and its oxidized derivatives, oxysterols, on Aβ-induced neurotoxicity to membranes is not fully understood. We employed here model membranes to investigate the localization of Aβ in membranes and the peptide-induced membrane dynamics in the presence of cholesterol and 7-ketocholesterol (7keto) or 25-hydroxycholesterol (25OH). Our results have indicated that oxysterols rendered membranes more sensitive to Aβ, in contrast to role of cholesterol in inhibiting Aβ/membrane interaction. We have demonstrated that two oxysterols had different impacts owing to distinct positions of the additional oxygen group in their structures. 7keto-containing cell-sized liposomes exhibited a high propensity toward association with Aβ, while 25OH systems were more capable of morphological changes in response to the peptide. Furthermore, we have shown that 42-amino acid Aβ (Aβ-42) pre-fibril species had higher association with membranes, and caused membrane fluctuation faster than 40-residue isoform (Aβ-40). These findings suggest the enhancing effect of oxysterols on interaction of Aβ with membranes and contribute to clarify the harmful impact of cholesterol on Aβ-induced neurotoxicity by means of its oxidation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号