首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxisome biogenesis initiates at the endoplasmic reticulum (ER) and maturation allows for the formation of metabolically active organelles. Yet, peroxisomes can also multiply by growth and division. Several proteins, called peroxins, are known to participate in these processes but little is known about their organization to orchestrate peroxisome proliferation. Here, we demonstrate that regulation of peroxisome proliferation relies on the integrity of the tubular ER network. Using a dual track SILAC-based quantitative interaction proteomics approach, we established a comprehensive network of stable as well as transient interactions of the peroxin Pex30p, an integral membrane protein. Through association with merely ER resident proteins, in particular with proteins containing a reticulon homology domain, and with other peroxins, Pex30p designates peroxisome contact sites at ER subdomains. We show that Pex30p traffics through the ER and segregates in punctae to which peroxisomes specifically append, and we ascertain its transient interaction with all subunits of the COPI coatomer complex suggesting the involvement of a vesicle-mediated transport. We establish that the membrane protein Pex30p facilitates the connection of peroxisomes to the ER. Taken together, our data indicate that Pex30p-containing protein complexes act as focal points from which peroxisomes can form and that the tubular ER architecture organized by the reticulon homology proteins Rtn1p, Rtn2p and Yop1p controls this process.All nucleated cells contain essential round-shaped organelles called peroxisomes, whose function is mainly associated with lipid metabolism (1). Depending on the cellular requirements, the size, number, and protein content of these single membrane-bound organelles can vary widely. Although peroxisomes are dispensable for unicellular species such as yeasts, they are essential for the development of multicellular organisms (2, 3). In human, mutations in PEX genes lead to defects in peroxisome function or formation and are associated with the development of lethal pathologies (4). These PEX genes code for proteins, called peroxins, which are involved in peroxisome assembly and maintenance (5).Two major routes seem to lead to peroxisome formation, namely, de novo biogenesis and growth/division of pre-existing peroxisomes. The division pathway operates with proteins of the Pex11 family and requires fission factors shared with mitochondria (6). Studies in yeast and mammalian cells revealed that through the action of the protein Pex3p peroxisome precursors can also originate from the endoplasmic reticulum (ER)1 and, via import of membrane and matrix proteins, mature into fully functional organelles (7, 8). Furthermore, several peroxisomal membrane proteins were shown to migrate to peroxisomes via the ER (7, 9, 10). The molecular mechanism underlying the biogenic pathway of peroxisome formation has not been clarified so far. Recent data based on cell-free vesicle-budding reactions, however, demonstrated that several peroxisomal proteins traffic from the ER to peroxisomes in a COPII vesicle-independent manner (11). These observations point to the existence of vesicular events to mediate the transport of peroxisomal membrane proteins from the ER. In fact, analysis of secretory mutant yeast cells already suggest that part of the ER-associated secretory machinery is involved in peroxisome biogenesis (12).The de novo biogenesis of peroxisomes and the growth/division pathways are usually seen as independent routes; however, these events may be coordinated and, thus, intimately linked. Indeed, peroxisomes need to acquire membrane components to proliferate and it has been proposed that their binding to the cell cortex or to the cytoskeleton allows their partitioning and segregation during cell division (1315).Among the proteins required for assembly of peroxisomes, the membrane proteins Pex23p and Pex24p play essential roles in the yeast Yarrowia lipolytica (16, 17). Homologs of these two proteins in Saccharomyces cerevisiae are Pex30p, Pex31p, and Pex32p, all containing at least one transmembrane domain and a dysferlin domain as common structural motifs, as well as Pex28p and Pex29p. In S. cerevisiae, these proteins seem to negatively control peroxisomal size and number (18, 19). Interestingly, Pex30p seems to exhibit species-specific differences in the regulation of peroxisome proliferation. While the lack of Pex30p in S. cerevisiae leads to an increase in the number of normal-sized peroxisomes (18), in Pichia pastoris its absence correlates with the appearance of fewer and clustered peroxisomes (20). Although peroxisomes are highly versatile organelles, under given conditions their total number per cell remains fairly constant owing to the delicate balance of proliferation, inheritance and degradation (21, 22). The question is: what are the molecular mechanisms responsible for the spatiotemporal organization of these events?Here, we present data obtained from a dual approach based on quantitative interaction proteomics using stable isotope labeling with amino acids in cell culture (SILAC) (23, 24) and live-cell imaging, revealing for the first time the dynamic interaction network around Pex30p and its function in the organization of ER-to-peroxisome membrane associations. We report the existence of a macromolecular membrane protein complex that acts as a hub for the regulation of peroxisome proliferation and movement. Our data suggest a direct role for the tubular cortical ER and the reticulon homology proteins Rtn1p, Rtn2p, and Yop1p in the regulation of peroxisome biogenesis. Furthermore, as an initially cortical-ER localized protein that interacts with reticulon homology proteins, Pex30p is shown in this work to establish contacts between ER tubules and peroxisomes and to specifically traffic through the ER. In summary, our data reveal a central role for Pex30p in the formation of ER-to-peroxisomes associations that appear to be involved in the coordination of peroxisome biogenesis and maintenance.  相似文献   

2.
3.
4.
5.
Most eukaryotic cells require peroxisomes, organelles housing fatty acid β-oxidation and other critical metabolic reactions. Peroxisomal matrix proteins carry peroxisome-targeting signals that are recognized by one of two receptors, PEX5 or PEX7, in the cytosol. After delivering the matrix proteins to the organelle, these receptors are removed from the peroxisomal membrane or matrix. Receptor retrotranslocation not only facilitates further rounds of matrix protein import but also prevents deleterious PEX5 retention in the membrane. Three peroxisome-associated ubiquitin-protein ligases in the Really Interesting New Gene (RING) family, PEX2, PEX10, and PEX12, facilitate PEX5 retrotranslocation. However, the detailed mechanism of receptor retrotranslocation remains unclear in plants. We identified an Arabidopsis (Arabidopsis thaliana) pex12 Glu-to-Lys missense allele that conferred severe peroxisomal defects, including impaired β-oxidation, inefficient matrix protein import, and decreased growth. We compared this pex12-1 mutant to other peroxisome-associated ubiquitination-related mutants and found that RING peroxin mutants displayed elevated PEX5 and PEX7 levels, supporting the involvement of RING peroxins in receptor ubiquitination in Arabidopsis. Also, we observed that disruption of any Arabidopsis RING peroxin led to decreased PEX10 levels, as seen in yeast and mammals. Peroxisomal defects were exacerbated in RING peroxin double mutants, suggesting distinct roles of individual RING peroxins. Finally, reducing function of the peroxisome-associated ubiquitin-conjugating enzyme PEX4 restored PEX10 levels and partially ameliorated the other molecular and physiological defects of the pex12-1 mutant. Future biochemical analyses will be needed to determine whether destabilization of the RING peroxin complex observed in pex12-1 stems from PEX4-dependent ubiquitination on the pex12-1 ectopic Lys residue.Oilseed plants obtain energy for germination and early development by utilizing stored fatty acids (Graham, 2008). This β-oxidation of fatty acids to acetyl-CoA occurs in peroxisomes, organelles that also house other important metabolic reactions, including the glyoxylate cycle, several steps in photorespiration, and phytohormone production (Hu et al., 2012). For example, indole-3-butyric acid (IBA) is β-oxidized into the active auxin indole-3-acetic acid (IAA) in peroxisomes (Zolman et al., 2000, 2007, 2008; Strader et al., 2010; Strader and Bartel, 2011). Many peroxisomal metabolic pathways generate reactive oxygen species (Inestrosa et al., 1979; Hu et al., 2012), and peroxisomes also house antioxidative enzymes, like catalase and ascorbate peroxidase, to detoxify hydrogen peroxide (Wang et al., 1999; Mhamdi et al., 2012).Peroxisomes can divide by fission or be synthesized de novo from the endoplasmic reticulum (ER). Preperoxisomes with peroxisomal membrane proteins bud from the ER and fuse, allowing matrix proteins to be imported to form mature peroxisomes (van der Zand et al., 2012; Mayerhofer, 2016). Peroxin (PEX) proteins facilitate peroxisome biogenesis and matrix protein import. Most peroxins are involved in importing proteins destined for the peroxisome matrix, which are imported after recognition of a type 1 or type 2 peroxisome-targeting signal (PTS). The PTS1 is a tripeptide located at the C terminus of most peroxisome-bound proteins (Gould et al., 1989; Chowdhary et al., 2012). The less common PTS2 is a nonapeptide usually located near the N terminus (Swinkels et al., 1991; Reumann, 2004). PTS1 proteins are recognized by PEX5 (van der Leij et al., 1993; Zolman et al., 2000), PTS2 proteins are recognized by PEX7 (Marzioch et al., 1994; Braverman et al., 1997; Woodward and Bartel, 2005), and PEX7 binds to PEX5 to allow matrix protein delivery in plants and mammals (Otera et al., 1998; Hayashi et al., 2005; Woodward and Bartel, 2005). The cargo-receptor complex docks with the membrane peroxins PEX13 and PEX14 (Urquhart et al., 2000; Otera et al., 2002; Woodward et al., 2014), and PEX5 assists cargo translocation into the peroxisomal matrix (Meinecke et al., 2010) before dissociating from its cargo (Freitas et al., 2011).After cargo delivery, PEX5 is recycled to enable further rounds of cargo recruitment (Thoms and Erdmann, 2006). This process requires a set of peroxins that is implicated in ubiquitinating PEX5 so that it can be retrotranslocated back to the cytosol. PEX5 ubiquitination is best understood in yeast. In Saccharomyces cerevisiae, Pex5 is monoubiquitinated through the action of the peroxisome-tethered ubiquitin-conjugating enzyme Pex4 and the peroxisomal ubiquitin-protein ligase Pex12 (Platta et al., 2009) and returned to the cytosol with the assistance of a peroxisome-tethered ATPase complex containing Pex1 and Pex6 (Grimm et al., 2012). S. cerevisiae Pex5 also can be polyubiquitinated and targeted for proteasomal degradation (Kiel et al., 2005). The cytosolic ubiquitin-conjugating enzyme Ubc4 cooperates with the peroxisomal ubiquitin-protein ligase Pex2 to polyubiquitinate Pex5 (Platta et al., 2009). Pex10 has ubiquitin-protein ligase activity (Williams et al., 2008; Platta et al., 2009; El Magraoui et al., 2012), but whether Pex10 directly ubiquitinates Pex5 is controversial. Pex10 promotes Ubc4-dependent Pex5 polyubiquitination when Pex4 is absent (Williams et al., 2008); however, Pex10 is not essential for Pex5 mono- or polyubiquitination (Platta et al., 2009), but rather enhances both Pex4/Pex12- and Ubc4/Pex2-mediated ubiquitination (El Magraoui et al., 2012). Recycling of the PTS2 receptor PEX7 is less understood, although the Pex5 recycling pathways are implicated in shuttling and degrading Pex7 in Pichia pastoris (Hagstrom et al., 2014).Although PEX5 ubiquitination has not been directly demonstrated in plants, the implicated peroxins are conserved in Arabidopsis, and several have been connected to PEX5 retrotranslocation. The PEX4 ubiquitin-conjugating enzyme binds to PEX22, which is predicted to be a peroxisomal membrane protein based on ability to restore peroxisome function to yeast mutants (Zolman et al., 2005). The pex4-1 mutant displays increased membrane-associated PEX5 (Ratzel et al., 2011; Kao and Bartel, 2015), suggesting that ubiquitin supplied by PEX4 promotes PEX5 retrotranslocation. PEX1 and PEX6 are members of the ATPases associated with diverse cellular activities (AAA) family and are tethered to peroxisomes by the peroxisomal membrane protein PEX26 (Goto et al., 2011; Li et al., 2014). The pex6-1 mutant displays PTS1 import defects and decreased PEX5 levels (Zolman and Bartel, 2004), suggesting that impaired PEX5 recycling can lead to increased PEX5 degradation. Indeed, pex4-1 restores PEX5 levels in the pex6-1 mutant (Ratzel et al., 2011), suggesting that Arabidopsis PEX4 also is involved in PEX5 ubiquitination and degradation when retrotranslocation is impeded.In addition to allowing for further rounds of PTS1 cargo import, several lines of evidence suggest that in the absence of efficient retrotranslocation, PEX5 retention in the peroxisomal membrane impairs peroxisome function. Slightly reducing levels of the PEX13 docking peroxin ameliorates the physiological defects of pex4-1 without restoring matrix protein import (Ratzel et al., 2011), presumably because decreasing PEX5 docking reduces its accumulation in the peroxisomal membrane. In addition, overexpressing PEX5 exacerbates rather than ameliorates the peroxisomal defects of pex4-1 (Kao and Bartel, 2015), suggesting that pex4-1 defects are linked to excessive PEX5 lingering in the peroxisome membrane rather than a lack of PEX5 available for import.The three Really Interesting New Gene (RING) peroxins (PEX2, PEX10, and PEX12) from Arabidopsis each possesses in vitro ubiquitin-protein ligase activity (Kaur et al., 2013). Null mutations in the RING peroxin genes confer embryo lethality in Arabidopsis (Hu et al., 2002; Schumann et al., 2003; Sparkes et al., 2003; Fan et al., 2005; Prestele et al., 2010), necessitating other approaches to study the in vivo functions of these peroxins. Expressing RING peroxins with mutations in the C-terminal zinc-binding RING domains (ΔZn) confers matrix protein import defects for PEX2-ΔZn and photorespiration defects for PEX10-ΔZn but no apparent defects for PEX12-ΔZn (Prestele et al., 2010). Targeting individual RING peroxins using RNAi confers β-oxidation deficiencies and impairs PTS1 cargo import (Fan et al., 2005; Nito et al., 2007). A screen for delayed matrix protein degradation (Burkhart et al., 2013) uncovered a missense pex2-1 mutant and a splicing pex10-2 mutant that both display PTS1 import defects (Burkhart et al., 2014), suggesting roles in regulating the PTS1 receptor, PEX5. A missense pex12 mutant (aberrant peroxisome morphology 4, apm4) has defects in β-oxidation and PTS1 import and increased membrane-associated PEX5 (Mano et al., 2006). These findings highlight the essential roles of the RING peroxins in Arabidopsis development and peroxisomal functions, but the RING peroxin interactions and the individual roles of the RING peroxins in PEX5 retrotranslocation remain incompletely understood.In this study, we describe a missense pex12-1 mutant recovered from a forward genetic screen for β-oxidation deficient mutants. The pex12-1 mutant displayed severe peroxisomal defects, including reduced growth, β-oxidation deficiencies, matrix protein import defects, and inefficient processing of PTS2 proteins. Comparing single and double mutants with impaired RING peroxins revealed that each RING peroxin contributes to complex stability and influences PEX5 accumulation. Furthermore, decreasing PEX4 function ameliorated pex12-1 defects, suggesting that the Glu-to-Lys substitution in pex12-1 lures ubiquitination, perhaps by pex12-1 itself, leading to PEX4-dependent degradation of the mutant protein.  相似文献   

6.
Fetal cells migrate into the mother during pregnancy. Fetomaternal transfer probably occurs in all pregnancies and in humans the fetal cells can persist for decades. Microchimeric fetal cells are found in various maternal tissues and organs including blood, bone marrow, skin and liver. In mice, fetal cells have also been found in the brain. The fetal cells also appear to target sites of injury. Fetomaternal microchimerism may have important implications for the immune status of women, influencing autoimmunity and tolerance to transplants. Further understanding of the ability of fetal cells to cross both the placental and blood-brain barriers, to migrate into diverse tissues, and to differentiate into multiple cell types may also advance strategies for intravenous transplantation of stem cells for cytotherapeutic repair. Here we discuss hypotheses for how fetal cells cross the placental and blood-brain barriers and the persistence and distribution of fetal cells in the mother.Key Words: fetomaternal microchimerism, stem cells, progenitor cells, placental barrier, blood-brain barrier, adhesion, migrationMicrochimerism is the presence of a small population of genetically distinct and separately derived cells within an individual. This commonly occurs following transfusion or transplantation.13 Microchimerism can also occur between mother and fetus. Small numbers of cells traffic across the placenta during pregnancy. This exchange occurs both from the fetus to the mother (fetomaternal)47 and from the mother to the fetus.810 Similar exchange may also occur between monochorionic twins in utero.1113 There is increasing evidence that fetomaternal microchimerism persists lifelong in many child-bearing women.7,14 The significance of fetomaternal microchimerism remains unclear. It could be that fetomaternal microchimerism is an epiphenomenon of pregnancy. Alternatively, it could be a mechanism by which the fetus ensures maternal fitness in order to enhance its own chances of survival. In either case, the occurrence of pregnancy-acquired microchimerism in women may have implications for graft survival and autoimmunity. More detailed understanding of the biology of microchimeric fetal cells may also advance progress towards cytotherapeutic repair via intravenous transplantation of stem or progenitor cells.Trophoblasts were the first zygote-derived cell type found to cross into the mother. In 1893, Schmorl reported the appearance of trophoblasts in the maternal pulmonary vasculature.15 Later, trophoblasts were also observed in the maternal circulation.1620 Subsequently various other fetal cell types derived from fetal blood were also found in the maternal circulation.21,22 These fetal cell types included lymphocytes,23 erythroblasts or nucleated red blood cells,24,25 haematopoietic progenitors7,26,27 and putative mesenchymal progenitors.14,28 While it has been suggested that small numbers of fetal cells traffic across the placenta in every human pregnancy,2931 trophoblast release does not appear to occur in all pregnancies.32 Likewise, in mice, fetal cells have also been reported in maternal blood.33,34 In the mouse, fetomaternal transfer also appears to occur during all pregnancies.35  相似文献   

7.
A role for SR proteins in plant stress responses   总被引:1,自引:0,他引:1  
  相似文献   

8.
The conserved CaaX box peroxin Pex19p is known to be modified by farnesylation. The possible involvement of this lipid modification in peroxisome biogenesis, the degree to which Pex19p is farnesylated, and its molecular function are unknown or controversial. We resolve these issues by first showing that the complete pool of Pex19p is processed by farnesyltransferase in vivo and that this modification is independent of peroxisome induction or the Pex19p membrane anchor Pex3p. Furthermore, genomic mutations of PEX19 prove that farnesylation is essential for proper matrix protein import into peroxisomes, which is supposed to be caused indirectly by a defect in peroxisomal membrane protein (PMP) targeting or stability. This assumption is corroborated by the observation that mutants defective in Pex19p farnesylation are characterized by a significantly reduced steady-state concentration of prominent PMPs (Pex11p, Ant1p) but also of essential components of the peroxisomal import machinery, especially the RING peroxins, which were almost depleted from the importomer. In vivo and in vitro, PMP recognition is only efficient when Pex19p is farnesylated with affinities differing by a factor of 10 between the non-modified and wild-type forms of Pex19p. Farnesylation is likely to induce a conformational change in Pex19p. Thus, isoprenylation of Pex19p contributes to substrate membrane protein recognition for the topogenesis of PMPs, and our results highlight the importance of lipid modifications in protein-protein interactions.A large number of eukaryotic intracellular proteins are post-translationally modified by the covalent attachment of either 15 or 20 carbon isoprenoids known as farnesyl or geranylgeranyl, respectively. This process (referred to as protein prenylation) affects lipases, kinases, inositol and protein-tyrosine phosphatases, lamins, and most of the small GTPases (13). Protein prenylation was shown to enable reversible association of modified proteins with lipid bilayers and to modulate protein-protein interactions (46).The farnesyl group is attached to the cysteine of the C-terminal motif known as the CaaX box, where “a” indicates aliphatic amino acids and X is usually serine, methionine, glutamine, alanine, or threonine (3). Farnesyltransferase (FTase)3 consists of two subunits, the α-subunit and the β-subunit (Ram2p and Ram1p in yeast). The α-subunit is shared by the geranylgeranyl transferase (GGTase I), whereas the β-subunit is unique for FTase (7).The peroxisome biogenesis protein (peroxin) Pex19p is one of a few farnesylated non-GTPases that are conserved between yeast and humans. Pex19p was initially identified as a prenylated protein (PxF) (8, 9) or housekeeping gene product (HK33) (10). A loss-of-function mutation in human PEX19 is associated with complementation group CG-J/CG-14 of Zellweger syndrome (11). In the absence of Pex19p, cells lack functional peroxisomes (1113). Pex19p is mostly cytosolic and interacts with all peroxisomal membrane proteins (PMPs) analyzed (1416).Different and not all exclusive models have been proposed for Pex19p function. First, Pex19p might be an import receptor for PMPs that recognizes its substrates in the cytosol and delivers them to the peroxisomal membrane (15, 17, 18). This function would be analogous to that of the peroxisomal import receptors Pex5p and Pex7p, which recognize and deliver matrix proteins with PTS1 (peroxisomal targeting signal type 1) and PTS2 to peroxisomes (19). Second, Pex19p might act as a PMP chaperone that prevents newly synthesized PMPs from aggregation and degradation in the cytosol (17, 20). Third, Pex19p might act as a PMP membrane insertion factor (14, 16). Fourth, Pex19p might be required as an association/dissociation factor of membrane protein complexes (21) and has been reported to be required for the targeting of Pex3p from the ER to the peroxisomal membrane (22). Finally, Pex19p function is dependent on Pex3p, which serves as a docking factor at the peroxisomal membrane (12, 2224). All models agree on the importance of PMP recognition for Pex19p function (25).Pex19p shows only a moderate degree of sequence conservation, with less than 20% amino acid identity between yeast and human Pex19p. Its CaaX box, however, has been retained throughout evolution (see Fig. 1). Information on the status and the requirement of Pex19p farnesylation has so far been available only through often conflicting side observations. Mammalian PEX19 was described to be partially farnesylated in CHO-K1 cells (11), but other studies with human fibroblasts challenged the relevance of Pex19p farnesylation (15, 26). It was speculated that in Saccharomyces cerevisiae, farnesylation is required for an essential aspect of Pex19p function (12). This notion was recently contradicted (27). Work on other yeasts similarly suggested that farnesylation would be dispensable for Pex19p function (13, 28, 29).Open in a separate windowFIGURE 1.Pex19p is completely farnesylated in vivo, independent of peroxisome induction and Pex3p. A and B, Pex19p is fully modified by yeast FTase in vivo. Whole cell lysates from non-induced cells of the indicated strains were analyzed by immunoblotting. Blots were probed with anti-Pex19p antibodies. The non-farnesylated form of Pex19p of a Δram1 mutant (arrowhead) cannot be detected in extracts from wild-type yeast (arrow) (A), whereas it reappears after reintroduction of Ram1p (B). C, the yeast farnesylation machinery can be saturated by overexpression of GST-Pex19p. A Coomassie-stained gel of purified farnesylated and non-farnesylated Pex19p is shown. GST-Pex19p was expressed under control of a copper-inducible promoter in Δpex19 and Δram1 strains and isolated by affinity chromatography. In Δram1 (right), only the non-farnesylated GST-Pex19p can be detected. In Δpex19 (left) two bands appear, corresponding to non-farnesylated GST-Pex19p (upper band) and farnesylated GST-Pex19p (lower band). D, Pex19p farnesylation levels are independent of peroxisome induction and are not affected by the absence of the Pex19p membrane anchor Pex3p. Cells were grown on YPD medium and, where indicated, washed and grown on 0.1% oleate medium for 17 h for peroxisome induction. Lysates were fractionated by centrifugation (20,000 × g, 1 h, 4 °C) and analyzed as in A. Blots were probed with antibodies against Pex19p. E, evolutionary conservation of the Pex19p farnesylation site in fungi, plant, and metazoa.In this study, we determined the in vivo farnesylation status of Pex19p and its dependence on peroxisome induction and on Pex3p. We discovered that Pex19p is fully modified by FTase and investigated whether Pex19p farnesylation is required for PMP recognition and stability. By peptide blots, two-hybrid analysis, and fluorescence polarization titration, we showed that farnesylation increases the affinity for PMPs by a factor of about 10. Last, we provide evidence that the interaction between farnesylated Pex19p and PMPs is achieved through a farnesylation-induced structural change in Pex19p rather than through direct farnesyl-PMP interaction. Our results exemplify the biological relevance of isoprenylation-dependent protein-protein interactions.  相似文献   

9.
The Pex5p receptor recognizes newly synthesized peroxisomal matrix proteins which have a C-terminal peroxisomal targeting signal to the peroxisome. After docking to protein complexes on the membrane, these proteins are translocated across the membrane. The docking mechanism remains unclear, as no structural data on the multicomponent docking complex are available. As the interaction of the cargo-loaded Pex5p receptor and the peroxisomal membrane protein Pex14p is the essential primary docking step, we have investigated the solution structure of these complexes by small angle x-ray scattering and static light scattering. Titration studies yielded a 1:6 stoichiometry for the Pex5p·Pex14p complex, and low resolution structural models were reconstructed from the x-ray scattering data. The free full-length human Pex5p is monomeric in solution, with an elongated, partially unfolded N-terminal domain. The model of the complex reveals that the N terminus of Pex5p remains extended in the presence of cargo and Pex14p, the latter proteins being significantly intermingled with the Pex5p moiety. These results suggest that the extended structure of Pex5p may play a role in interactions with other substrates such as lipids and membrane proteins during the formation of functional multiprotein complexes.Peroxisomes are ubiquitous organelles in eukaryotes which are involved in different metabolic pathways (1). Peroxisomal matrix proteins, which contain a peroxisomal targeting signal (PTS),4 are imported into the peroxisome by recognition of two different import receptors, Pex5p or Pex7p. These receptors recognize specific signal sequences, PTS1 and PTS2, respectively (1). At the molecular level the C-terminal PTS1 signal is bound in a central cavity of the ring-like structure of the seven tetrapeptide repeat (TPR) domains of the C-terminal part of Pex5p (Pex5p(C)) (25). It was recently proposed that some of the structural principles of the Pex5p/cargo interaction may also apply to the PTS2 cargo recognition of the Pex7p receptor (5).The next step of PTS-protein import, docking of the cargo loaded receptor to the translocon, involves the peroxisomal protein Pex14p (6). Multiple Pex14p binding sites with di-aromatic pentapeptide motifs (WXXX(F/Y)) were shown to be present in the N terminus of Pex5p (79). The number of these motifs, however, varies among species. The human Pex5p receptor, which has been investigated in this contribution, has a total of seven motifs. A recent NMR structure of the N-terminal domain of Pex14p and the first WXXX(F/Y) motif of Pex5p reveals an α-helical conformation of the motif (10). Interactions between Pex5p and other proteins and by their association with the peroxisomal membrane possibly lead to dissociation of the PTS-protein from Pex5p (1113). The exact sequence of events in the import mechanism remains, however, unknown. It is in particular unclear how, in contrast with other organelles, peroxisomes can import folded oligomeric, functional proteins (14).Previous biophysical work indicated that the N terminus half of Pex5p is unfolded in vitro (15, 16). Recent protease sensitivity assays showed that the proteolytic profiles of the full-length receptor Pex5p(F) change in the presence of PTS1 peptide and the Pex13p Src homology 3 domain, which is another docking factor (16, 17), indicating conformational changes of Pex5p upon binding these receptor ligands. Furthermore, it was found that Pex5p may even traverse the peroxisomal membrane, leaving only a small N-terminal fragment in the cytosol while exposing the C-terminal TPR domain to the luminal side of the membrane (11).Although recognition of many PTS cargos seems to be confined to the C-terminal TPR domains of Pex5p, it has become clear that the N-terminal part of Pex5p is primarily involved in docking of the receptor onto the peroxisomal membrane and other docking factors. Because only poorly diffracting crystals have been purified to date, we investigated its solution structure by small angle x-ray scattering (SAXS) and static light scattering (SLS). Complexes with the PTS1 cargo sterol carrier protein 2 (SCP2), which functions as lipid transfer protein, were also studied as the crystal structure of Pex5p(C)/SCP2 is already known (4). Our results indicate that human Pex5p(F) is a monomer with an extended N terminus. The stoichiometry of Pex5p(F)·Pex14p(N)·PTS1 complex has been assessed by titration with SAXS, SLS, and gel filtration, and a low resolution structural model of the complex has been reconstructed in which Pex5p(F) remains extended upon Pex14p(N) binding.  相似文献   

10.
11.
Organelle movement in plants is dependent on actin filaments with most of the organelles being transported along the actin cables by class XI myosins. Although chloroplast movement is also actin filament-dependent, a potential role of myosin motors in this process is poorly understood. Interestingly, chloroplasts can move in any direction and change the direction within short time periods, suggesting that chloroplasts use the newly formed actin filaments rather than preexisting actin cables. Furthermore, the data on myosin gene knockouts and knockdowns in Arabidopsis and tobacco do not support myosins'' XI role in chloroplast movement. Our recent studies revealed that chloroplast movement and positioning are mediated by the short actin filaments localized at chloroplast periphery (cp-actin filaments) rather than cytoplasmic actin cables. The accumulation of cp-actin filaments depends on kinesin-like proteins, KAC1 and KAC2, as well as on a chloroplast outer membrane protein CHUP1. We propose that plants evolved a myosin XI-independent mechanism of the actin-based chloroplast movement that is distinct from the mechanism used by other organelles.Key words: actin, Arabidopsis, blue light, kinesin, myosin, organelle movement, phototropinOrganelle movement and positioning are pivotal aspects of the intracellular dynamics in most eukaryotes. Although plants are sessile organisms, their organelles are quickly repositioned in response to fluctuating environmental conditions and certain endogenous signals. By and large, plant organelle movements and positioning are dependent on actin filaments, although microtubules play certain accessory roles in organelle dynamics.1,2 Actin inhibitors effectively retard the movements of mitochondria,36 peroxisomes,5,711 Golgi stacks,12,13 endoplasmic reticulum (ER),14,15 and nuclei.1618 These organelles are co-aligned and associated with actin filaments.5,7,8,1012,15,18 Recent progress in this field started to reveal the molecular motility system responsible for the organelle transport in plants.19Chloroplast movement is among the most fascinating models of organelle movement in plants because it is precisely controlled by ambient light conditions.20,21 Weak light induces chloroplast accumulation response so that chloroplasts can capture photosynthetic light efficiently (Fig. 1A). Strong light induces chloroplast avoidance response to escape from photodamage (Fig. 1B).22 The blue light-induced chloroplast movement is mediated by the blue light receptor phototropin (phot). In some cryptogam plants, the red light-induced chloroplast movement is regulated by a chimeric phytochrome/phototropin photoreceptor neochrome.2325 In a model plant Arabidopsis, phot1 and phot2 function redundantly to regulate the accumulation response,26 whereas phot2 alone is essential for the avoidance response.27,28 Several additional factors regulating chloroplast movement were identified by analyses of Arabidopsis mutants deficient in chloroplast photorelocation.2932 In particular, identification of CHUP1 (chloroplast unusual positioning 1) revealed the connection between chloroplasts and actin filaments at the molecular level.29 CHUP1 is a chloroplast outer membrane protein capable of interacting with F-actin, G-actin and profilin in vitro.29,33,34 The chup1 mutant plants are defective in both the chloroplast movement and chloroplast anchorage to the plasma membrane,22,29,33 suggesting that CHUP1 plays an important role in linking chloroplasts to the plasma membrane through the actin filaments. However, how chloroplasts move using the actin filaments and whether chloroplast movement utilizes the actin-based motility system similar to other organelle movements remained to be determined.Open in a separate windowFigure 1Schematic distribution patterns of chloroplasts in a palisade cell under different light conditions, weak (A) and strong (B) lights. Shown as a side view of mid-part of the cell and a top view with three different levels (i.e., top, middle and bottom of the cell). The cell was irradiated from the leaf surface shown as arrows. Weak light induces chloroplast accumulation response (A) and strong light induces the avoidance response (B).Here, we review the recent findings pointing to existence of a novel actin-based mechanisms for chloroplast movement and discuss the differences between the mechanism responsible for movement of chloroplasts and other organelles.  相似文献   

12.
Cell migration during wound healing is a complex process that involves the expression of a number of growth factors and cytokines. One of these factors, transforming growth factor-beta (TGFβ) controls many aspects of normal and pathological cell behavior. It induces migration of keratinocytes in wounded skin and of epithelial cells in damaged cornea. Furthermore, this TGFβ-induced cell migration is correlated with the production of components of the extracellular matrix (ECM) proteins and expression of integrins and matrix metalloproteinases (MMPs). MMP digests ECMs and integrins during cell migration, but the mechanisms regulating their expression and the consequences of their induction remain unclear. It has been suggested that MMP-14 activates cellular signaling processes involved in the expression of MMPs and other molecules associated with cell migration. Because of the manifold effects of MMP-14, it is important to understand the roles of MMP-14 not only the cleavage of ECM but also in the activation of signaling pathways.Key words: wound healing, migration, matrix metalloproteinase, transforming growth factor, skin, corneaWound healing is a well-ordered but complex process involving many cellular activities including inflammation, growth factor or cytokine secretion, cell migration and proliferation. Migration of skin keratinocytes and corneal epithelial cells requires the coordinated expression of various growth factors such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), transforming growth factor (TGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), insulin-like growth factor (IGF), epidermal growth factor (EGF), small GTPases, and macrophage stimulating protein (reviewed in refs. 1 and 2). The epithelial cells in turn regulate the expression of matrix metalloproteinases (MMPs), extracellular matrix (ECM) proteins and integrins during cell migration.1,3,4 TGF-β is a well-known cytokine involved in processes such as cell growth inhibition, embryogenesis, morphogenesis, tumorigenesis, differentiation, wound healing, senescence and apoptosis (reviewed in refs. 5 and 6). It is also one of the most important cytokines responsible for promoting the migration of skin keratinocytes and corneal epithelial cells.3,6,7TGFβ has two quite different effects on skin keratinocytes: it suppresses their multiplication and promotes their migration. The TGFβ-induced cell growth inhibition is usually mediated by Smad signaling, which upregulates expression of the cell cycle inhibitor p21WAF1/Cip1 or p12CDK2-AP1 in HaCaT skin keratinocyte cells and human primary foreskin keratinocytes.8,9 Keratinocyte migration in wounded skin is associated with strong expression of TGFβ and MMPs,1 and TGFβ stimulates the migration of manually scratched wounded HaCaT cells.10 TGFβ also induces cell migration and inhibits proliferation of injured corneal epithelial cells, whereas it stimulates proliferation of normal corneal epithelial cells via effects on the MAPK family and Smad signaling.2,7 Indeed, skin keratinocytes and corneal epithelial cells display the same two physiological responses to TGFβ during wound healing; cell migration and growth inhibition. However as mentioned above, TGFβ has a different effect on normal cells. For example, it induces the epithelial to mesenchymal transition (EMT) of normal mammary cells and lens epithelial cells.11,12 It also promotes the differentiation of corneal epithelial cells, and induces the fibrosis of various tissues.2,6The MMPs are a family of structurally related zinc-dependent endopeptidases that are secreted into the extracellular environment.13 Members of the MMP family have been classified into gelatinases, stromelysins, collagenases and membrane type-MMPs (MT-MMPs) depending on their substrate specificity and structural properties. Like TGFβ, MMPs influence normal physiological processes including wound healing, tissue remodeling, angiogenesis and embryonic development, as well as pathological conditions such as rheumatoid arthritis, atherosclerosis and tumor invasion.13,14The expression patterns of MMPs during skin and cornea wound healing are well studied. In rats, MMP-2, -3, -9, -11, -13 and -14 are expressed,15 and in mice, MMP-1, -2, -3, -9, -10 and -14 are expressed during skin wound healing.1 MMP-1, -3, -7 and -12 are increased in corneal epithelial cells during Wnt 7a-induced rat cornea wound healing.16 Wound repair after excimer laser keratectomy is characterized by increased expression of MMP-1, -2, -3 and -9 in the rabbit cornea, and MMP-2, -9 in the rat cornea.17,18 The expression of MMP-2 and -9 during skin keratinocyte and corneal epithelial cell migration has been the most thoroughly investigated, and it has been shown that their expression generally depends on the activity of MMP-14. MMP-14 (MT1-MMP) is constitutively anchored to the cell membrane; it activates other MMPs such as MMP-2, and also cleaves various types of ECM molecules including collagens, laminins, fibronectin as well as its ligands, the integrins.13 The latent forms of some cytokines are also cleaved and activated by MMP-14.19 Overexpression of MMP-14 protein was found to stimulate HT1080 human fibrosarcoma cell migration.20 In contrast, the attenuation of MMP-14 expression using siRNA method decreased fibroblast invasiveness,21 angiogenesis of human microvascular endothelial cells,22 and human skin keratinocyte migration.10 The latter effect was shown to result from lowering MMP-9 expression. Other studies have shown that EGF has a critical role in MMP-9 expression during keratinocyte tumorigenesis and migration.23,24 On the other hand, TGFβ modulates MMP-9 production through the Ras/MAPK pathway in transformed mouse keratinocytes and NFκB induces cell migration by binding to the MMP-9 promoter in human skin primary cultures.25,26 Enhanced levels of pro-MMP-9 and active MMP-9 have also been noted in scratched corneal epithelia of diabetic rats.27There is evidence that MMP-14 activates a number of intracellular signaling pathways including the MAPK family pathway, focal adhesion kinase (FAK), Src family, Rac and CD44, during cell migration and tumor invasion.19,20,28 In COS-7 cells, ERK activation is stimulated by overexpression of MMP-14 and is essential for cell migration.29 These observations all indicate that MMP-14 plays an important role in cell migration, not only by regulating the activity or expression of downstream MMPs but also by processing and activating migration-associated molecules such as integrins, ECMs and a variety of intracellular signaling pathays.30Cell migration during wound healing is a remarkably complex phenomenon. TGFβ is just one small component of the overall process of wound healing and yet it triggers a multitude of reactions needed for cell migration. It is important to know what kinds of molecules are expressed when cell migration is initiated, but it is equally important to investigate the roles of these molecules and how their expression is regulated. Despite the availability of some information about how MMPs and signaling molecules can influence each other, much remains to be discovered in this area. It will be especially important to clarify how MMP-14 influences other signaling pathways since its role in cell migration is not restricted to digesting ECM molecules but also includes direct or indirect activation of cellular signaling pathways.  相似文献   

13.
The prion hypothesis13 states that the prion and non-prion form of a protein differ only in their 3D conformation and that different strains of a prion differ by their 3D structure.4,5 Recent technical developments have enabled solid-state NMR to address the atomic-resolution structures of full-length prions, and a first comparative study of two of them, HET-s and Ure2p, in fibrillar form, has recently appeared as a pair of companion papers.6,7 Interestingly, the two structures are rather different: HET-s features an exceedingly well-ordered prion domain and a partially disordered globular domain. Ure2p in contrast features a very well ordered globular domain with a conserved fold, and—most probably—a partially ordered prion domain.6 For HET-s, the structure of the prion domain is characterized at atomic-resolution. For Ure2p, structure determination is under way, but the highly resolved spectra clearly show that information at atomic resolution should be achievable.Key words: prion, NMR, solid-state NMR, MAS, structure, Ure2p, HET-sDespite the large interest in the basic mechanisms of fibril formation and prion propagation, little is known about the molecular structure of prions at atomic resolution and the mechanism of propagation. Prions with related properties to the ones responsible for mammalian diseases were also discovered in yeast and funghi8,9 which provide convenient model system for their studies. Prion proteins described include the mammalian prion protein PrP, Ure2p,10 Rnq1p,11 Sup35,12 Swi1,13 and Cyc8,14 from bakers yeast (S. cervisiae) and HET-s from the filamentous fungus P. anserina. The soluble non-prion form of the proteins characterized in vitro is a globular protein with an unfolded, dynamically disordered N- or C-terminal tail.1518 In the prion form, the proteins form fibrillar aggregates, in which the tail adopts a different conformation and is thought to be the dominant structural element for fibril formation.Fibrills are difficult to structurally characterize at atomic resolution, as X-ray diffraction and liquid-state NMR cannot be applied because of the non-crystallinity and the mass of the fibrils. Solid-state NMR, in contrast, is nowadays well suited for this purpose. The size of the monomer, between 230 and 685 amino-acid residues for the prions of Figure 1, and therefore the number of resonances in the spectrum—that used to be large for structure determination—is now becoming tractable by this method.Open in a separate windowFigure 1Prions identified today and characterized as consisting of a prion domain (blue) and a globular domain (red).Prion proteins characterized so far were found to be usually constituted of two domains, namely the prion domain and the globular domain (see Fig. 1). This architecture suggests a divide-and-conquer approach to structure determination, in which the globular and prion domain are investigated separately. In isolation, the latter, or fragments thereof, were found to form β-sheet rich structures (e.g., Ure2p(1-89),6,19 Rnq1p(153-405)20 and HET-s(218-289)21). The same conclusion was reached by investigating Sup35(1-254).22 All these fragements have been characterized as amyloids, which we define in the sense that a significant part of the protein is involved in a cross-beta motif.23 An atomic resolution structure however is available presently only for the HET-s prion domain, and was obtained from solid-state NMR24 (vide infra). It contains mainly β-sheets, which form a triangular hydrophobic core. While this cross-beta structure can be classified as an amyloid, its triangular shape does deviate significantly from amyloid-like structures of smaller peptides.23Regarding the globular domains, structures have been determined by x-ray crystallography (Ure2p25,26 and HET-s27), as well as NMR (mammal prions15,2830). All reveal a protein fold rich in α-helices, and dimeric structures for the Ure2 and HET-s proteins. The Ure2p fold resembles that of the β-class glutathione S-transferases (GST), but lacks GST activity.25It is a central question for the structural biology of prions if the divide-and-conquer approach imposed by limitations in current structural approaches is valid. Or in other words: can the assembly of full-length prions simply be derived from the sum of the two folds observed for the isolated domains?  相似文献   

14.
Peroxisomes are eukaryotic organelles highly versatile and dynamic in content and abundance. Plant peroxisomes mediate various metabolic pathways, a number of which are completed sequentially in peroxisomes and other subcellular organelles, including mitochondria and chloroplasts. To understand how peroxisomal dynamics contribute to changes in plant physiology and adaptation, the multiplication pathways of peroxisomes are being dissected. Research in Arabidopsis thaliana has identified several evolutionarily conserved families of proteins in peroxisome division. These include five PEROXIN11 proteins (PEX11a to -e) that induce peroxisome elongation and the fission machinery, which is composed of three dynamin-related proteins (DRP3A, -3B and -5B) and DRP''s membrane receptor, FISSION1 (FIS1A and -1B). While the function of PEX11 is restricted to peroxisomes, the fission factors are more promiscuous. DRP3 and FIS1 proteins are shared between peroxisomes and mitochondria, and DRP5B plays a dual role in the division of chloroplasts and peroxisomes. Analysis of the Arabidopsis genome suggests that higher plants may also contain functional homologs of the yeast Mdv1/Caf4 proteins, adaptor proteins that link DRPs to FIS1 on the membrane of both peroxisomes and mitochondria. Sharing a conserved fission machine between these metabolically linked subcellular compartments throughout evolution may have some biological significance.Key words: Arabidopsis, peroxisomal and mitochondrial division, dynamin-related protein (DRP), FISSION1 (FIS1), mitochondrial division 1 (Mdv1), CCR4p-associated factor 4 (Caf4)Peroxisomes are single membrane-delimited organelles involved in a variety of metabolic pathways essential to development.1 Plant peroxisomes participate in processes such as lipid mobilization, photorespiration, detoxification, hormone biosynthesis and metabolism, and plant-pathogen interaction.2,3 A number of these metabolic functions, such as photorespiration, fatty acid metabolism and jasmonic acid biosynthesis, are accomplished through the cooperative efforts of peroxisomes and other subcellular compartments, such as mitochondria and chloroplasts.35 The function, morphology and abundance of peroxisomes can vary depending on the organism, cell type, developmental stage and prevailing environmental conditions in which the organism resides.6,7 It is now believed that in addition to budding from the endoplasmic reticulum (ER), peroxisomes also multiply from pre-existing peroxisomes via division, going through steps including peroxisome elongation/tubulation, membrane constriction and fission.7,8In the reference plant Arabidopsis thaliana, three evolutionarily conserved families of proteins have been identified as key components of the peroxisome division apparatus. Five integral membrane proteins, named PEX11a to -e, are mainly responsible for inducing the elongation and tubulation of peroxisomes in the early stage of peroxisome division.911 DRP3A and DRP3B are members of a dynamin-related protein family that powers the fission of membranes and FIS1A and FIS1B are homologous proteins believed to anchor the DRP proteins to the membrane.1219 Similar to their counterparts in yeasts and mammals, DRP3 and FIS1 are shared by the fission machineries of peroxisomes and mitochondria.1219 We recently reported the unexpected finding that DRP5B, a plant/algal-specific DRP distantly related to the DRP3 proteins and originally discovered for its function in chloroplast division, is also involved in the division of peroxisomes. Using co-immunoprecipitation (co-IP) and bimolecular fluorescence complementation (BiFC) assays, we further demonstrated that DRP5B and the two DRP3 proteins can homo- and hetero-dimerize and each DRP can form a complex with FIS1A and/or FIS1B and most of the Arabidopsis PEX11 isoforms.20 These results together demonstrate that, despite their distinct evolutionary origins, structures and functions, peroxisomes, mitochondria and chloroplasts use some of the same factors for fission. These data also revealed that, like in yeasts and mammals, the FIS1-DRP complex exits on peroxisomes and mitochondria in plants.DRP5B, a DRP unique in the plant and photosynthetic algae lineages, seems to be the sole component shared by the division of chloroplasts and peroxisomes.20 However, both FIS1 and DRP are found to be required for the division of peroxisomes and mitochondria throughout eukaryotic evolution,21,22 prompting the question: to what extent is the FIS1-DRP complex conserved among diverse species? In the yeast Saccharomyces cerevisiae, this fission complex also contains an adaptor encoded by two homologous WD40 proteins, Mdv1 and Caf4, which are partially redundant in function with Mdv1 playing the major role. Mdv1 and Caf4 share an N-terminal extension (NTE) domain with two α-helices, a middle coiled-coil domain (CC) and C-terminal WD40 repeat. Both proteins use the NTE to interact with the tetratricopeptide repeat (TPR) domain-containing N-terminus of Fis1, the CC domain to dimerize and the C-terminal WD40 repeat to interact with and recruit the DRP protein, Dnm1.23,24 The Hansenula polymorpha Mdv1 (Hp Mdv1) also has a dual function in the division of peroxisomes and mitochondria.25 In addition, a Mdv1/Caf4 homolog, Mda1, was identified from the primitive red algae Cyanidioschyzon merolae and found to be involved at least in mitochondrial fission.26 However, higher eukaryotes do not seem to have obvious homologs of Mdv1/Caf4. For example, mammals contain Fis1 and Drp (called DLP1 or Drp1) but no apparent homologs to Mdv1 and Caf4. Instead, a metazoan-specific tail-anchored protein, Mitochondrial Fission Factor (Mff), was recently found to regulate the fission of mitochondria and peroxisomes in a similar manner to Fis1. Mff is essential in recruiting Drp1, at least in mitochondrial division, yet it functions in a Fis1-independent pathway.27,28To determine whether plants contain structural or functional homologs of Mdv1 and Caf4, we performed blast searches of the Arabidopsis genome, which resulted in the retrieval of ∼300 WD40 proteins. However, just like the search results from mammals, none of these proteins show significant sequence similarity with Mdv1 and Caf4 beyond the WD40 repeats. To identify proteins with similar domain structures with Mdv1/Caf4, we further analyzed these WD40 proteins, using the online Simple Modular Architecture Research Tool (smart.embl-heidelberg.de/). After eliminating proteins apparently inappropriate to be part of this complex, such as kinases and proteins with drastically distinct domain organizations despite of having both WD40 repeats and CC domains, we were able to narrow down to eight proteins. These proteins, which are encoded by At1g04510, At2g32950, At2g33340, At3g18860, At4g05410, At4g21130, At5g50230 and At5g67320, respectively, each contain a central CC domain in addition to the WD40 repeat region and are ranging from 450 to 900 amino acids in length (Fig. 1A). Subcellular localization studies will need to be performed to determine whether some of these proteins are associated with peroxisomes and mitochondria. If such a WD40 protein is proven to be part of the FIS1-DRP complex in Arabidopsis, it will be important to determine whether it simply acts as an adaptor or it also plays other roles, such as to promote and maintain the active structure and conformation of DRP3A/3B at the division site (Fig. 1B). Consistent with the latter scenario, it was found that Sc Mdv1 accumulates at the division sites after Dnm1 assembles and that the mammalian Fis1 and Drp1 proteins physically interact.29,30 Peroxisomes and mitochondria are functionally linked in a number of metabolic pathways. For example, in plants, they act cooperatively in important processes such as fatty acid metabolism and photorespiration.3 An interesting question to address in the future is whether sharing such a conserved fission machine between peroxisomes and mitochondria throughout evolution has critical biological consequences.Open in a separate windowFigure 1Domain structure of Mdv1/Caf4 and their homologs or putative homologs. (A) Domain structure of Sc Mdv1 and Sc Caf4 from S. cerevisiae, their homologs from H. polymorpha and C. merolae, and the eight Arabidopsis proteins with similar domain organization. Grey boxes indicate the CC domain and black boxes are Wd40 repeats. (B) The putative FIS1-WD40-DRP complex in Arabidopsis. CC, coiled-coil; NTE, N-terminal extension; TPR, tetratricopeptide repeat; TMD, transmembrane domain.  相似文献   

15.
The role of peroxisomes in isoprenoid metabolism, especially in plants, has been questioned in several reports. A recent study of Sapir-Mir et al.1 revealed that the two isoforms of isopentenyl diphosphate (IPP) isomerase, catalyzing the isomerisation of IPP to dimethylallyl diphosphate (DMAPP) are found in the peroxisome. In this addendum, we provide additional data describing the peroxisomal localization of 5-phosphomevalonate kinase and mevalonate 5-diphosphate decarboxylase, the last two enzymes of the mevalonic acid pathway leading to IPP.2 This finding was reinforced in our latest report showing that a short isoform of farnesyl diphosphate, using IPP and DMAPP as substrates, is also targeted to the organelle.3 Therefore, the classical sequestration of isoprenoid biosynthesis between plastids and cytosol/ER can be revisited by including the peroxisome as an additional isoprenoid biosynthetic compartment within plant cells.  相似文献   

16.
17.
Non-CG methylation is well characterized in plants where it appears to play a role in gene silencing and genomic imprinting. Although strong evidence for the presence of non-CG methylation in mammals has been available for some time, both its origin and function remain elusive. In this review we discuss available evidence on non-CG methylation in mammals in light of evidence suggesting that the human stem cell methylome contains significant levels of methylation outside the CG site.Key words: non-CG methylation, stem cells, Dnmt1, Dnmt3a, human methylomeIn plant cells non-CG sites are methylated de novo by Chromomethylase 3, DRM1 and DRM2. Chromomethylase 3, along with DRM1 and DRM2 combine in the maintenance of methylation at symmetric CpHpG as well as asymmetric DNA sites where they appear to prevent reactivation of transposons.1 DRM1 and DRM2 modify DNA de novo primarily at asymmetric CpH and CpHpH sequences targeted by siRNA.2Much less information is available on non-CG methylation in mammals. In fact, studies on mammalian non-CG methylation form a tiny fraction of those on CG methylation, even though data for cytosine methylation in other dinucleotides, CA, CT and CC, have been available since the late 1980s.3 Strong evidence for non-CG methylation was found by examining either exogenous DNA sequences, such as plasmid and viral integrants in mouse and human cell lines,4,5 or transposons and repetitive sequences such as the human L1 retrotransposon6 in a human embryonic fibroblast cell line. In the latter study, non-CG methylation observed in L1 was found to be consistent with the capacity of Dnmt1 to methylate slippage intermediates de novo.6Non-CG methylation has also been reported at origins of replication7,8 and a region of the human myogenic gene Myf3.9 The Myf3 gene is silenced in non-muscle cell lines but it is not methylated at CGs. Instead, it carries several methylated cytosines within the sequence CCTGG. Gene-specific non-CG methylation was also reported in a study of lymphoma and myeloma cell lines not expressing many B lineage-specific genes.10 The study focused on one specific gene, B29 and found heavy CG promoter methylation of that gene in most cell lines not expressing it. However, in two other cell lines where the gene was silenced, cytosine methylation was found almost exclusively at CCWGG sites. The authors provided evidence suggesting that CCWGG methylation was sufficient for silencing the B29 promoter and that methylated probes based on B29 sequences had unique gel shift patterns compared to non-methylated but otherwise identical sequences.10 The latter finding suggests that the presence of the non-CG methylation causes changes in the proteins able to bind the promoter, which could be mechanistically related to the silencing seen with this alternate methylation.Non-CG methylation is rarely seen in DNA isolated from cancer patients. However, the p16 promoter region was reported to contain both CG and non-CG methylation in breast tumor specimens but lacked methylation at these sites in normal breast tissue obtained at mammoplasty.11 Moreover, CWG methylation at the CCWGG sites in the calcitonin gene is not found in normal or leukemic lymphocyte DNA obtained from patients.12 Further, in DNA obtained from breast cancer patients, MspI sites that are refractory to digestion by MspI and thus candidates for CHG methylation were found to carry CpG methylation.13 Their resistance to MspI restriction was found to be caused by an unusual secondary structure in the DNA spanning the MspI site that prevents restriction.13 This latter observation suggests caution in interpreting EcoRII/BstNI or EcoRII/BstOI restriction differences as due to CWG methylation, since in contrast to the 37°C incubation temperature required for full EcoRII activity, BstNI and BstOI require incubation at 60°C for full activity where many secondary structures are unstable.The recent report by Lister et al.14 confirmed a much earlier report by Ramsahoye et al.15 suggesting that non-CG methylation is prevalent in mammalian stem cell lines. Nearest neighbor analysis was used to detect non-CG methylation in the earlier study on the mouse embryonic stem (ES) cell line,15 thus global methylation patterning was assessed. Lister et al.14 extend these findings to human stem cell lines at single-base resolution with whole-genome bisulfite sequencing. They report14 that the methylome of the human H1 stem cell line and the methylome of the induced pluripotent IMR90 (iPS) cell line are stippled with non-CG methylation while that of the human IMR90 fetal fibroblast cell line is not. While the results of the two studies are complementary, the human methylome study addresses locus specific non-CG methylation. Based on that data,14 one must conclude that non-CG methylation is not carefully maintained at a given site in the human H1 cell line. The average non-CG site is picked up as methylated in about 25% of the reads whereas the average CG methylation site is picked up in 92% of the reads. Moreover, non-CG methylation is not generally present on both strands and is concentrated in the body of actively transcribed genes.14Even so, the consistent finding that non-CG methylation appears to be confined to stem cell lines,14,15 raises the possibility that cancer stem cells16 carry non-CG methylation while their nonstem progeny in the tumor carry only CG methylation. Given the expected paucity of cancer stem cells in a tumor cell population, it is unlikely that bisulfite sequencing would detect non-CG methylation in DNA isolated from tumor cells since the stem cell population is expected to be only a very minor component of tumor DNA. Published sequences obtained by bisulfite sequencing generally report only CG methylation, and to the best of our knowledge bisulfite sequenced tumor DNA specimens have not reported non-CG methylation. On the other hand, when sequences from cell lines have been reported, bisulfite-mediated genomic sequencing8 or ligation mediated PCR17 methylcytosine signals outside the CG site have been observed. In a more recent study plasmid DNAs carrying the Bcl2-major breakpoint cluster18 or human breast cancer DNA13 treated with bisulfite under non-denaturing conditions, cytosines outside the CG side were only partially converted on only one strand18 or at a symmetrical CWG site.13 In the breast cancer DNA study the apparent CWG methylation was not detected when the DNA was fully denatured before bisulfite treatment.13In both stem cell studies, non-CG methylation was attributed to the Dnmt3a,14,15 a DNA methyltransferase with similarities to the plant DRM methyltransferase family19 and having the capacity to methylate non-CG sites when expressed in Drosophila melanogaster.15 DRM proteins however, possess a unique permuted domain structure found exclusively in plants19 and the associated RNA-directed non-CG DNA methylation has not been reproducibly observed in mammals despite considerable published2023 and unpublished efforts in that area. Moreover, reports where methylation was studied often infer methylation changes from 5AzaC reactivation studies24 or find that CG methylation seen in plants but not non-CG methylation is detected.21,22,25,26 In this regard, it is of interest that the level of non-CG methylation reported in stem cells corresponds to background non-CG methylation observed in vitro with human DNA methyltransferase I,27 and is consistent with the recent report that cultured stem cells are epigenetically unstable.28The function of non-CG methylation remains elusive. A role in gene expression has not been ruled out, as the studies above on Myf3 and B29 suggest.9,10 However, transgene expression of the bacterial methyltransferase M.EcoRII in a human cell line (HK293), did not affect the CG methylation state at the APC and SerpinB5 genes29 even though the promoters were symmetrically de novo methylated at mCWGs within each CCWGG sequence in each promoter. This demonstrated that CG and non-CG methylation are not mutually exclusive as had been suggested by earlier reports.9,10 That observation is now extended to the human stem cell line methylome where CG and non-CG methylation co-exist.14 Gene expression at the APC locus was likewise unaffected by transgene expression of M.EcoRII. In those experiments genome wide methylation of the CCWGG site was detected by restriction analysis and bisulfite sequencing,29 however stem cell characteristics were not studied.Many alternative functions can be envisioned for non-CG methylation, but the existing data now constrains them to functions that involve low levels of methylation that are primarily asymmetric. Moreover, inheritance of such methylation patterns requires low fidelity methylation. If methylation were maintained with high fidelity at particular CHG sites one would expect that the spontaneous deamination of 5-methylcytosine would diminish the number of such sites, so as to confine the remaining sites to those positions performing an essential function, as is seen in CG methylation.3033 However, depletion of CWG sites is not observed in the human genome.34 Since CWG sites account for only about 50% of the non-CG methylation observed in the stem cell methylome14 where methylated non-CG sites carry only about 25% methylation, the probability of deamination would be about 13% of that for CWG sites that are subject to maintenance methylation in the germ line. Since mutational depletion of methylated cytosines has to have its primary effect on the germ line, if the maintenance of non-CG methylation were more accurate and more widespread, one would have had to argue that stem cells in the human germ lines lack CWG methylation. As it is the data suggests that whatever function non-CG methylation may have in stem cells, it does not involve accurate somatic inheritance in the germ line.The extensive detail on non-CG methylation in the H1 methylome14 raises interesting questions about the nature of this form of methylation in human cell lines. A key finding in this report is the contrast between the presence of non-CG methylation in the H1 stem cell line and its absence in the IMR90 human fetal lung fibroblast cell line.14 This suggests that it may have a role in the origin and maintenance of the pluripotent lineage.14By analogy with the well known methylated DNA binding proteins specific for CG methylation,35 methylated DNA binding proteins that selectively bind sites of non-CG methylation are expected to exist in stem cells. Currently the only protein reported to have this binding specificity is human Dnmt1.3638 While Dnmt1 has been proposed to function stoichiometrically39 and could serve a non-CG binding role in stem cells, this possibility and the possibility that other stem-cell specific non-CG binding proteins might exist remain to be been explored.Finally, the nature of the non-CG methylation patterns in human stem cell lines present potentially difficult technical problems in methylation analysis. First, based on the data in the H1 stem cell methylome,40 a standard MS-qPCR for non-CG methylation would be impractical because non-CG sites are infrequent, rarely clustered and are generally characterized by partial asymmetric methylation. This means that a PCR primer that senses the 3 adjacent methylation sites usually recommended for MS-qPCR primer design41,42 cannot be reliably found. For example in the region near Oct4 (Chr6:31,246,431), a potential MS-qPCR site exists with a suboptimal set of two adjacent CHG sites both methylated on the + strand at Chr6:31,252,225 and 31,252,237.14,40 However these sites were methylated only in 13/45 and 30/52 reads. Thus the probability that they would both be methylated on the same strand is about 17%. Moreover, reverse primer locations containing non-CG methylation sites are generally too far away for practical bisulfite mediated PCR. Considering the losses associated with bisulfite mediated PCR43 the likelihood that such an MS-qPCR system would detect non-CG methylation in the H1 cell line or stem cells present in a cancer stem cell niche44,45 is very low.The second difficulty is that methods based on the specificity of MeCP2 and similar methylated DNA binding proteins for enriching methylated DNA (e.g., MIRA,46 COMPARE-MS47) will discard sequences containing non-CG methylation since they require cooperative binding afforded by runs of adjacent methylated CG sites for DNA capture. This latter property of the methylated cytosine capture techniques makes it also unlikely that methods based on 5-methylcytosine antibodies (e.g., meDIP48) will capture non-CG methylation patterns accurately since the stem cell methylome shows that adjacent methylated non-CG sites are rare in comparison to methylated CG sites.14In summary, whether or not mammalian stem cells in general or human stem cells in particular possess functional plant-like methylation patterns is likely to continue to be an interesting and challenging question. At this point we can conclude that the non-CG patterns reported in human cells appear to differ significantly from the non-CG patterns seen in plants, suggesting that they do not have a common origin or function.  相似文献   

18.
VERNALIZATION INSENSITIVE 3 (VIN3) encodes a PHD domain chromatin remodelling protein that is induced in response to cold and is required for the establishment of the vernalization response in Arabidopsis thaliana.1 Vernalization is the acquisition of the competence to flower after exposure to prolonged low temperatures, which in Arabidopsis is associated with the epigenetic repression of the floral repressor FLOWERING LOCUS C (FLC).2,3 During vernalization VIN3 binds to the chromatin of the FLC locus,1 and interacts with conserved components of Polycomb-group Repressive Complex 2 (PRC2).4,5 This complex catalyses the tri-methylation of histone H3 lysine 27 (H3K27me3),4,6,7 a repressive chromatin mark that increases at the FLC locus as a result of vernalization.4,710 In our recent paper11 we found that VIN3 is also induced by hypoxic conditions, and as is the case with low temperatures, induction occurs in a quantitative manner. Our experiments indicated that VIN3 is required for the survival of Arabidopsis seedlings exposed to low oxygen conditions. We suggested that the function of VIN3 during low oxygen conditions is likely to involve the mediation of chromatin modifications at certain loci that help the survival of Arabidopsis in response to prolonged hypoxia. Here we discuss the implications of our observations and hypotheses in terms of epigenetic mechanisms controlling gene regulation in response to hypoxia.Key words: arabidopsis, VIN3, FLC, hypoxia, vernalization, chromatin remodelling, survival  相似文献   

19.
20.
The process of epithelial lumenogenesis requires coordination of a network of signaling machinery communicated to each cell through subsequent cell divisions. Formation of a single hollow lumen has previously been shown to require Tuba, a Cdc42 GEF, for Cdc42 activation and correct spindle orientation. Using a Caco-2 model of lumenogenesis, we show that knockdown (KD) of the actin regulator N-WASP, causes a multilumen phenotype similar to Tuba KD. Defects in lumenogenesis in Tuba KD and N-WASP KD cells are observed at the two-cell stage with inappropriate marking of the pre-apical patch (PAP )—the precursor to lumen formation. Strikingly, both Tuba and N-WASP depend on each other for localization to the PAP. We conclude that N-WASP functions cooperatively with Tuba to facilitate lumenogenesis and this requires the polyproline region of N-WASP.Key words: lumen, N-WASP, tuba, E-cadherin, pre-apical patchMany epithelial tissues are organized as hollow tubes whose open lumina connect the body with its external environment.1,2 These tubes consist of a monolayer of polarized cells that envelope the central lumen. Lumen formation is thus a key process in epithelial morphogenesis that depends upon cell polarity to establish three cell surface domains: a basal surface adherent to the extracellular matrix, a lateral surface between cells, and an apical surface that is exposed to the luminal fluids. Of note, the apical membrane is biochemically and morphologically distinct from the baso-lateral surfaces and effectively defines the luminal surface.3,4For a lumen to form, cells must first mark the site at which apical membrane is to be inserted, something that is achieved at the first cell division.5 Targeted trafficking of apical membrane constituents defines a pre-apical patch (PAP), the precursor to the definitive lumen.5 Such insertion of apical membrane must presumably be coordinated with the assembly of apical junctions to segregate nascent apical from lateral membrane domains.2 Subsequent cell divisions direct apical membrane and protein constituents to this point of initial apical membrane placement.6 Coordinated luminal positioning enables the initial formation of a single hollow lumen that subsequently expands through polarized fluid secretion to separate apical membranes, such as occurs in the embryonic gastrointestinal tract,7 or by apoptosis or autophagy of the central cells as is observed in mammary gland development.8,9 Failure to establish initial luminal positioning causes defective lumenogenesis, often resulting in multiple, morphologically abnormal lumina.5,6Crucial to lumenal morphogenesis is then the mechanism(s) that mark the site where the PAP will form. Cdc42 signaling is increasingly implicated in this process,2,10 with downstream consequences that include control of mitotic spindle orientation,5 which itself influences PAP placement5 and potentially regulation of cell-cell junctions. Like other Rho family GTPases, the subcellular location of Cdc42 signaling is determined by the action of upstream proteins, notably guanine nucleotide exchange factors (GEFs).11,12 Of these, Tuba, a Cdc42-specific GEF,13 has emerged as a regulator of lumenal morphogenesis that controls PAP placement through mitotic spindle orientation.10Tuba is also a scaffolding protein13 capable of linking the actin assembly machinery with trafficking pathways. Not only is Tuba required for Cdc42 activation to direct spindle orientation,5 it also has the potential to interact with phosphoinositides that define the PAP.14 Additionally, Tuba binds directly to the actin regulator N-WASP, a key molecule in the organization of actin and itself a Cdc42 effector.15 Further, Tuba and N-WASP cooperate in various forms of actin-driven cellular motility, such as vesicle propulsion and cell invasive behavior.16 Interestingly, in epithelial cells N-WASP is also found at cadherin-based cell-cell junctions.17 In fact it has been proposed that N-WASP functions downstream of Tuba in the maintenance of epithelial junctional homeostasis as N-WASP overexpression was capable of rescuing a Tuba KD phenotype.18 Therefore, Tuba has the potential to play a central role in coordinating the molecular complexes required for productive polarization of epithelial cells and placement of the PAP during lumenogenesis. However, whether other protein interactions contribute to the morphogenetic impact of Tuba remain to be assessed.Three-dimensional cell culture systems are being utilized to identify critical components in lumen formation. In particular, Madin-Darby canine kidney cells (MDCK) and Caco-2 gastrointestinal cells are commonly used to study cyst and/or tubule formation. MDCK cells undergo both cyst and tubule growth, apoptosis being primarily responsible for the final step in lumen formation,19 while Caco-2 cells primarily utilize fluid influx to expand cysts.5 Cyst culture systems replicate aspects of in vivo organogenesis20 providing tangible, powerful models to analyze and dissect the coordinated cellular mechanisms and processes that occur during epithelial morphogenesis.In this study we examined the relationship between Tuba and N-WASP in early epithelial lumenogenesis using Caco-2 three dimensional cyst cultures. Both Tuba and N-WASP RNAi cell lines result in mature cysts with multiple lumina, and at the two-cell stage, formed multiple PAPs. Interestingly, N-WASP KD perturbed Tuba localization at the PAP, however, N-WASP localization to the PAP was not affected to the same extent by Tuba KD. Taken together, these results suggest a complex interrelationship between Tuba and N-WASP for the coordinated formation of a single hollow lumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号