首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herbivore-induced plant volatiles affect the systemic response of plants to local damage and hence represent potential plant hormones. These signals can also lead to “plant-plant communication,” a defense induction in yet undamaged plants growing close to damaged neighbors. We observed this phenomenon in the context of disease resistance. Lima bean (Phaseolus lunatus) plants in a natural population became more resistant against a bacterial pathogen, Pseudomonas syringae pv syringae, when located close to conspecific neighbors in which systemic acquired resistance to pathogens had been chemically induced with benzothiadiazole (BTH). Airborne disease resistance induction could also be triggered biologically by infection with avirulent P. syringae. Challenge inoculation after exposure to induced and noninduced plants revealed that the air coming from induced plants mainly primed resistance, since expression of PATHOGENESIS-RELATED PROTEIN2 (PR-2) was significantly stronger in exposed than in nonexposed individuals when the plants were subsequently challenged by P. syringae. Among others, the plant-derived volatile nonanal was present in the headspace of BTH-treated plants and significantly enhanced PR-2 expression in the exposed plants, resulting in reduced symptom appearance. Negative effects on growth of BTH-treated plants, which usually occur as a consequence of the high costs of direct resistance induction, were not observed in volatile organic compound-exposed plants. Volatile-mediated priming appears to be a highly attractive means for the tailoring of systemic acquired resistance against plant pathogens.Plants respond to attack by pathogens or herbivores with extensive changes in gene expression that lead to induced resistance phenomena (Karban and Baldwin, 1997); various traits are then expressed de novo or at much higher intensities, which reduce or prevent further tissue damage. As both pathogens and herbivores can spread from the initial site of attack to other organs, such plant responses are often not restricted to the damaged tissue but are expressed systemically, in yet undamaged organs. Three plant hormones playing central roles in the long-distance signaling that underlies this systemic response to local attack are jasmonic acid (JA), ethylene, and salicylic acid (SA). SA and JA, in particular, are transported themselves or in the form of derivatives within the plant in order to elicit systemic responses (Truman et al., 2007; Wasternack, 2007; Heil and Ton, 2008).Recent studies have revealed that long-distance signaling is not only caused by molecules that are transported in the vascular system; signals can also be volatile compounds that move in the headspace outside the plant (Heil and Ton, 2008). In particular, green-leaf volatiles and other herbivore-induced volatile organic compounds (VOCs) can mediate the systemic response of plants to local herbivore damage (Karban et al., 2006; Frost et al., 2007; Heil and Silva Bueno, 2007). Since such VOCs move freely in the air, they may also affect neighboring plants and then mediate the phenomenon of “plant-plant communication,” which has been found in taxonomically unrelated plants such as Arabidopsis (Arabidopsis thaliana), alder (Alnus glutinosa), corn (Zea mays), lima bean (Phaseolus lunatus), maple (Acer saccharum), sagebrush (Artemisia tridentata), and wild tobacco (Nicotiana attenuata; Baldwin and Schultz, 1983; Rhoades, 1983; Tscharntke et al., 2001; Engelberth et al., 2004; Heil and Kost, 2006; Karban et al., 2006; Paschold et al., 2006; Heil and Silva Bueno, 2007; Ton et al., 2007; Godard et al., 2008).Plant-plant communication via VOCs thus appears to be a common phenomenon in herbivore resistance, and similar volatile compounds can also mediate the beneficial effects that are caused by plant growth-promoting rhizobacteria (Ryu et al., 2003, 2004b). Furthermore, exposure to VOCs such as trans-2-hexenal, cis-3-hexenal, or cis-3-hexenol enhanced resistance of Arabidopsis against the fungal pathogen Botrytis cinerea (Kishimoto et al., 2005), which indicates that VOCs may also induce disease resistance. However, the wound response, the induction of VOCs, the effects of plant growth-promoting rhizobacteria, and even the resistance to necrotrophic pathogens such as B. cinerea and Alternaria brassiccicola are mediated via JA signaling (Wasternack and Parthier, 1997; Pieterse et al., 1998; Schilmiller and Howe, 2005; Francia et al., 2007; Heil, 2008; Heil and Ton, 2008). In contrast, systemic acquired resistance (SAR) to biotrophic pathogens in many plant species is mediated by SA signaling, which increases the expression of phytoalexins and of several PATHOGENESIS-RELATED (PR) proteins (van Loon, 1997; Hammerschmidt and Smith-Becker, 1999; Durrant and Dong, 2004) and which usually is thought to act as an antagonist to JA signaling (Maleck et al., 2000; Pieterse and Dicke, 2007; Korneef and Pieterse, 2008). The volatile derivative of SA, methyl salicylate (MeSA), has been proposed as the most likely systemic signal (Park et al., 2007). In tobacco (Nicotiana tabacum), MeSA is converted back to SA, which then forms the active resistance-inducing compound (Kumar and Klessig, 2003; Forouhar et al., 2005). This mechanism might underlie the resistance induction in tobacco plants that were exposed to high MeSA concentrations (Shulaev et al., 1997). In a study on the role of MeSA as a mobile signal, Park and coworkers (2007), however, only found evidence for the vascular transport of this compound.We used lima bean to investigate whether plant-plant signaling can also affect SAR to biotrophic bacterial pathogens. Plants were exposed to the VOCs emitted from neighbors that had been treated with the chemical SAR elicitor benzothiadiazole [BTH; benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester] or that had been induced biologically, and resulting changes in resistance were monitored at the phenotypic and gene expression levels. A common phenomenon involved in disease resistance is priming, which prepares the plant to respond more rapidly and/or effectively to subsequent attack (van Hulten et al., 2006; Bruce et al., 2007; Goellner and Conrath, 2008) but which comes at much lower costs than direct resistance induction (Heil and Baldwin, 2002; Walters and Boyle, 2005; Walters and Heil, 2007). Therefore, we investigated whether VOCs also can prime resistance to pathogens by first exposing plants to VOCs coming from directly induced plants and then challenging them with Pseudomonas syringae pv syringae. Finally, VOCs released from induced plants were analyzed, and the most likely candidates were evaluated for their effect on expression of the resistance marker gene PR-2 in order to understand the chemical nature of the signal.  相似文献   

2.
植物的种子引发   总被引:42,自引:1,他引:42  
就种子引发方法、引发条件、引发效应、生理生化和分子机制的研究进展作了介绍,并对种子引发研究和应用前景作了讨论。  相似文献   

3.
4.
夏石头  李昕 《植物学报》2019,54(3):288-292
NLR蛋白是存在于植物和动物中的一个免疫受体大家族,具有核苷酸结合域并富含亮氨酸重复序列。植物NLR通过识别病原菌特异效应子开启免疫信号转导。第1个植物NLR抗性蛋白于25年前克隆,但其激活机制仍不清楚,至今仍未获得一个完整的NLR蛋白结构。最近,柴继杰、周俭民和王宏伟实验室合作解析了第一个植物完整NLR ZAR1激活前后的结构,研究成果以两篇论文形式发表在"科学"杂志上,填补了NLR介导的免疫信号转导研究领域的空白。该文简要总结了相关研究进展,讨论了NLR免疫信号转导研究领域尚需解决的问题。  相似文献   

5.
夏石头 《植物学报》1983,54(3):288-292
NLR蛋白是存在于植物和动物中的一个免疫受体大家族, 具有核苷酸结合域并富含亮氨酸重复序列。植物NLR通过识别病原菌特异效应子开启免疫信号转导。第1个植物NLR抗性蛋白于25年前克隆, 但其激活机制仍不清楚, 至今仍未获得一个完整的NLR蛋白结构。最近, 柴继杰、周俭民和王宏伟实验室合作解析了第一个植物完整NLR ZAR1激活前后的结构, 研究成果以两篇论文形式发表在“科学”杂志上, 填补了NLR介导的免疫信号转导研究领域的空白。该文简要总结了相关研究进展, 讨论了NLR免疫信号转导研究领域尚需解决的问题。  相似文献   

6.
Plant Defense by VOC-Induced Microbial Priming   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
9.
Bargh et al. (2001) reported two experiments in which people were exposed to words related to achievement (e.g., strive, attain) or to neutral words, and then performed a demanding cognitive task. Performance on the task was enhanced after exposure to the achievement related words. Bargh and colleagues concluded that better performance was due to the achievement words having activated a "high-performance goal". Because the paper has been cited well over 1100 times, an attempt to replicate its findings would seem warranted. Two direct replication attempts were performed. Results from the first experiment (n = 98) found no effect of priming, and the means were in the opposite direction from those reported by Bargh and colleagues. The second experiment followed up on the observation by Bargh et al. (2001) that high-performance-goal priming was enhanced by a 5-minute delay between priming and test. Adding such a delay, we still found no evidence for high-performance-goal priming (n = 66). These failures to replicate, along with other recent results, suggest that the literature on goal priming requires some skeptical scrutiny.  相似文献   

10.
In this study, a matric-potential control system was used todetermine the effect of matric-priming duration and primingwater potential on the germination response of Bouteloua curtipendula(Michx.) Torr., Cenchrus ciliaris L., Eragrostis lehmannianaNees, and Panicum coloratum L. Seeds were primed at water potentialsof –1·5 to –7·7 MPa for up to 14 d.Optimum germination generally occurred in treatments primedat high water potential for the shortest period. Germinationof seeds primed at lower water potential and for longer periodsexhibited a negative germination response relative to the control.Seeds were not redried after the priming treatment. Seed-wateruptake measurements suggest that a reduction in the lag timeof imbibition accounted for at least some germination-rate enhancementin the positive-priming treatments Key words: Germination, matric-priming, imbibition  相似文献   

11.
This review focuses on individual effects of major global change factors, such as elevated CO2, Oa, UV light and temperature,on plant secondary chemistry. These secondary metabolites are well-known for their role in plant defense against insect herbivory. Global change effects on secondary chemicals appear to be plant species-specific and dependent on the chemical type. Even though plant chemical responses induced by these factors are highly variable, there seems to be some specificity in the response to different environmental stressors. For example, even though the production of phenolic compounds is enhanced by both elevated CO2 and UV light levels, the latter appears to primarily increase the concentrations of fiavonoids. Likewise, specific phenolic metabolites seem to be induced by O3 but not by other factors, and an increase in volatile organic compounds has been particularly detected under elevated temperature. More information is needed regarding how global change factors influence inducibility of plant chemical defenses as well as how their indirect and direct effects impact insect performance and behavior, herbivory rates and pathogen attack. This knowledge is crucial to better understand how plants and their associated natural enemies will be affected in future changing environments.  相似文献   

12.
Plants may play an active role in the evolution of territorialityand associated animal behaviors such as spacing and cannibalism.I hypothesize that these behaviors have in part evolved in directresponse to plant defenses that would otherwise diminish individualsuccess. These defenses limit resource availability and concentrateherbivores at specific sites where they then suffer from inducedplant defenses, increased predation and competition. Plant traitsthat enhance the negative effects of competition and increasedpredation must be included in the suite of plant defenses againstherbivory. In a specific example with Pemphigus gall aphids, plant defensesresult in a strong selection pressure favoring territorial behavior.The negative effects of competition give territorial individualsa 2.3-fold advantage over non-territorial individuals. Induceddefenses (i.e., density dependent leaf abscission) can be justas important as competition as a selection pressure for territorialbehavior. With the addition of induced plant defenses territorialindividuals realize a 4.4-fold advantage. Furthermore, roughapproximations suggest that in the absence of territorial behaviorpredation would increase by 52%. The same traits which promote territoriality also encouragecannibalism, a surprisingly common herbivore behavior. To theextent cannibalism reduces the herbivore population, plant traitswhich promote this behavior may realize a selective advantage. Viewing plants as dynamic rather than passive in their interactionswith pests may lead to a better understanding of animal behaviors.  相似文献   

13.
CD8+ T cells (TCD8+) play a crucial role in immunity to viruses. Antiviral TCD8+ are initially activated by recognition of major histocompatibility complex (MHC) class I-peptide complexes on the surface of professional antigen-presenting cells (pAPC). Migration of pAPC from the site of infection to secondary lymphoid organs is likely required during a natural infection. Migrating pAPC can be directly infected with virus or may internalize antigen derived from virus-infected cells. The use of experimental virus infections to assess the requirement for pAPC migration in initiation of TCD8+ responses has proven difficult to interpret because injected virus can readily drain to secondary lymphoid organs without the need for cell-mediated transport. To overcome this ambiguity, we examined the generation of antigen-specific TCD8+ after immunization with recombinant adenoviruses that express antigen driven by skin-specific or ubiquitous promoters. We show that the induction of TCD8+ in response to tissue-targeted antigen is less efficient than the response to ubiquitously expressed antigen and that the resulting TCD8+ fail to clear all target cells pulsed with the antigenic peptide. This failure to prime a fully functional TCD8+ response results from a reduced period of priming to peripherally expressed antigen versus ubiquitously expressed antigen and correlated with a brief burst of pAPC migration from the skin, a requirement for induction of the response to peripheral antigen. These results indicate that a reduced duration of pAPC migration after virus infection likely reduces the amplitude of the TCD8+ response, allowing persistence of the peripheral virus.The induction of effector CD8+ T cells (TCD8+) is a vital step in the eradication or control of many viral infections. The induction of antiviral TCD8+ requires the presentation of virally derived peptides in complex with major histocompatibility complex (MHC) class I on the surface of specialized professional antigen-presenting cells (pAPC), most commonly a subset of dendritic cells (DC) that bear the CD8α chain (1, 29). The CD8α+ DC reside only in secondary lymphoid organs and not in the tissues, implying that cell-mediated transport or drainage of virus particles to a lymph node is required for initiation of a TCD8+ response. Partial inhibition of DC migration from the skin can impair the initiation of a TCD8+ response (2). After influenza infection in the lungs, there is a burst of DC migration, followed by a refractory period in which no DC migration occurs (19). The functional consequences of this refractory period of DC migration have not been explored.A number of viruses, particularly human papillomaviruses, infect the skin and are ignored by the immune response for extended periods of time (31). We sought to explore the possibility that, after a low-level peripheral virus infection of the skin, changes in DC migration may limit the availability of antigen in the draining lymph node and thus the induction of a TCD8+ response. There are a number of confounding factors that make the study of DC migration in the initiation of an antiviral TCD8+ response difficult. Virus particles may directly drain to the lymph node within seconds (11, 13, 25). In addition, many viruses will alter DC functions, including migration, after infection of the DC itself. This may occur via specific viral modulation of DC function (16) or via nonspecific shut down of host protein synthesis (26), both of which will affect migration. Thus, it is often not possible to distinguish between the effects of virus infection upon DC migration, drainage of virus directly to the lymph node, and the natural response that follows migration of DC responding to a peripheral virus infection.There is currently no mouse model of a peripheral virus infection that is confined to the skin, as no natural mouse papillomavirus has ever been isolated. Therefore, to address these issues, we have made use of another small DNA virus, namely, an adenovirus vector that is replication deficient (rAd). These vectors express influenza virus nucleoprotein (NP) under the control of a ubiquitous (cytomegalovirus [CMV] immediate-early) or tissue-targeted promoter (K14, targeted to keratinocytes, the site of papillomavirus replication). Antigen driven by the K14 promoter is expressed only in skin cells, so only uninfected DC can present antigen in this system, removing the need to account for modulation of the function of virus-infected DC.We demonstrate that when antigen is expressed in only keratinocytes in the skin, the efficiency of TCD8+ induction is reduced and the time period for which antigen is available to prime effector cells is reduced dramatically. DC-mediated transport is required for antigen to reach the lymph node where a TCD8+ response is initiated. The reduced time period of antigen presentation is the result of a transient blockade in DC migration from the site of infection. The blockade in DC migration reduced the delivery of viral antigen to the lymph node needed to induce a TCD8+ response. The resulting TCD8+ response to peripheral viral antigen is not capable of clearing all target cells presenting a viral peptide, thus allowing the persistence of peripheral virus-infected cells. These results provide a potential mechanism for the long-term evasion of the immune response by papillomaviruses following natural infection and also have important implications for tissue targeted gene therapy vectors.  相似文献   

14.
15.
Plant fitness is affected by herbivory, and in moist tropical forests, 70 percent of herbivore damage occurs on young leaves. Thus, to understand the effects of herbivory on tropical plant fitness, it is necessary to understand how tropical young leaves survive the brief, but critical, period of susceptibility. In this study, we surveyed three species of Inga during young leaf expansion. Three classes of toxic secondary metabolites (phenolics, saponins, and tyrosine), extrafloral nectar production, leaf area, and extrafloral nectary area were measured at randomly assigned young leaf sizes. In addition, all defenses were compared for potential trade‐offs during leaf expansion. No trade‐offs among defenses were found, and the concentration of all defenses, except tyrosine, decreased during leaf expansion. We suggest that plants continued to increase phenolic and saponin content, but at a rate that resulted in decreasing concentrations. In contrast, tyrosine content per leaf steadily increased such that a constant concentration was maintained regardless of young leaf size. Nectar production remained constant during leaf expansion, but, because young leaf area increased by tenfold, the investment in extrafloral nectar per leaf area significantly decreased. In addition, nectary area did not change during leaf expansion and therefore the relative size of the nectary significantly decreased during young leaf expansion. These results support the predictions of the optimal defense hypothesis and demonstrate that the youngest leaves have the highest investment in multiple defenses, most likely because they have the highest nitrogen content and are most susceptible to a diversity of herbivores.  相似文献   

16.
17.
To establish a definite diagnosis for pulmonary hydatid disease, combination of radiology and serology is useful. In this study, 19 preoperative sera from patients with surgically confirmed pulmonary hydatidosis, 40 sera from patients with other parasitosis and pulmonary diseases, and 20 sera from healthy donors were evaluated using 4 different serological tests, i.e., the commercial ELISA (ELISA-kit) test, the ELISA (ELISA-lab) test prepared in our laboratory, the commercial indirect hemagglutination assay kit (IHA-kit) test, and the IHA test using sensitized sheep red blood cells with tannic acid (IHA-TA). The ELISA-kit was the most sensitive (84.2%) and the most specific test (100.0%). The ELISA-kit also demonstrated the highest positive (100.0%) and negative (95.2%) predictive values. The sensitivity of the ELISA-lab test, that we prepared, was found to be 73.6%, whereas the IHA-kit test and the IHA-TA test were found to be 73.6% and 68.4%, respectively. The specificity of these tests was 96.6%, 98.3%, and 83.3%, respectively. When all 4 tests were assessed together, it was found that the sensitivity had risen to 94.7%. When the ELISA-kit was assessed with the IHA-kit and IHA-TA together, it was found that the sensitivity was 89.5% and 84.2%, respectively. Likewise, the combination of the ELISA-lab and IHA-kit or IHA-TA allowed us to achieve a sensitivity of 84.2% in cases of pulmonary echinococcosis. In conclusion, the diagnosis would be imminent if least 2 tests were applied together.  相似文献   

18.
Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on plant chemical defenses.  相似文献   

19.
Six cultivars of bread wheat (Triticum aestivum ssp. vulgareL. amend. Thell.) of diverse climatic origin and different developmentalpatterns were studied under two environments, (a growth roomand an outdoors sowing) for the duration and rate of completionof their developmental phases. The need for vernalization in the cultivar Cappelle Desprezsubstantially increased the length of the vegetative phase,particularly in the growth room. Large differences in the durationof reproductive initiation and stem elongation phases betweenCappelle Desprez and the other cultivars in the growth roomsowing suggests an influence of veralization beyond the vegetativephase. Differences between the two environments influenced the durationof all phases of development, giving pronounced between-cultivarvariation in both the stem elongation and ripening phases. Rates of reproductive initiation and stem elongation for thecultivars, within and between the two environments appearedto be largely independent. The rate of spikelet initiation wassignificantly decreased in the growth room compared with theoutdoor sowing. The duration of the phases of development withineach cultivar appeared to be independent of each other, indicatingthe possibility for adjusting the rate, or duration, of a phaseof development comparatively free of a compensatory change inthe rate, or duration, of other phases. Triticum aestivum ssp, vulgare, wheat, vegetative phase, flower initiation, vernalization, photoperiodism  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号