首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 668 毫秒
1.

The effects of astaxanthin (AST) were evaluated on oxidative mediators, neuronal apoptosis, and autophagy in functional motor recovery after spinal cord injury (SCI). Rats were divided into three groups of sham, SCI?+?DMSO (dimethyl sulfoxide), and SCI?+?AST. Rats in the sham group only underwent a laminectomy at thoracic 8–9. While, the SCI?+?DMSO and SCI?+?AST groups had a compression SCI with an aneurysm clip. Then, this groups received an intrathecal (i.t.) injection of 5% DMSO and AST (10 μl of 0.005 mg/kg), respectively. The rat motor functions were assessed weekly until the 28th day using a combined behavioral score (CBS). Total antioxidant capacity (TAC), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were measured in spinal tissue to evaluate oxidative stress-related parameters. Besides, autophagy-related proteins (P62, LC3B, and Beclin1) and apoptosis-associated proteins (Bax and Bcl2) were determined using western blotting on the 1st and 7th days after surgery. Hematoxylin–eosin and Fluoro-Jade B staining were performed to detect the histological alterations and neuronal degeneration. As the result, treatment with AST potentially attenuated rat CBS scores (p?<?0.001) towards a better motor performance. AST significantly reduced the spinal level of oxidative stress by increasing TAC, SOD, and GPx, while decreasing MDA (p?<?0.001). Furthermore, AST treatment remarkably upregulated expression of LC3B (p?<?0.001), and Beclin1 (p?<?0.05) in the spinal cord, but downregulated P62 (p?<?0.05) and the Bax/Bcl2 ratio (p?<?0.001). Consequently, AST reduced SCI-induced histological alterations and neuronal degeneration (p?<?0.001). In conclusion, AST can improve motor function after SCI by reducing oxidative stress/apoptosis and increasing neuronal autophagy.

  相似文献   

2.
This study investigated the role of autophagy in the survival of the invasive bacterium Brucella melitensis strain 16M in murine macrophages. Here, Brucella melitensis 16M was found to trigger autophagosome formation, enhance autophagy flux and increase the expression level of the autophagy marker protein LC3-II. When autophagy was pharmacologically inhibited by 3-methyladenine (3-MA), Brucella replication efficiency was significantly decreased (p < 0.05). These results suggest that autophagy favors Brucella melitensis 16M survival in murine macrophages.  相似文献   

3.
Guan  Wenqian  Gao  Zhiyuan  Huang  Chenjun  Fang  Meng  Feng  Huijuan  Chen  Shipeng  Wang  Mengmeng  Zhou  Jun  Hong  Song  Gao  Chunfang 《Glycoconjugate journal》2020,37(2):231-240

TRF is a glycoprotein mainly secreted by hepatocytes, The aim of this study was to explore the diagnostic value of aberrant glycosylated serum transferrin (TRF) especially containing multi-antennary glycans in hepatocellular carcinoma (HCC).A total of 581 subjects including HCC patients, liver cirrhosis (LC) patients, chronic hepatitis (CHB) patients and healthy controls (HC) were recruited. All the subjects were randomly assigned to training group (n?=?411) and validation group (n?=?170). We firstly analyzed the serum protein N-glycome profiling of HCC, LC, and HC by DNA sequencer–assisted fluorophore-assisted carbohydrate electrophoresis (DSA-FACE) technology. We established a lectin-antibody sandwich ELISA (Lectin-ELISA) method to detect multi-antennary glycans-contained TRF (DSA-TRF) in serum, in which Datura stramonium Agglutinin (DSA) was used for specific recognition. Levels of serum DSA-TRF and TRF were analyzed respectively. The diagnostic efficacies of DSA-TRF and TRF of differentiating HCC patients from CHB, LC patients and HC within the training group were evaluated using receiver operating characteristic (ROC) curve and tested in the validation group.The result found that in training group, serum TRF and DSA-TRF levels differed significantly between HCC (1.86?±?0.50, g/L, 0.285?±?0.06), CHB?+?LC (2.39?±?0.74, g/L, 0.189?±?0.07) and HC (1.92?±?0.69, g/L, 0.249?±?0.09) (HCC vs. CHB?+?LC, P?<?0.001; HCC vs. HC, P?<?0.001; CHB?+?LC vs. HC, P?<?0.001). The area under the ROC curve (AUC) of DSA-TRF was significantly superior to AFP (0.880, 95%CI: 0.834–0.925 vs. 0.776, 95%CI: 0.725–0.827, P?=?0.003) in differentiating HCC from CHB?+?LC. The AUC of diagnostic model GlycoTRF1 (0.981, 95%CI: 0.969–0.993) was higher than DSA-TRF and AFP alone (P<0.001) in differentiating HCC from CHB?+?LC, which was verified in validation group.The results indicated that the serum DSA-TRF might serve as a potential glycan biomarker for distinguishing HCC from CHB and LC.

  相似文献   

4.
We evaluated the effect of zinc treatment on the blood–brain barrier (BBB) permeability and the levels of zinc (Zn), natrium (Na), magnesium (Mg), and copper (Cu) in the brain tissue during epileptic seizures. The Wistar albino rats were divided into four groups, each as follows: (1) control group, (2) pentylenetetrazole (PTZ) group: rats treated with PTZ to induce seizures, (3) Zn group: rats treated with ZnCl2 added to drinking water for 2 months, and (4) Zn?+?PTZ group. The brains were divided into left, right hemispheres, and cerebellum?+?brain stem regions. Evans blue was used as BBB tracer. Element concentrations were analyzed by inductively coupled plasma optical emission spectroscopy. The BBB permeability has been found to be increased in all experimental groups (p?<?0.05). Zn concentrations in all brain regions in Zn-supplemented groups (p?<?0.05) showed an increase. BBB permeability and Zn level in cerebellum?+?brain stem region were significantly high compared to cerebral hemispheres (p?<?0.05). In all experimental groups, Cu concentration decreased, whereas Na concentrations showed an increase (p?<?0.05). Mg content in all the brain regions decreased in the Zn group and Zn?+?PTZ groups compared to other groups (p?<?0.001). We also found that all elements’ levels showed hemispheric differences in all groups. During convulsions, Zn treatment did not show any protective effect on BBB permeability. Chronic Zn treatment decreased Mg and Cu concentration and increased Na levels in the brain tissue. Our results indicated that Zn treatment showed proconvulsant activity and increased BBB permeability, possibly changing prooxidant/antioxidant balance and neuronal excitability during seizures.  相似文献   

5.

The aim of the current study was to determine possible interaction of central oxytocin and opioidergic system on food intake regulation in neonatal layer-type chicken. In experiment 1, FD3 chicken ICV injected with control solution, oxytocin (10 µg), β-FNA (µ receptor antagonist, 5 µg) and oxytocin (10 µg)?+?β-FNA were injected. Experiments 2–6 were similar to experiments 1, except chicken injected with nor-BNI (κ receptor antagonist, 5 µg), NTI (δ receptor antagonist, 5 µg), DAMGO (µ receptor agonist, 62.25 pmol), U-50488H (κ receptor agonist, 10 nmol), DPDPE (δ receptor agonist, 20 pmol) instead of β-FNA. In experiment 7, control solution, DAMGO (125 pmol), d(CH2)5Tyr(Me)-[Orn8]-vasotocin (oxytocin antagonist, 5 µg) and DAMGO?+?d(CH2)5Tyr(Me)-[Orn8]-vasotocin were ICV injected to FD3 chicken. Experiments 8 and 9 were similar to experiments 7, except chicken injected with U-50488H (30 nmol) and DPDPE (40 pmol) instead of DAMGO. Then, cumulative food intake was recorded at 30, 60 and 120 min after injection. According to the results, ICV injection of the oxytocin (10 µg) significantly decreased food intake compared to control group (P?<?0.05). Co-injection of the oxytocin?+?β-FNA and oxytocin?+?U-50488H significantly decreased hypophagic effect of the oxytocin (P?<?0.05). While, co-injection of the oxytocin?+?nor-BNI or oxytocin?+?DAMGO significantly amplified hypophagic effect of the oxytocin in chicken (P?<?0.05). In addition, ICV injection of DAMGO (125 pmol) significantly decreased cumulative food intake compared to control group (P?<?0.05). However, co-addministration of the DAMGO?+?(CH2)5Tyr(Me)-[Orn8]-vasotocin significantly decreased hypophagic effect of the DAMGO (P?<?0.05) in chicken. These results suggested there are interconnection between oxytocin and opioidergic system on central food intake regulation, which mediates via µ and κ opioidergic receptors in neonatal layer-type chicken.

  相似文献   

6.
《Autophagy》2013,9(6):738-753
The present study evaluated autophagy activation in astrocytes and its contribution to astrocyte injury induced by cerebral ischemia and hypoxia. Focal cerebral ischemia was induced by permanent middle cerebral artery occlusion (pMCAO) in rats. In vitro hypoxia in cultured primary astrocytes was induced by the oxygen-glucose deprivation (OGD). Alterations of astrocytes were evaluated with astroglia markers glial fibrillary acidic protein (GFAP). The formation of autophagosomes in astrocytes was examined with transmission electron microscopy (TEM). The expression of autophagy-related proteins were examined with immunoblotting. The role of autophagy in OGD or focal cerebral ischemia-induced death of astrocytes was assessed by pharmacological inhibition of autophagy with 3-methyladenine (3-MA) or bafilomycin A1 (Baf). The results showed that GFAP staining was reduced in the infarct brain areas 3-12 h following pMCAO. Cerebral ischemia or OGD induced activation of autophagy in astrocytes as evidenced by the increased formation of autophagosomes and autolysosomes and monodansylcadaverine (MDC)-labeled vesicles; the increased production of microtubule-associated protein 1 light chain 3 (LC3-II); the upregulation of Beclin 1, lysosome-associated membrane protein 2 (LAMP2) and lysosomal cathepsin B expression; and the decreased levels of cytoprotective Bcl-2 protein in primary astrocytes. 3-MA inhibited OGD-induced the increase in LC3-II and the decline in Bcl-2. Furthermore, 3-MA and Baf slightly but significantly attenuated OGD-induced death of astrocytes. 3-MA also significantly increased the number of GFAP-positive cells and the protein levels of GFAP in the ischemic cortex core 12 h following pMCAO. These results suggest that ischemia or hypoxia-induced autophagic/lysosomal pathway activation may at least partly contribute to ischemic injury of astrocytes.  相似文献   

7.
Wang  Shuo  Xue  Hang  Xu  Ying  Niu  Jiayuan  Zhao  Ping 《Neurochemical research》2019,44(2):347-356

Hypoxic-ischemic brain injury (HIBI) in neonates is one of the major contributors of newborn death and cognitive impairment. Numerous animal studies have demonstrated that autophagy is substantially increased in HIBI and that sevoflurane postconditioning (SPC) can attenuate HIBI. However, if SPC-induced neuroprotection inhibits autophagy in HIBI remains unknown. To investigate if cerebral protection induced by SPC is related to decreased autophagy in the setting of HIBI. Postnatal rats at day 7 (P7) were randomly assigned to 7 different groups: Sham, HIBI, SPC–HIBI, HIBI?+?rapamycin, SPC–HIBI?+?rapamycin, HIBI?+?p-extracellular signal-regulated kinase (p-ERK) inhibitor, and SPC–HIBI?+?p-ERK inhibitor. To induce HIBI, neonatal rats underwent left common carotid artery ligation, followed by 2 h of hypoxia (8% O2). Rats in the SPC groups were treated with 1 minimum alveolar concentration ([MAC], 2.4%) SPC for 30 min after HIBI induction. Markers of autophagy and expression of ERK cascade components were measured in the rat brains after 24 h. Spatial learning and memory function were examined 29–34 days after administration of an autophagy agonist or a p-ERK inhibitor. The expression of microtubule-associated proteins 1A/1B, light chain 3B II (LC3-II) and tuberous sclerosis complex 2 (TSC2) were decreased in the SPC–HIBI group compared to the HIBI group. Expression of the p62 sequestosome 1 (P62/SQSTM1) protein, p-ERK/ERK, phospho-mammalian target of rapamycin (p-mTOR) and phospho-p70S6 were increased in SPC–HIBI group. Rats within the SPC–HIBI groups that also received the p-ERK inhibitor or autophagy inhibitor demonstrated reduced cross platform times and increased escape latency. Approximately 30 min of 2.4% SPC treatment in the P7 rat HIBI model attenuated excessive autophagy in the brain by elevating the ERK cascade. This finding provides additional insight into HIBI and identifies new targets for therapeutic approaches to treat HIBI.

  相似文献   

8.

The focal epilepsy is a chronic neurological brain disorder which affects millions of people in the world. There is emerging evidence that changes in the gut microbiota may have effects on epileptic seizures. In the present study, we examined the effect of probiotics on penicillin-induced focal seizure model in rats. Male Wistar Albino rats (n: 21) were randomly divided into three groups: control (no medication), penicillin and penicillin?+?probiotic. Probiotic VSL#3 (12.86 bn living bacteria/kg/day) was given by gavage for 30 days. The seizures were induced by intracortical injection of penicillin G (500 IU) into the cortex. An ECoG recordings were made for 180 min after penicillin G application. The spike frequency and the amplitude were used to assess the severity of seizures. Tumor necrosis factor (TNF-α), nitric oxide (NO) and interleukin (IL-6) levels in the brain were studied biochemically. Our results indicated that probiotic supplementation improved focal seizures through increasing the latency (p?<?0.001) and decreasing the spike frequency (p?<?0.01) compared to the penicillin group. Penicillin-induced seizure in rats significantly enhanced TNF-α (p?<?0.01), NO (p?<?0.01) and IL-6 (p?<?0.05) compared to the control. Probiotic supplementation significantly decreased IL-6 (p?<?0.05), TNF-α (p?<?0.01) and NO (p?<?0.001) compared to the penicillin group. When the body weights were compared before and after the experiment, there was no difference between the control and penicillin groups, but it was observed that the body weight decreased after probiotic supplementation in the penicillin?+?probiotic group. Probiotic supplementation may have anti-seizure effect by reducing proinflammatory cytokine and NO levels in epileptic rat brain.

  相似文献   

9.
目的 探讨肥胖对大鼠生精小管结构及自噬和凋亡相关蛋白质的影响,并探讨运动对睾丸自噬和凋亡的影响及其调控机制。方法 将50只6周龄雄性SD大鼠随机分为标准饲养组(SD组,n=20)和高脂饲养组(HFD组,n=30)。HFD组喂养8周建立肥胖大鼠模型,并随机筛选出20只肥胖大鼠进行运动干预。SD组和HFD组分别随机分为标准对照组(CC组)、标准运动组(CE组)、肥胖对照组(OC组)、肥胖运动组(OE组),每组10只。其中CE组和OE组进行8周中等强度跑台运动干预,60 min/d,5 d/周,其他两组维持原饲养条件。在最后一次运动结束48 h后,将大鼠腹腔麻醉,称重,取大鼠左右两侧睾丸、称量睾丸重量并计算睾丸指数。制作睾丸石蜡切片,利用HE染色法观察睾丸组织结构。采用蛋白质印迹法(Western blot)检测睾丸组织中p62、LC3II、LC3I、BCL-2、Bax和AMPK蛋白表达量并计算LC3II/LC3I比值,采用免疫荧光检测睾丸中LC3和BCL-2蛋白表达位置。结果 与CC组相比,OC组大鼠睾丸指数降低,生精小管直径显著降低(P<0.01),精子细胞减少,睾丸组织中有脂滴沉...  相似文献   

10.
Li  Zheng  Liu  Shuhao  Cao  Yuanwu  Fu  Tengfei  Jiang  Libo  Zhang  Jian 《Biological trace element research》2019,191(1):88-97

Silicon-doped materials have been widely used in bone regeneration research; however, a consensus on the safety range of silicon ions has not been reached and its toxicity mechanism remains to be further elucidated. This study aims to explore whether high level of sodium metasilicate can induce toxicity effect in human umbilical vein endothelial cells (HUVEC) and the role of autophagy and apoptosis in its toxic mechanism. HUVEC was treated with different level of high silicon and then investigated with respect to morphologic change, cell viability, immunofluorescence, the level of autophagy, and apoptosis-related protein. Moreover, bafilomycin A1 (Baf A1) was applied to detect whether autophagic flux is disrupted, and 3-methyladenine (3-MA, an autophagy inhibitor) was used to determine the relationship between autophagy and apoptosis. Results demonstrated that high-level silicon induced cell viability to decrease; LC3-II, p62, and apoptosis-related proteins were up-regulated after exposure to high-dose silicon (sodium metasilicate concentration more than 1 mM). There is no significant difference in LC3-II and p62 between Baf A1 and sodium metasilicate-exposed group. Besides, 3-MA further increased the apoptotic rate by inhibiting autophagy after high silicon exposure. Collectively, high concentration of silicon can impair autophagy and induce apoptosis in human umbilical vein endothelial cells, and autophagy may play a protective role in HUVEC apoptosis. Furthermore, silicon concentration used in HUVEC should not be more than 1 mM.

  相似文献   

11.
Sleep apnea syndrome (SAS) is considered to be associated with heart failure (HF). It is known that autophagy is induced in various heart diseases thereby promotes survival, but its excess may be maladaptive. Intermittent hypoxia (IH) plays pivotal role in the pathogenesis of SAS. We aimed to clarify the relationships among IH, autophagy, and HF. Rats underwent IH at a rate of 20 cycles/h (nadir of 4% O2 to peak of 21% O2 with 0% CO2) or normal air breathing (control) for 8 h/d for 3 weeks. IH increased the cardiac LC3II/LC3I ratio. The IH induced upregulation of LC3II was attenuated by the administration of an inhibitor of autophagosome formation 3-methyladenine (3-MA), but enhanced by an inhibitor of autophagosome–lysosome fusion chloroquine (CQ), showing enhanced autophagic flux in IH hearts. Electron microscopy confirmed an increase in autophagosomes and lysosomes in IH. With 3-MA or CQ, IH induced progressive deterioration of fractional shortening (FS) on echocardiography over 3 weeks, although IH, 3-MA, or CQ alone had no effects. With CQ, IH for 4 weeks increased serum troponin T levels, reflecting necrosis. Western blotting analyses showed dephosphorylation of Akt and mammalian target of rapamycin (mTOR) at Akt (Ser2448, 2481) sites, suggesting the activation of autophagy via Akt inactivation. Conclusions. IH-mediated autophagy maintains contractile function, whereas when autophagy is inhibited, IH induces systolic dysfunction due to myocyte necrosis. General significance. This study highlighted the potential implications of autophagy in cardio-protection in early SAS patients without comorbidity, reproduced in normal rats by 3 ~ 4 weeks of IH.  相似文献   

12.
It has been reported that autophagy and zinc transporters (ZnTs) both play the key roles in excitotoxicity, which is associated with cognitive deficits following developmental seizures. However, the influence of autophagy on acute phase ZnTs expression has never been studied. The present study sought to investigate the contribution of an autophagy inhibitor (3-methyladenine, 3-MA) on the regulation of ZnTs, microtubule-associated protein 1A/1B light chain 3 (LC3), and beclin-1 expression in rat hippocampus following recurrent neonatal seizures. We examined the expression of ZnT1∼ZnT3, LC3, and beclin-1 at 1.5, 3, 6, and 24 h after the last seizures using real-time RT-PCR and Western blot methods, respectively. The results showed that there were upregulated expressions of ZnT-1, ZnT-2, LC3, and beclin-1 of RS group. Pretreatment with 3-MA remarkably attenuated seizure-induced ZnT-1, ZnT-2, LC3, and beclin-1 increase. Additionally, linear correlations could be observed between LC3–Beclin1, LC3–ZnT-2, Beclin1–ZnT2, Beclin1–ZnT3, and among ZnT1∼ZnT3 in control group, while the linear correlations could be observed between LC3–Beclin1, Beclin1–ZnT2, and Beclin1–ZnT3 in RS group. These results demonstrate, for the first time, that there exists an interaction of Zn2+ with autophagic signals that are immediately activated in hippocampus after recurrent neonatal seizures, which might play a key role in neonatal seizure-induced excitotoxicity.  相似文献   

13.

The aim of this experiment was to evaluate the effects of bioactive peptides derived from enzymatic hydrolysis of cottonseed meal (CSBP) compared with zinc bacitracin, as an antibiotic growth promoter (AGP), on productive traits, serum lipid profile, and ileal microbial population in broiler chickens. A total number of 240-day-old broiler chicks (Ross 308) were allocated into 4 treatments, replicated 5 times based on a completely randomized design. The dietary treatments included a basal diet serving as control group, basal diet?+?40 mg/kg zinc bacitracin as AGP group, and the basal diet supplemented with 15 or 20 g/kg CSBP substituting equal quantity of maize and soybean meal. Performance traits, including daily weight gain, feed intake, feed conversion ratio (FCR), and livability were recorded. At the end of the study, serum lipid parameters, ileal microbial population, and economical indices were determined. The results indicated that feed intake and FCR increased (P?<?0.05) in birds receiving 20 g/kg CSBP over the entire period (1–35 days), but there was no significant effect of CSBP on body weight, although numerically higher than the control group. However, the antibiotic group showed a significant increase (P?<?0.05) in body weight and feed intake. Livability, European Production Efficiency Factor (EPEF), and European Broiler Index (EBI) significantly improved in broiler chickens fed antibiotic and 15 g/kg CSBP supplement (P?<?0.05). Adding 20 g/kg of CSBP to the diet significantly increased serum triglycerides and decreased low-density lipoproteins (LDL) compared to the control and antibiotic groups on day 35. The relative weight of abdominal fat and LDL to HDL ratio were significantly lower for CSBP and antibiotic treatments than the control group (P?<?0.05). Supplementation of antibiotic and both graded levels of CSBP decreased the ileum population of Escherichia coli (P?<?0.05). The current findings suggest that including CSBP in broiler diets may benefit production through improving growth rate of broilers and balancing gut microbiota population. In addition, CSBP could be considered as a potential alternative to antibiotics in an AGP free production system.

  相似文献   

14.
目的:探讨热休克蛋白A5(HSPA5)诱导的自噬在小鼠脑缺血/再灌注损伤中的作用。方法:将36只BALB/c小鼠随机分为sham、缺血再灌注(I/R)、vehicle + I/R、3-甲基腺嘌呤(3-MA) + I/R、scramble siRNA + I/R和HSPA5 siRNA + I/R组(n=6)。Sham组只进行手术操作,不插入线栓。I/R采用大脑中动脉阻塞(MCAO)60 min后再灌注24 h。Vehicle + I/R组和3-MA + I/R将5μl 0.9% NaCl或3-MA (30 mg/ml)在MCAO前30 min侧脑室注射。scramble siRNA + I/R组和HSPA5 siRNA + I/R组将5μl scramble siRNA或HSPA5 siRNA (2μg/μl)在MCAO前24 h侧脑室注射。检测神经细胞内自噬体、缺血大脑皮层(LC3)-Ⅱ/LC3-I表达、神经元损伤程度及神经功能缺损。结果:显微镜下sham组小鼠大脑皮层神经细胞形态正常;I/R组小鼠缺血大脑皮层神经元胞质中细胞器减少,自噬体形成。与sham组比较,I/R组缺血大脑皮层LC3-Ⅱ/LC3-I蛋白表达水平显著增高(P < 0.05);与I/R组相比,3-MA + I/R组或HSPA5 siRNA + I/R组缺血大脑皮层LC3-Ⅱ/LC3-I蛋白表达明显减少(P < 0.05);3-MA + I/R组及HSPA5 siR-NA + I/R组I/R后脑缺血性损伤及神经系统症状加重(P < 0.05)。结论:HSPA5诱导自噬可能在小鼠局灶性I/R损伤中发挥保护作用。  相似文献   

15.
为探究自噬抑制剂6-氨基-3-甲基腺嘌呤(3-methyladenine,3-MA)对损伤细胞氧化应激水平的影响,将3-MA作用于H2O2诱导的PC12细胞损伤模型,以自噬增强剂雷帕霉素(rapamycin,Rap)作为对照,探讨自噬与氧化应激的关系。测定线粒体的膜电位和细胞内的活性氧(reactive oxygen species, ROS)与丙二醛(malondialdehyde, MDA)含量,以及超氧化物歧化酶(superoxide dismutase,SOD)和过氧化氢酶(catalase,CAT)活性,评价损伤细胞的氧化应激状态。单丹(磺)酰戊二胺(monodansylcadaverine,MDC)染色,观察损伤细胞的自噬情况。蛋白质印迹分析损伤细胞中的自噬相关蛋白质LC3-II/LC3-I比值变化。实验结果显示:与正常组相比,H2O2损伤细胞的ROS水平上升到正常组的141%,MDA含量增加(P<0.001);CAT与SOD酶活力显著降低(P<0.001),差异均有统计学意义,证明损伤细胞氧化应激水平增加;MDC染色结果表明,H2O2组自噬明显增加。Western印迹结果表明,LC3-II/LC3-I值显著升高(P<0.05);与损伤组相比,3-MA组MDC染色结果表明,自噬水平降低。Western印迹结果表明,LC3-II/LC3-I值下降;细胞内ROS水平升高,增加到正常组的208%。MDA含量增加(P<0.001),CAT、SOD酶活力降低(P<0.001)。综上结果表明,自噬抑制剂可增加H2O2诱导的PC12细胞损伤模型的氧化应激水平,增加细胞凋亡。  相似文献   

16.
The current study demonstrated curcumin intervention against AFB1-indeuced hepatotoxicity. The hallmarks of autophagy and inflammation were assessed by transmission electron microscopy, RT-PCR and western blot. Besides, normal cellular morphology, autophagosomes were found in control and curcumin control group. In contrast, fragmented and swollen mitochondria, irregular shaped nuclei and fat droplets were visible but autophagosomes disappear in AFB1-treated group. The mRNA and protein expression levels of autophagy-related genes indicated that AFB1 significantly inhibited autophagy and induced inflammation. In addition, Nrf2 and HO-1 mRNA and protein level was significantly (p?<?0.05) reduced in AFB1-fed group. Intriguingly, dietary curcumin supplementation modulated autophagy through the activation of beclin-1, ATG5, Dynein, LC3a, LC3b-I/II and downregulation of p53 & mTOR expression level. Curcumin significantly ameliorated AFB1-induced inflammation. Moreover, curcumin treatment significantly (p?<?0.05) elevated AFB1-induced decrease in Nrf2 and HO-1 mRNA and protein expression level. In summary, curcumin activated autophagy and ameliorated inflammation involving Nrf2 signaling pathway which may become a new targeted therapy to prevent AFB1-induced hepatotoxicity.  相似文献   

17.
目的:探讨白藜芦醇甙在高糖处理的大鼠心肌微血管内皮细胞损伤中的作用及其可能调控机制。方法:酶消法分离大鼠CMECs,高糖处理CMECs建立细胞损伤模型,实验随机分为6个组:对照组(葡萄糖浓度为5.5 mmol/L)、白藜芦醇甙组、高糖组(葡萄糖浓度为33 mmol/L)、高糖+白藜芦醇甙组、高糖+白藜芦醇甙+3-MA(自噬抑制剂)组和高糖+雷帕霉素(自噬诱导剂)组。白藜芦醇甙组和高糖+白藜芦醇甙组分别加入10μmol/L的白藜芦醇甙孵育24 h,高糖+白藜芦醇甙+3-MA组加入10μmol/L的白藜芦醇甙和10μmmol/L 3-MA孵育24 h,高糖+雷帕霉素组加入100 nmol/L的雷帕霉素孵育24小时。CCK-8实验检测大鼠CMECs增殖;Tunel法检测大鼠CMECs凋亡;FITC-葡聚糖清除实验检测单层CMECs通透性;Western blot检测LC3Ⅱ和p62的表达。结果:与对照组和白藜芦醇甙组相比,高糖组CMECs增殖能力降低(P<0.05),凋亡率显著增加(P<0.05),细胞通透性增加(P<0.05),LC3Ⅱ表达降低(P<0.05),p62的表达增加(P<0.05);与高糖组相比,高糖+白藜芦醇甙组和高糖+雷帕霉素组CMECs增殖能力增加(P<0.05),凋亡率显著降低(P<0.05),细胞通透性降低(P<0.05),LC3Ⅱ表达增加(P<0.05),p62的表达降低(P<0.05);与高糖+白藜芦醇甙组相比,高糖+白藜芦醇甙+3-MA组CMECs增殖能力降低(P<0.05),凋亡率显著增加(P<0.05),细胞通透性增加(P<0.05),LC3Ⅱ表达降低(P<0.05),p62的表达增加(P<0.05)。结论:白藜芦醇甙通过增加自噬减轻高糖处理的大鼠心肌微血管内皮细胞损伤。  相似文献   

18.
《Cytokine》2015,71(2):87-96
Autophagy and apoptosis are important in maintaining the metabolic homeostasis of intervertebral disc cells, and transforming growth factor-β1 (TGF-β1) is able to delay intervertebral disc degeneration. This study determined the effect of TGF-β1 on the crosstalk between autophagy and apoptosis in the disc cells, with the aim to provide molecular mechanism support for the prevention and treatment of disc degeneration. Annulus fibrosus (AF) cells were isolated and cultured under serum starvation. 10 ng/mL TGF-β1 reduced the apoptosis incidence in the cells under serum starvation for 48 h, down-regulated the autophagy incidence in the cells pretreated with 3-methyladenine (3-MA) or Bafilomycin A (Baf A), partly rescued the increased apoptosis incidence in the cells pretreated with 3-MA, while further reduced the decreased apoptosis incidence in the cells pretreated with Baf A. Meanwhile, TGF-β1 down-regulated the expressions of autophagic and apoptotic markers in the cells under starvation, partly down-regulated the expressions of Beclin-1, LC3 II/I and cleaved caspase-3 in the cells pretreated with 3-MA or Baf A, while significantly decreased the expression of Bax/Bcl-2 in the cells pretreated with Baf A. 3-MA blocked the phosphorylation of both AKT and mTOR and partly reduced the inhibitory effect of TGF-β1 on the expression of LC3 II/I and cleaved caspase-3. TGF-β1 enhanced the expression of p-ERK1/2 and down-regulated the expressions of LC3 II/I and cleaved caspase-3. U0126 partly reversed this inhibitory effect of TGF-β1. In conclusion, TGF-β1 protected against apoptosis of AF cells under starvation through down-regulating excessive autophagy. PI3K–AKT–mTOR and MAPK–ERK1/2 were the possible signaling pathways involved in this process.  相似文献   

19.
目的:研究细胞自噬对酒精诱导的人肝细胞系(CL-1)的保护作用。方法:培养正常肝细胞系CL-1细胞,80mmol/L酒精常规处理24小时,采用CCK-8法观察酒精对细胞活力的影响;流式细胞技术观察酒精对细胞凋亡的影响;免疫蛋白印迹及转染GFP-LC3法检测细胞自噬水平;选用rapamycin和3-MA调节细胞自噬,观察酒精处理后细胞活力及凋亡的变化。结果:酒精处理体外培养的CL-1细胞,实验组较对照组细胞活力下降(P〈0.05);实验组细胞46.2%发生凋亡,显著高于对照组8.4%;LC3II及Beclinl水平显著高于对照组;GFP-LC3荧光数显著高于对照组(P〈0.05);调节细胞自噬水平,rapamycin组细胞活性增加(P〈0.01),31.1%(46.2%)细胞发生凋亡;3-MA组细胞活性降低(P〈0.05),54.1%(46.2%)细胞发生凋亡。结论:酒精处理降低CL-1细胞活性,促进凋亡,提高自噬水平;提高或降低细胞自噬水平,细胞凋亡及活力随之降低和增加;细胞自噬能够对抗酒精诱导的肝细胞凋亡。  相似文献   

20.
Catamenial epilepsy is a form of epilepsy which is related to the menstrual cycle. Cyclic variation in the levels of ovarian hormones plays a pivotal role in its pathogenesis. Sodium valproate (VPA) is one of the oldest antiepileptic drugs (AEDs) which inhibits hepatic metabolizing enzymes. The aim of this study was to evaluate the antiepileptic effects of VPA during different phases of the estrous cycle in rats. 72 adult female Wistar rats in three groups (control, 75 and 100 mg/kg VPA), each with four subgroups (proestrous, estrous, metestrous and diestrous) were used (n = 6). Initially, puberty was assessed using vaginal smears and rats with two regular cycles were selected. VPA with doses 75 and 100 mg/kg was administered intraperitoneally (i.p) in the treatment groups followed by i.p. injection of 80 mg/kg pentylentetrazol (PTZ) in the treatment and control groups. After induction of seizure by PTZ, initiation time of myoclonic seizures (ITMS), initiation time of tonic–clonic seizures (ITTS), seizures duration (SD) and mortality rate (MR) were recorded for 30 min. Data were presented as mean±SD, one-way ANOVA followed by Tukey–Kramer multiple comparison post hoc test were used for analysis of data (P < 0.05). The results of this study showed that VPA significantly improved antiepileptic parameters including ITMS, ITTS, SD, and MR, in which they were significantly more prominent during the luteal phase than the follicular phase (P < 0.05). In addition, there was no significant difference neither between proestrous and estrous nor between metestrous and diestrous in each separately group of rats (P > 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号