首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between the two principal ligand binding sites, sites I and II, on human serum albumin (HSA) was quantitatively and qualitatively examined by equilibrium dialysis and fluorescence spectroscopy. Among the three subsite markers to site I, only the binding of dansyl-L-asparagine (DNSA), which is a subsite Ib marker (K. Yamasaki et al., Biochim. Biophys. Acta 1295 (1996) 147), was inhibited by the simultaneous binding of a site II ligand, such as ibuprofen and diazepam. This indicates that, in contrast to subsite Ib, subsites Ia and Ic do not strongly interact with site II. The thermodynamic characteristics for the coupling reaction between DNSA and ibuprofen and between DNSA and diazepam, which gave positive coupling free energies and negative values for both coupling enthalpy and entropy, indicated that the reaction process was entropically driven. Increase of pH from 6.5 to 8.2 caused an increase in coupling constant and entropy for the mutual antagonism between DNSA and the site II ligands on binding to HSA. The site II ligand-induced red-shift of lambda(max) and solvent accessibility of DNSA in subsite Ib were decreased when the albumin molecule was isomerized from the neutral (N) to the base (B) conformation in the physiological pH region. Based on these findings, we conclude that a 'competitive' like strong allosteric regulation exists for the binding of these two ligands to the N conformer, whereas for the B conformer this interaction can be classified as nearly 'independent'. Since the distance between Trp-214, which resides within the site I subdomain, and Tyr-411, which is involved in site II, is increased by 6 A during the N-B transition (N.G. Hagag et al., Fed. Proc. 41 (1982) 1189), we propose a mechanism for the pH-dependent antagonistic binding between subsite Ib and site II, which involves the transmission of ligand-induced allosteric effects from one site to another site, modified by changes in the spatial relationship of sites I and II caused by the N-B transition.  相似文献   

2.
Five‐nanosecond molecular dynamics (MD) simulations were performed on human serum albumin (HSA) to study the conformational features of its primary ligand binding sites (I and II). Additionally, 11 HSA snapshots were extracted every 0.5 ns to explore the binding affinity (Kd) of 94 known HSA binding drugs using a blind docking procedure. MD simulations indicate that there is considerable flexibility for the protein, including the known sites I and II. Movements at HSA sites I and II were evidenced by structural analyses and docking simulations. The latter enabled the study and analysis of the HSA–ligand interactions of warfarin and ketoprofen (ligands binding to sites I and II, respectively) in greater detail. Our results indicate that the free energy values by docking (Kd observed) depend upon the conformations of both HSA and the ligand. The 94 HSA–ligand binding Kd values, obtained by the docking procedure, were subjected to a quantitative structure‐activity relationship (QSAR) study by multiple regression analysis. The best correlation between the observed and QSAR theoretical (Kd predicted) data was displayed at 2.5 ns. This study provides evidence that HSA binding sites I and II interact specifically with a variety of compounds through conformational adjustments of the protein structure in conjunction with ligand conformational adaptation to these sites. These results serve to explain the high ligand‐promiscuity of HSA. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 161–170, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

3.
A simple and effective method was developed for determining binding sites of drugs on human serum albumin (HSA) by independent binding or competitive displacement of bilirubin using flow injection analysis-quartz crystal microbalance (FIA-QCM) system. Both independent and competitive bindings were entirely monitored in real time. Bilirubin as a site I-binding ligand was pre-bound to HSA sensor so as to occupy the drug-binding site I. When the model site II-binding drugs (ibuprofen, ketoprofen and flurbiprofen) were injected into the bilirubin pre-bound HSA system, the frequency continuously decreased by 6Hz, 4Hz and 5Hz, respectively, which was the same as that of their individual binding to HSA sensor. It indicated that the drug binding to site II was independent and did not interfere with bilirubin binding. However, when the model site I-binding drugs (iodipamide and magnesium salicylate) were introduced into the system, the frequency remained unchanged in the initial several minutes and then rapidly decreased by 4Hz for iodipamide and increased by 4Hz for magnesium salicylate. This phenomenon revealed site I-binding drugs competitively bound to HSA against bilirubin and displaced the pre-bound bilirubin. The results demonstrate FIA-QCM can be a valid approach for monitoring the dynamic interaction between drugs and HSA in real time further identifying drug-binding sites without the need of labels.  相似文献   

4.
The ibuprofen primary binding site FA3-FA4 is located in domain III of human serum albumin (HSA), the secondary clefts FA2 and FA6 being sited in domains I and II. Here, the thermodynamics of ibuprofen binding to recombinant Asp1-Glu382 truncated HSA (tHSA)-heme-Fe(III) and nitrosylated tHSA-heme-Fe(II), encompassing domains I and II only, is reported. Moreover, the allosteric effect of ibuprofen on the kinetics of tHSA-heme-Fe(III)-mediated peroxynitrite isomerization and nitrosylated tHSA-heme-Fe(II) denitrosylation has been investigated. The present data indicate, for the first time, that the allosteric modulation of tHSA-heme and HSA-heme reactivity by ibuprofen depends mainly on drug binding to the FA2 and FA6 secondary sites rather than drug association with the FA3-FA4 primary cleft. Thus, tHSA is a valuable model with which to investigate the allosteric linkage between the heme cleft FA1 and the ligand-binding pockets FA2 and FA6, all located in domains I and II of (t)HSA.  相似文献   

5.
An NMR method was developed for determining binding sites of small molecules on human serum albumin (HSA) by competitive displacement of (13)C-labeled oleic acid. This method is based on the observation that in the crystal structure of HSA complexed with oleic acid, two principal drug-binding sites, Sudlow's sites I (warfarin) and II (ibuprofen), are also occupied by fatty acids. In two-dimensional [(1)H,(13)C]heteronuclear single quantum coherence NMR spectra, seven distinct resonances were observed for the (13)C-methyl-labeled oleic acid as a result of its binding to HSA. Resonances corresponding to the major drug-binding sites were identified through competitive displacement of molecules that bind specifically to each site. Thus, binding of molecules to these sites can be followed by their displacement of oleic acids. Furthermore, the amount of bound ligand at each site can be determined from changes in resonance intensities. For molecules containing fluorine, binding results were further validated by direct observations of the bound ligands using (19)F NMR. Identifying the binding sites for drug molecules on HSA can aid in determining the structure-activity relationship of albumin binding and assist in the design of molecules with altered albumin binding.  相似文献   

6.
In this paper, we describe a fluorescent antibacterial analog, 6, with utility as a competition probe to determine affinities of other antibacterial analogs for human serum albumin (HSA). Analog 6 bound to HSA with an affinity of 400+/-100 nM and the fluorescence was environmentally sensitive. With 370 nm excitation, environmental sensitivity was indicated by a quenching of the 530 nm emission when the probe bound to HSA. Displacement of dansylsarcosine from HSA by 6 indicated it competed with compounds that bound at site II (ibuprofen binding site) on HSA. Analog 6 also shifted the NMR peaks of an HSA bound oleic acid molecule that itself was affected by compounds that bound at site II. In addition to binding at site II, 6 interacted at site I (warfarin binding site) as indicated by displacement of dansylamide and the shifting of NMR peaks of an HSA bound oleic acid molecule affected by warfarin site binding. Additional evidence for multiple site interaction was discovered when a percentage of 6 could be displaced by either ibuprofen or phenylbutazone. A competition assay was established using 6 to determine relative affinities of other antibacterial inhibitors for HSA.  相似文献   

7.
The distribution, free concentration and metabolism of drugs can be significantly altered as a result of binding to albumin. At the same time, the conformational of serum albumin was also changed by interaction with low molecular weight drugs. In present work, we first equilibrated HSA in aqueous solution to obtain the solvated-HSA model. Further solvated-HSA was performed molecular docking with paclitaxel to find the binding sites. The two docking HSA-paclitaxel complexes were obtained and further equilibrated by a 12 ns MD simulation. Then, MMPBSA method was used to investigate the binding free energy of them. Finally, we correlated the fluctuations of residues with corresponding changes in the secondary structure by dssp method. Two binding sites of paclitaxel were found on HSA having considered the solvation effect. More hydrogen bonds were formed at site I respected to site II. A larger binding energy for primary binding also indicated that paclitaxel showed higher binding affinity mainly due to the stronger hydrogen bonding interactions. There was a significant difference between the two complexes on structure according to the dssp results. Moreover, structure of the binding sites exhibited more fluctuations after binding paclitaxel compared with other regions. Paclitaxel binding also induced distinct conformational changes in drug binding site even when it was empty and have contributed to a reduced binding capacity of HSA towards adriamycin.  相似文献   

8.
In an attempt to systematically dissect the ligand binding properties of human serum albumin (HSA), the gene segments encoding each of its three domains were defined based on their conserved homologous structural motifs and separately cloned into a secretion vector for Pichia pastoris. We were able to establish a generally applicable purification protocol based on Cibacron Blue affinity chromatography, suggesting that each of the three domains carries a binding site specific for this ligand. Proteins were characterized by SDS-polyacrylamide gel electrophoresis, isoelectric focusing, gel filtration, N-terminal sequencing, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, as well as near- and far-UV CD. In addition to the affinity chromatography ligand Cibacron Blue, binding properties toward hemin, warfarin, and diazepam, each of which represents a standard ligand for HSA, respectively, were investigated by the measurement of induced circular dichroism. Clear experimental evidence is provided here for the location of the primary hemin binding site to be on domain I of HSA, and for the primary diazepam binding site to be on domain III. Further, secondary binding sites were found for hemin to be located on domains II and III, and for diazepam on domain I. The warfarin binding site was located primarily on domain II, while on domain I, a secondary binding site and/or parts of the primary binding site were found.  相似文献   

9.
The binding of ofloxacin (OFLX) to human serum albumin (HSA) was investigated by fluorescence and circular dichroism (CD) techniques. The binding parameters have been evaluated by a fluorescence quenching method. Competitive binding measurements were performed in the presence of warfarin and ibuprofen and suggest binding to the warfarin site I of HSA. The distance r between donor (HSA) and acceptor (OFLX) was estimated according to the Forster's theory of non‐radiatiative energy transfer. CD spectra revealed that the binding of OFLX to HSA induced conformational changes in HSA. Molecular docking was performed and shows that for the lowest energy complex OFLX is located in site I of HSA, which correlate to the competitive binding experiments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In this work, the binding characteristics of methylene blue (MB) to human serum albumin (HSA) and the influence of Cu2+ and Fe3+ on the binding affinity of MB to HSA were investigated using fluorescence, absorption, circular dichroism (CD) spectroscopy and molecular modelling. The results of competitive binding experiments using the site probes ketoprofen and ibuprofen as specific markers suggested that MB was located in site I within sub‐domain IIA of HSA. The molecular modelling results agreed with the results of competitive site marker experiments and the results of CD spectra indicated that the interaction between MB and HSA caused the conformational changes in HSA. The binding affinity of MB to HSA was enhanced but to a different extent in the presence of Cu2+ and Fe3+, respectively, which indicated that the influence of different metal ions varied. Enhancement of the binding affinity of MB to HSA in the presence of Cu2+ is due to the formation of Cu2+–HSA complex leading to the conformational changes in HSA, whereas in the presence of Fe3+, enhancement of the binding affinity is due to the greater stability of the Fe3+–HSA–MB complex compared with the MB–HSA complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The interactions of human serum albumin (HSA) with a number of ligands (mostly drugs) were examined by proton nuclear magnetic resonance spectroscopy. Ligand presence-absence difference spectra of HSA solutions were measured. Nonspecifically bound drugs such as tiaramide showed difference spectrum patterns which were similar to the spectra of the drugs themselves but were broadened as to the line-widths of signals. Thus, the difference spectra of these drugs reflect only the changes in the surroundings of the drug molecules, that is, between the bound and free states. In contrast, specifically bound drugs like ibuprofen and warfarin showed difference spectra in which signals from the HSA molecule only were observed. Furthermore, according to the characteristic peaks in these difference spectrum patterns, specifically bound drugs may be classified into several groups; the drugs in the first group bind to the ibuprofen binding site, those in the second group to the warfarin binding site, and those in the third group to sites other than the warfarin and ibuprofen sites. These findings suggest that the specific binding of drugs to HSA brings about a conformational change of this protein which is specifically correlated to the binding site.  相似文献   

12.
Acyl glucuronides formed from carboxylic acids can undergo hydrolysis, acyl migration, and covalent binding to proteins. In buffers at physiological pH, the degradation of acylglucuronide of a chiral NSAID, carprofen, consisted mainly of acyl migration. Acidic pH reduced hydrolysis and acyl migration, thus stabilizing the carprofen acyl glucuronides. Addition of human serum albumin (HSA) led to an increased hydrolysis of the conjugates of both enantiomers. This protein protected R-carprofen glucuronide from migration and therefore improved its overall stability. Hydrolysis was stereoselective in favor of the S conjugate. The protein domains and the amino acid residues likely to be responsible for the hydrolytic activity of HSA were deduced from the results of various investigations: competition with probes specific of binding sites, effects of pH and of chemical modifications of albumin. Dansylsarcosine (DS), a specific ligand of site II of HSA, impaired the hydrolysis, whereas dansylamide (DNSA) and digoxin, which are specific ligands of sites I and III, respectively, had no effect. The extent of hydrolysis by HSA strongly increased with pH, indicating the participation of basic amino acids in this process. The results obtained with chemically modified HSA suggest the major involvement of Tyr and Lys residues in the hydrolysis of glucuronide of S-carprofen, and of other Lys residues for that of its diastereoisomer.  相似文献   

13.
Human serum albumin (HSA) is known to exist as N (pH approximately 7), B (pH approximately 9), and F (pH approximately 3.5) isomeric forms and an equilibrium intermediate state (I) accumulate in the urea induced unfolding pathway of HSA around 4.8-5.2 M urea concentrations. These states displayed characteristic structure and functions. To elucidate the ciprofloxacin (CFX) binding behavior of HSA, the binding of ciprofloxacin with these conformational states of human serum albumin (HSA) has been investigated by fluorescence spectroscopy. The binding constant (K) for N, B, F, and I conformation of HSA were 6.92 x 10(5), 3.87 x 10(5), 4.06 x 10(5), and 2.7 x 10(5) M(-1) and the number of binding sites (n) were 1.26,1.21, 1.16, and 1.19, respectively. The standard free energy changes (DeltaGbinding(0)) of interaction were found to be -33.3 (N isomer), -31.8 (B isomer), -32 (F isomer), and -30.0 kJ mol(-1) respectively. By using unfolding pathway of HSA, domain II of HSA has been assigned to possess binding site of ciprofloxacin. Plausible correlation between stability of CFX-N and CFX-B complexes and drug distribution have been discussed. At plasma concentration of HSA fraction of free CFX, which contributes potential to its rate of transport across cell membrane, was found to be approximately 80% more for B isomers compared to N isomers of HSA. The conformational changes in two physiologically important isomers of HSA (N and B isomers) upon ciprofloxacin binding were evaluated by measuring far, near-UV CD, and fluorescence properties of the CFX-HSA complex.  相似文献   

14.
Non-steroidal anti-inflammatory drugs (NSAIDs) are strongly bound to human serum albumin (HSA), mainly to sites I and II. The aim of this study was to characterize the binding site(s) of etodolac enantiomers under physiological conditions (580 μM HSA) using equilibrium dialysis. The protein binding of etodolac enantiomers, alone or in various ratios, was studied in order to evaluate the potential competition between them. Our results showed that (S)-etodolac was more strongly bound to HSA than (R)-etodolac. The displacement of one enantiomer by its antipode was observed only at high concentrations of the competitor, and was more pronounced for the (S)-form. Displacement studies of the enantiomers by specific probes of sites I and II of albumin, dansylamide, and dansylsarcosine, respectively, showed that (R)-etodolac was slightly displaced by both these probes whereas the free concentration of (S)-etodolac increased markedly in the presence of dansylsarcosine. Moreover, the binding of ligands to sites I and II is usually affected by alkaline pH, by chloride ions, and by fatty acids. For etodolac, the presence of 0.1 and 1 M chloride ions and increasing pH (5.5-9) decreased the binding of both enantiomers. The same result was obtained with addition of octanoic acid. Conversely, the addition of oleic, palmitic, or stearic acid to the protein solution increased the binding of (R)-etodolac, but decreased that of its antipode. All these findings suggest that (R)- and (S)-etodolac interact mainly with site II of HSA, and that the (R)-isomer is also bound to site I under physiological conditions. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Binding of carbenicillin (CBPC) epimers to human serum albumin (HSA) was found to be stereoselective. Epimer-epimer interaction was also observed in the binding to HSA. There were at least three binding sites on HSA for CBPC epimers, one of which (stereoselective site) was more in favor of S-CBPC than R-CBPC. At the stereoselective site, the binding constant of S-CBPC was approximately 4-fold greater than that of R-CBPC. The affinities to other binding sites (non-stereoselective sites) were similar between the epimers, and the affinity of S-CBPC of the non-stereoselective sites was much smaller than that for the stereoselective site. R-CBPC and S-CBPC appeared to displace each other at all the binding sites, i.e., the binding of the epimers was competitive at the non-stereoselective sites as well as at the stereoselective site. By using site marker ligands, it was revealed that CBPC epimers may bind to Site I (warfarin binding site), but not to Site II (diazepam binding site). A binding model with an assumption of competitive interactions at all the binding sites simulated the binding characteristics of CBPC epimers fairly well. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Fatty acids are endogenous ligands of human serum albumin (HSA) that induce conformational changes and participate in allosteric ligand binding to HSA. In a previous study, we showed that, when myristate (MYR) is present, the binding of [(14) C]ketoprofen (KP) to subdomain IA of HSA was increased, indicating that, when MYR binds to HSA, a new binding site in formed in that region. Meanwhile, an N-B transition has been reported to increase the binding of ligands at alkaline pH when the status of albumin is the B-conformer. Six histidine single mutants of HSA, H9A, H39A, H67A, H105A, H128A and H146A were produced and photolabeled with [(14) C]KP at pH 6.5, 7.4 and 8.2 and the role of each histidine in causing the N-B transition induced allosteric ligand binding was examined. Cyanogen bromide cleavage of the photolabeled native HSA showed that subdomain IA was the site of the allosteric binding of KP at pH 8.2. From the photolabeling results, H146 was found to play a prominent role whilst H128 played little or no role in the allosteric binding. However, the remaining 4 mutants did not show a clear photolabeling pattern that was similar to either native HSA or H146A and, as a result, no firm conclusions can be made. An additional histidine mutant, H146I, was produced to confirm the results for H146A. A similar experiment using H146I showed that a benzene ring-like structure at position 146 is required for the allosteric ligand binding to occur.  相似文献   

17.
18.
Human serum albumin (HSA) interacts with a vast array of chemically diverse ligands at specific binding sites. To pinpoint the essential structural elements for the formation of the warfarin binding site on human serum albumin, a defined set of five recombinant proteins comprising combinations of domains and/or subdomains of the N-terminal part were prepared and characterized by biochemical standard procedures, tryptophanyl fluorescence, and circular dichroic measurements, indicating well-preserved secondary and tertiary structures. Affinity constants for binding to warfarin were estimated by fluorescence titration experiments and found to be highest for HSA-DOM I-II and HSA, followed by HSA-DOM IB-II, HSA-DOM II, and HSA-DOM I-IIA. In addition, ultraviolet difference spectroscopy and induced circular dichroism experiments were carried out to get an in depth understanding of the binding mechanism of warfarin to the fragments as stand-alone proteins. This systematic study indicates that the primary warfarin binding site is centered in subdomain IIA with indispensable structural contributions of subdomain IIB and domain I, while domain III is not involved in this binding site, underlining the great potential that lies in the use of combinations of recombinant fragments for the study and accurate localization of ligand binding sites on HSA.  相似文献   

19.
Human serum albumin (HSA) is best known for its extraordinary ligand binding capacity. HSA has a high affinity for heme and is responsible for the transport of medium and long chain fatty acids. Here, we report myristate binding to the N and B conformational states of Mn(III)heme-HSA (i.e. at pH 7.0 and 10.0, respectively) as investigated by optical absorbance and NMR spectroscopy. At pH 7.0, Mn(III)heme binds to HSA with lower affinity than Fe(III)heme, and displays a water molecule coordinated to the metal. Myristate binding to a secondary site FAx, allosterically coupled to the heme site, not only increases optical absorbance of Mn(III)heme-bound HSA by a factor of approximately three, but also increases the Mn(III)heme affinity for the fatty acid binding site FA1 by 10-500-fold. Cooperative binding appears to occur at FAx and accessory myristate binding sites. The conformational changes of the Mn(III)heme-HSA tertiary structure allosterically induced by myristate are associated with a noticeable change in both optical absorbance and NMR spectroscopic properties of Mn(III)heme-HSA, allowing the Mn(III)-coordinated water molecule to exchange with the solvent bulk. At pH = 10.0 both myristate affinity for FAx and allosteric modulation of FA1 are reduced, whereas cooperation of accessory sites and FAx is almost unaffected. Moreover, Mn(III)heme binds to HSA with higher affinity than at pH 7.0 even in the absence of myristate, and the metal-coordinated water molecule is displaced. As a whole, these results suggest that FA binding promotes conformational changes reminiscent of N to B state HSA transition, and appear of general significance for a deeper understanding of the allosteric modulation of ligand binding properties of HSA.  相似文献   

20.
Surface-enhanced Raman spectroscopy was employed in this work to study the interaction between the antitumoral drug emodin and human serum albumin (HSA), as well as the influence of fatty acids in this interaction. We demonstrated that the drug/protein interaction can take place through two different binding sites which are probably localized in the IIA and IIIA hydrophobic pockets of HSA and which correspond to Sudlow's I and II binding sites, respectively. The primary interaction site of this drug seems to be site II in the defatted albumin. Fatty acids seem to displace the drug from site II to site I in nondefatted HSA, due to the high affinity of fatty acids for site II. The drug interacts with the protein through its dianionic form in defatted HSA (when placed in the site II) and through its neutral form in the site I of nondefatted albumins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号