首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An increased concentration of cytosolic calcium ions (Ca2+) is an early response by plant cells to heat shock. However, the molecular mechanism underlying the heat‐induced initial Ca2+ response in plants is unclear. In this study, we identified and characterized a heat‐activated Ca2+‐permeable channel in the plasma membrane of Arabidopsis thaliana root protoplasts using reverse genetic analysis and the whole‐cell patch‐clamp technique. The results indicated that A. thaliana cyclic nucleotide‐gated ion channel 6 (CNGC6) mediates heat‐induced Ca2+ influx and facilitates expression of heat shock protein (HSP) genes and the acquisition of thermotolerance. GUS and GFP reporter assays showed that CNGC6 expression is ubiquitous in A. thaliana, and the protein is localized to the plasma membrane of cells. Furthermore, it was found that the level of cytosolic cAMP was increased by a mild heat shock, that CNGC6 was activated by cytosolic cAMP, and that exogenous cAMP promoted the expression of HSP genes. The results reveal the role of cAMP in transduction of heat shock signals in plants. The correlation of an increased level of cytosolic cAMP in a heat‐shocked plant with activation of the Ca2+ channels and downstream expression of HSP genes sheds some light on how plants transduce a heat stimulus into a signal cascade that leads to a heat shock response.  相似文献   

2.
Plant innate immune response to pathogen infection includes an elegant signaling pathway leading to reactive oxygen species generation and resulting hypersensitive response (HR); localized programmed cell death in tissue surrounding the initial infection site limits pathogen spread. A veritable symphony of cytosolic signaling molecules (including Ca(2+), nitric oxide [NO], cyclic nucleotides, and calmodulin) have been suggested as early components of HR signaling. However, specific interactions among these cytosolic secondary messengers and their roles in the signal cascade are still unclear. Here, we report some aspects of how plants translate perception of a pathogen into a signal cascade leading to an innate immune response. We show that Arabidopsis thaliana CYCLIC NUCLEOTIDE GATED CHANNEL2 (CNGC2/DND1) conducts Ca(2+) into cells and provide a model linking this Ca(2+) current to downstream NO production. NO is a critical signaling molecule invoking plant innate immune response to pathogens. Plants without functional CNGC2 lack this cell membrane Ca(2+) current and do not display HR; providing the mutant with NO complements this phenotype. The bacterial pathogen-associated molecular pattern elicitor lipopolysaccharide activates a CNGC Ca(2+) current, which may be linked to NO generation due to buildup of cytosolic Ca(2+)/calmodulin.  相似文献   

3.
4.
Oscillations in cytosolic free calcium determine the polarity of tip‐growing root hairs. The Ca2+ channel cyclic nucleotide gated channel 14 (CNGC14) contributes to the dynamic changes in Ca2+ concentration gradient at the root hair tip. However, the mechanisms that regulate CNGC14 are unknown. In this study, we detected a direct interaction between calmodulin 7 (CaM7) and CNGC14 through yeast two‐hybrid and bimolecular fluorescence complementation assays. We demonstrated that the third EF‐hand domain of CaM7 specifically interacts with the cytosolic C‐terminal domain of CNGC14. A two‐electrode voltage clamp assay showed that CaM7 completely inhibits CNGC14‐mediated Ca2+ influx, suggesting that CaM7 negatively regulates CNGC14‐mediated calcium signaling. Furthermore, CaM7 overexpressing lines phenocopy the short root hair phenotype of a cngc14 mutant and this phenotype is insensitive to changes in external Ca2+ concentrations. We, thus, identified CaM7‐CNGC14 as a novel interacting module that regulates polar growth in root hairs by controlling the tip‐focused Ca2+ signal.  相似文献   

5.
Ca2+ rise and nitric oxide (NO) generation are essential early steps in plant innate immunity and initiate the hypersensitive response (HR) to avirulent pathogens. Previous work from this laboratory has demonstrated that a loss-of-function mutation of an Arabidopsis (Arabidopsis thaliana) plasma membrane Ca2+-permeable inwardly conducting ion channel impairs HR and that this phenotype could be rescued by the application of a NO donor. At present, the mechanism linking cytosolic Ca2+ rise to NO generation during pathogen response signaling in plants is still unclear. Animal nitric oxide synthase (NOS) activation is Ca2+/calmodulin (CaM) dependent. Here, we present biochemical and genetic evidence consistent with a similar regulatory mechanism in plants: a pathogen-induced Ca2+ signal leads to CaM and/or a CaM-like protein (CML) activation of NOS. In wild-type Arabidopsis plants, the use of a CaM antagonist prevents NO generation and the HR. Application of a CaM antagonist does not prevent pathogen-induced cytosolic Ca2+ elevation, excluding the possibility of CaM acting upstream from Ca2+. The CaM antagonist and Ca2+ chelation abolish NO generation in wild-type Arabidopsis leaf protein extracts as well, suggesting that plant NOS activity is Ca2+/CaM dependent in vitro. The CaM-like protein CML24 has been previously associated with NO-related phenotypes in Arabidopsis. Here, we find that innate immune response phenotypes (HR and [avirulent] pathogen-induced NO elevation in leaves) are inhibited in loss-of-function cml24-4 mutant plants. Pathogen-associated molecular pattern-mediated NO generation in cells of cml24-4 mutants is impaired as well. Our work suggests that the initial pathogen recognition signal of Ca2+ influx into the cytosol activates CaM and/or a CML, which then acts to induce downstream NO synthesis as intermediary steps in a pathogen perception signaling cascade, leading to innate immune responses, including the HR.  相似文献   

6.
Calcium ions exhibit unique properties and a universal ability to transmit diverse signals in plant cells under the primary action of hormones, pathogens, light, gravity, and various abiotic stressors. In the last few years, considerable progress has been achieved in deciphering the mechanisms of Ca2+ involvement in the regulation of plant responses. Recent studies revealed the genes encoding Ca2+-permeable channels that conduct Ca2+ currents across the membranes during the transduction of the Ca2+ signal. These proteins comprise the ligand-gated Ca2+-permeable channels activated by cyclic nucleotides (CNGC) and amino acids (glutamate receptor-like channels, GLR), the voltage-gated tonoplast channel (two-pore channel, TPC1), mechanosensitive channels (MSL, MCA, OSCA1), and annexins. The role of Ca2+-ATPase and Ca2+/H+-exchangers in the active extrusion of excess cytoplasmic Ca2+ into the apoplast or cell organelles was examined in detail. The calmodulins (CaM), CaM-like proteins (CML), Ca2+-dependent protein kinases (CDPK), and complexes of calcineurin-B-like proteins (CBL) with CBL-interacting protein kinases (CIPK) were found to produce intricate signaling networks that decode Ca2+ signals and elicit plant responses to external stimuli. This review analyzes the data accumulated over the past decade on the principles of formation and propagation of the calcium signal in plant cells.  相似文献   

7.
CLAVATA1 (CLV1) is a receptor protein expressed in the shoot apical meristem (SAM) that translates perception of a non‐cell‐autonomous CLAVATA3 (CLV3) peptide signal into altered stem cell fate. CLV3 reduces expression of WUSCHEL (WUS) and FANTASTIC FOUR 2 (FAF2) in the SAM. Expression of WUS and FAF2 leads to maintenance of undifferentiated stem cells in the SAM. CLV3 binding to CLV1 inhibits expression of these genes and controls stem cell fate in the SAM through an unidentified signaling pathway. Cytosolic Ca2+ elevations, cyclic nucleotide (cGMP)‐activated Ca2+ channels, and cGMP have been linked to signaling downstream of receptors similar to CLV1. Hence, we hypothesized that cytosolic Ca2+ elevation mediates the CLV3 ligand/CLV1 receptor signaling that controls meristem stem cell fate. CLV3 application to Arabidopsis seedlings results in elevation of cytosolic Ca2+ and cGMP. CLV3 control of WUS was prevented in a genotype lacking a functional cGMP‐activated Ca2+ channel. In wild‐type plants, CLV3 inhibition of WUS and FAF2 expression was impaired by treatment with either a Ca2+ channel blocker or a guanylyl cyclase inhibitor. When CLV3‐dependent repression of WUS is blocked, altered control of stem cell fate leads to an increase in SAM size; we observed a larger SAM size in seedlings treated with the Ca2+ channel blocker. These results suggest that the CLV3 ligand/CLV1 receptor system initiates a signaling cascade that elevates cytosolic Ca2+, and that this cytosolic secondary messenger is involved in the signal transduction cascade linking CLV3/CLV1 to control of gene expression and stem cell fate in the SAM.  相似文献   

8.
Wu J  Qu H  Jin C  Shang Z  Wu J  Xu G  Gao Y  Zhang S 《Plant cell reports》2011,30(7):1193-1200
Many signal-transduction processes in plant cells have been suggested to be triggered by signal-induced opening of calcium ion (Ca2+) channels in the plasma membrane. Cyclic nucleotides have been proposed to lead to an increase in cytosolic free Ca2+ in pollen. However, direct recordings of cyclic-nucleotide-induced Ca2+ currents in pollen have not yet been obtained. Here, we report that cyclic AMP (cAMP) activated a hyperpolarization-activated Ca2+ channel in the Pyrus pyrifolia pollen tube using the patch-clamp technique, which resulted in a significant increase in pollen tube protoplast cytosolic-Ca2+ concentration. Outside-out single channel configuration identified that cAMP directly increased the Ca2+ channel open-probability without affecting channel conductance. cAMP-induced currents were composed of both Ca2+ and K+. However, cGMP failed to mimic the cAMP effect. Higher cytosolic free-Ca2+ concentration significantly decreased the cAMP-induced currents. These results provide direct evidence for cAMP activation of hyperpolarization-activated Ca2+ channels in the plasma membrane of pollen tubes, which, in turn, modulate cellular responses in regulation of pollen tube growth.  相似文献   

9.
Cyclic nucleotide-gated ion channels (CNGCs) have been firmly established as Ca2+-conducting ion channels that regulate a wide variety of physiological responses in plants. CNGC2 has been implicated in plant immunity and Ca2+ signaling due to the autoimmune phenotypes exhibited by null mutants of CNGC2 in Arabidopsis thaliana. However, cngc2 mutants display additional phenotypes that are unique among autoimmune mutants, suggesting that CNGC2 has functions beyond defense and generates distinct Ca2+ signals in response to different triggers. In this study, we found that cngc2 mutants showed reduced gravitropism, consistent with a defect in auxin signaling. This was mirrored in the diminished auxin response detected by the auxin reporters DR5::GUS and DII-VENUS and in a strongly impaired auxin-induced Ca2+ response. Moreover, the cngc2 mutant exhibits higher levels of the endogenous auxin indole-3-acetic acid, indicating that excess auxin in the cngc2 mutant causes its pleiotropic phenotypes. These auxin signaling defects and the autoimmunity syndrome of the cngc2 mutant could be suppressed by loss-of-function mutations in the auxin biosynthesis gene YUCCA6 (YUC6), as determined by identification of the cngc2 suppressor mutant repressor of cngc2 (rdd1) as an allele of YUC6. A loss-of-function mutation in the upstream auxin biosynthesis gene TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA1, WEAK ETHYLENE INSENSITIVE8) also suppressed the cngc2 phenotypes, further supporting the tight relationship between CNGC2 and the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS–YUCCA -dependent auxin biosynthesis pathway. Taking these results together, we propose that the Ca2+ signal generated by CNGC2 is a part of the negative feedback regulation of auxin homeostasis in which CNGC2 balances cellular auxin perception by influencing auxin biosynthesis.

One-sentence summary: The immunity-related Ca2+ channel CYCLIC NUCLEOTIDE-GATED CHANNEL 2 modulates auxin homeostasis and balances cellular auxin perception by influencing auxin biosynthesis.  相似文献   

10.
11.
Lipid rafts/caveolae as microdomains of calcium signaling   总被引:1,自引:1,他引:0  
Ca2+ is a major signaling molecule in both excitable and non-excitable cells, where it serves critical functions ranging from cell growth to differentiation to cell death. The physiological functions of these cells are tightly regulated in response to changes in cytosolic Ca2+ that is achieved by the activation of several plasma membrane (PM) Ca2+ channels as well as release of Ca2+ from the internal stores. One such channel is referred to as store-operated Ca2+ channel that is activated by the release of endoplasmic reticulum (ER) Ca2+ which initiates store-operated Ca2+ entry (SOCE). Recent advances in the field suggest that some members of TRPCs and Orai channels function as SOCE channels. However, the molecular mechanisms that regulate channel activity and the exact nature of where these channels are assembled and regulated remain elusive. Research from several laboratories has demonstrated that key proteins involved in Ca2+ signaling are localized in discrete PM lipid rafts/caveolar microdomains. Lipid rafts are cholesterol and sphingolipid-enriched microdomains that function as unique signal transduction platforms. In addition lipid rafts are dynamic in nature which tends to scaffold certain signaling molecules while excluding others. By such spatial segregation, lipid rafts not only provide a favorable environment for intra-molecular cross-talk but also aid to expedite the signal relay. Importantly, Ca2+ signaling is shown to initiate from these lipid raft microdomains. Clustering of Ca2+ channels and their regulators in such microdomains can provide an exquisite spatiotemporal regulation of Ca2+-mediated cellular function. Thus in this review we discuss PM lipid rafts and caveolae as Ca2+-signaling microdomains and highlight their importance in organizing and regulating SOCE channels.  相似文献   

12.
Tamas Balla   《Cell calcium》2009,45(6):527-534
Increased phosphoinositide turnover was first identified as an early signal transduction event initiated by cell surface receptors that were linked to calcium signaling. Subsequently, the generation of inositol 1,4,5-trisphosphate by phosphoinositide-specific phospholipase C enzymes was defined as the major link between inositide turnover and the cytosolic Ca2+ rise in response to external stimulation. However, in the last decades, phosphoinositides have been emerging as major regulatory lipids involved in virtually every membrane-associated signaling process. Phosphoinositides regulate both the activity and the trafficking of almost all ion channels and transporters contributing to the maintenance of the ionic gradients that are essential for the proper functioning of all eukaryotic cells. Here we summarize the various means by which phosphoinositides affect ion channel functions with special emphasis on Ca2+ signaling and outline the principles that govern the highly compartmentalized roles of these regulatory lipids.  相似文献   

13.
In airway myocytes signal transduction via cytosolic calcium plays an important role. In relation with experimental results we review models of basic molecular and cellular mechanisms involved in the signal transduction from the myocyte stimulation to the activation of the contractile apparatus. We concentrate on mechanisms for encoding of input signals into Ca2+ signals and the mechanisms for their decoding. The mechanisms are arranged into a general scheme of cellular signaling, the so-called bow-tie architecture of signaling, in which calcium plays the role of a common media for cellular signals and links the encoding and decoding part. The encoding of calcium signals in airway myocytes is better known and is presented in more detail. In particular, we focus on three recent models taking into account the intracellular calcium handling and ion fluxes through the plasma membrane. The model of membrane conductances was originally proposed for predicting membrane depolarization and voltage-dependent Ca2+ influx triggered by initial cytosolic Ca2+ increase as observed on cholinergic stimulation. Cellular models of intracellular Ca2+ handling were developed to investigate the role of a mixed population of InsP3 receptor isoforms and the cellular environment in the occurrence of Ca2+ oscillations, and the respective role of the sarcoplasmic reticulum, mitochondria, and cytosolic Ca2+-binding proteins in cytosolic Ca2+ clearance. Modeling the mechanisms responsible for the decoding of calcium signals is developed in a lesser extent; however, the most recent theoretical studies are briefly presented in relation with the known experimental results.  相似文献   

14.
Recently, it has become possible to record the localized fluorescence transient associated with the opening of a single plasma membrane Ca2+ permeable ion channel using Ca2+ indicators like fluo-3. These Single Channel Ca2+ Fluorescence Transients (SCCaFTs) share some of the characteristics of such elementary events as Ca2+ sparks and Ca2+ puffs caused by Ca2+ release from intracellular stores (due to the opening of ryanodine receptors and IP3 receptors, respectively). In contrast to intracellular Ca2+ release events, SCCaFTs can be observed while simultaneously recording the unitary channel currents using patch-clamp techniques to verify the channel openings. Imaging SCCaFTs provides a way to examine localized Ca2+ handling in the vicinity of a channel with a known Ca2+ influx, to obtain the Ca2+ current passing through plasma membrane cation channels in near physiological solutions, to localize Ca2+ permeable ion channels on the plasma membrane, and to estimate the Ca2+ currents underlying those elementary events where the Ca2+ currents cannot be recorded. Here we review studies of these fluorescence transients associated with caffeine-activated channels, L-type Ca2+ channels, and stretch-activated channels. For the L-type Ca2+ channel, SCCaFTs have been termed sparklets. In addition, we discuss how SCCaFTs have been used to estimate Ca2+ currents using the rate of rise of the fluorescence transient as well as the signal mass associated with the total fluorescence increase.  相似文献   

15.
Ion Channels in Cell Proliferation and Apoptotic Cell Death   总被引:14,自引:0,他引:14  
Cell proliferation and apoptosis are paralleled by altered regulation of ion channels that play an active part in the signaling of those fundamental cellular mechanisms. Cell proliferation must - at some time point - increase cell volume and apoptosis is typically paralleled by cell shrinkage. Cell volume changes require the participation of ion transport across the cell membrane, including appropriate activity of Cl and K+ channels. Besides regulating cytosolic Cl activity, osmolyte flux and, thus, cell volume, most Cl channels allow HCO3 exit and cytosolic acidification, which inhibits cell proliferation and favors apoptosis. K+ exit through K+ channels may decrease intracellular K+ concentration, which in turn favors apoptotic cell death. K+ channel activity further maintains the cell membrane potential, a critical determinant of Ca2+ entry through Ca2+ channels. Cytosolic Ca2+ may trigger mechanisms required for cell proliferation and stimulate enzymes executing apoptosis. The switch between cell proliferation and apoptosis apparently depends on the magnitude and temporal organization of Ca2+ entry and on the functional state of the cell. Due to complex interaction with other signaling pathways, a given ion channel may play a dual role in both cell proliferation and apoptosis. Thus, specific ion channel blockers may abrogate both fundamental cellular mechanisms, depending on cell type, regulatory environment and condition of the cell. Clearly, considerable further experimental effort is required to fully understand the complex interplay between ion channels, cell proliferation and apoptosis.  相似文献   

16.
An increasing number of studies indicate that changes in cytosolic free Ca2+ ([Ca2+]c) mediate specific types of signal transduction in plant cells. Modulation of [Ca2+]c is likely to be achieved through changes in the activity of Ca2+ channels, which catalyse passive influx of Ca2+ to the cytosol from extracellular and intracellular compartments. Voltage-sensitive Ca2+ channels have been detected in the plasma membranes of algae, where they control membrane electrical properties and cell turgor. These channels are sensitive to 1,4-dihydropyridines, which in animal cells specifically affect one class of voltage-regulated plasma membrane Ca2+ channel. Ca2+-permeable channels with different pharmacological properties have been found in the plasma membrane of higher plants. Recent evidence suggests the existence of two discrete classes of Ca2+ channel co-resident in the vacuolar membrane (tonoplast) of higher plants. The first is gated by inositol 1,4,5-trisphosphate, and bears a number of similarities to its animal counterpart which is located in the endoplasmic reticulum (ER). The second tonoplast Ca2+ channel is voltage-operated. However, the specific roles of these tonoplast channels in signal transduction have yet to be elucidated.  相似文献   

17.
The hypersensitive response (HR) involves programmed cell death (PCD) in response to pathogen infection. To investigate the pathogen resistance signaling pathway, we previously identified the Arabidopsis mutant cpr22, which displays constitutive activation of multiple defense responses including HR like cell death. The cpr22 mutation has been identified as a 3 kb deletion that fuses two cyclic nucleotide-gated ion channel (CNGC)-encoding genes, ATCNGC11 and ATCNGC12, to generate a novel chimeric gene, ATCNGC11/12. In this study, we conducted a characterization of cell death induced by transient expression of ATCNGC11/12 in Nicotiana benthamiana. Electron microscopic analysis of this cell death showed similar characteristics to PCD, such as plasma membrane shrinkage and vesicle formation. The hallmark of animal PCD, fragmentation of nuclear DNA, was also observed in ATCNGC11/12-induced cell death. The development of cell death was significantly suppressed by caspase-1 inhibitors, suggesting the involvement of caspases in this process. Recently, vacuolar processing enzyme (VPE) was isolated as the first plant caspase-like protein, which is involved in HR development. In VPE-silenced plants development of cell death induced by ATCNGC11/12 was much slower and weaker compared to control plants, suggesting the involvement of VPE as a caspase in ATCNGC11/12-induced cell death. Complementation analysis using a Ca2+ uptake deficient yeast mutant demonstrated that the ATCNGC11/12 channel is permeable to Ca2+. Additionally, calcium channel blockers such as GdCl3 inhibited ATCNGC11/12-induced HR formation, whereas potassium channel blockers did not. Taken together, these results indicate that the cell death that develops in the cpr22 mutant is indeed PCD and that the chimeric channel, ATCNGC11/12, is at the point of, or up-stream of the calcium signal necessary for the development of HR.  相似文献   

18.
19.
Chemical signaling under abiotic stress environment in plants   总被引:1,自引:0,他引:1  
Many chemicals are critical for plant growth and development and play an important role in integrating various stress signals and controlling downstream stress responses by modulating gene expression machinery and regulating various transporters/pumps and biochemical reactions. These chemicals include calcium (Ca2+), cyclic nucleotides, polyphosphoinositides, nitric oxide (NO), sugars, abscisic acid (ABA), jasmonates (JA), salicylic acid (SA) and polyamines. Ca2+ is one of the very important ubiquitous second messengers in signal transduction pathways and usually its concentration increases in response to the stimuli including stress signals. Many Ca2+ sensors detect the Ca2+ signals and direct them to downstream signaling pathways by binding and activating diverse targets. cAMP or cGMP protects the cell with ion toxicity. Phosphoinositides are known to be involved both in transmission of signal across the plasma membrane and in intracellular signaling. NO activates various defense genes and acts as a developmental regulator in plants. Sugars affect the expression of many genes involved in photosynthesis, glycolysis, nitrogen metabolism, sucrose and starch metabolism, defense mechanisms and cell cycle regulation. ABA, JA, SA and polyamines are also involved in many stress responses. Cross-talk between these chemical signaling pathways is very common in plant responses to abiotic and bitotic factors. In this article we have described the role of these chemicals in initiating signaling under stress conditions mainly the abiotic stress.Key words: ABA, abiotic stress, Ca2+ binding proteins, calcium signaling, cyclic nucleotides, nitric oxide, phosphoinositides signaling, signal transduction, sugar signaling  相似文献   

20.
Peiter E 《Cell calcium》2011,50(2):120-128
This review portrays the plant vacuole as both a source and a target of Ca2+ signals. In plants, the vacuole represents a Ca2+ store of enormous size and capacity. Total and free Ca2+ concentrations in the vacuole vary with plant species, cell type, and environment, which is likely to have an impact on vacuolar function and the release of vacuolar Ca2+. It is known that cytosolic Ca2+ signals are often generated by release of the ion from internal stores, but in very few cases has a role of the vacuole been directly demonstrated. Biochemical and electrophysical studies have provided evidence for the operation of ligand- and voltage-gated Ca2+-permeable channels in the vacuolar membrane. The underlying molecular mechanisms are largely unknown with one exception: the slow vacuolar channel, encoded by TPC1, is the only vacuolar Ca2+-permeable channel cloned to date. However, due to its complex regulation and its low selectivity amongst cations, the role of this channel in Ca2+ signalling is still debated. Many transport proteins at the vacuolar membrane are also targets of Ca2+ signals, both by direct binding of Ca2+ and by Ca2+-dependent phosphorylation. This enables the operation of feedback mechanisms and integrates vacuolar transport systems in the wider signalling network of the plant cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号