首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, sensitive cupric oxide nanoparticles (CuO NPs) enhanced chemiluminescence (CL) method was developed for the measurement of β‐lactam antibiotics, including amoxicillin and cefazolin sodium. The method was based on suppression of the CuO NPs–luminol–H2O2 CL reaction by β‐lactam antibiotics. Experimental parameters that influenced the inhibitory effect of the antibiotic drugs on the CL system, such as NaOH (mol/L), luminol (µmol/L), H2O2 (mol/L) and CuO NPs (mg/L) concentrations, were optimized. Calibration graphs were linear and had dynamic ranges of 1.0 × 10–6 to 8.0 × 10–6 mol/L and 3.0 × 10–5 to 5.0 × 10–3 mol/L for amoxicillin and cefazolin sodium, respectively, with corresponding detection limits of 7.9 × 10–7 mol/L and 1.8 × 10–5 mol/L. The relative standard deviations of five replicate measurements of 5.0 × 10–6 amoxicillin and 5 × 10–4 cefazolin sodium were 5.43 and 5.01%, respectively. The synthesized CuO NPs were characterized by X‐ray diffraction (XRD) and transmission electronmicroscopy (TEM). The developed approach was exploited successfully to measure antibiotics in pharmaceutical preparations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Liquid‐core waveguides (LCWs), devices that constrain the emitted radiation minimizing losses during the transport, are an alternative to maximize the amount of detected radiation in luminescence. In this work, the performance of a LCW flow‐cell was critically evaluated for chemiluminescence measurements, by using as model the oxidation of luminol by hydrogen peroxide or hypochlorite. An analytical procedure for hypochlorite determination was also developed, with linear response in the range 0.2–3.8 mg/L (2.7–51 µmol/L), a detection limit estimated as 8 µg/L (0.64 µmol/L) at the 99.7% confidence level and luminol consumption of 50 µg/determination. The coefficients of variation were 3.3% and 1.6% for 0.4 and 1.9 mg/L ClO?, respectively, with a sampling rate of 164 determinations/h. The procedure was applied to the analysis of Dakin's solution samples, yielding results in agreement with those obtained by iodometric titration at the 95% confidence level. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
This paper describes a new technique for the determination of captopril in pharmaceutical formulations, implemented by employing multicommuted flow analysis. The analytical procedure was based on the reaction between hypochlorite and captopril. The remaining hypochlorite oxidized luminol that generated electromagnetic radiation detected using a homemade luminometer. To the best of our knowledge, this is the first time that this reaction has been exploited for the determination of captopril in pharmaceutical products, offering a clean analytical procedure with minimal reagent usage. The effectiveness of the proposed procedure was confirmed by analyzing a set of pharmaceutical formulations. Application of the paired t‐test showed that there was no significant difference between the data sets at a 95% confidence level. The useful features of the new analytical procedure included a linear response for captopril concentrations in the range 20.0–150.0 µmol/L (r = 0.997), a limit of detection (3σ) of 2.0 µmol/L, a sample throughput of 164 determinations per hour, reagent consumption of 9 µg luminol and 42 µg hypochlorite per determination and generation of 0.63 mL of waste. A relative standard deviation of 1% (n = 6) for a standard solution containing 80 µmol/L captopril was also obtained. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Elevated plasma concentrations of asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) were found in various clinical settings including coronary heart disease. To assess ADMA and SDMA diagnostic validity in patients with different stages of ischemic heart disease, we studied these markers in patients having stable angina pectoris (SAP), unstable angina (USAP), and acute myocardial infarction (AMI). The results were compared with the values of healthy individuals. Plasma ADMA and SDMA levels were measured by high-performance liquid chromatography. In all patient groups both markers were significantly elevated in comparison with control ones (p?<?0.001). In SAP patients, the median ADMA value was 0.75 (0.31–2.73)?μmol/L, and SDMA 1.11 (0.69–0.1.42)?μmol/L, in USAP patients, the marker values were 0.94 (0.34–3.13)?μmol/L and 1.23 (0.88–4.72)?μmol/L, and in AMI patients, 0.98 (0.48–2.01)?μmol/L and 1.26 (0.75–2.93)?μmol/L, while in healthy subjects they were 0.31 (0.17–0.87)?μmol/L and 0.29 (0.20–0.83)?μmol/L, respectively. SDMA was found significantly different in SAP and AMI patients (p?<?0.05). Diagnostic accuracy was determined by receiver operating characteristic (ROC) curve analysis. The highest area under the ROC (AUC) for ADMA was obtained in AMI patients (0.976), while for SDMA in USAP patients (1.000). There was no significant difference between the AUCs. The greatest sensitivity and specificity were found in the USAP group (95.65 and 96.30?% for ADMA, and 100?% for each characteristic of SDMA). Considering these results, SDMA showed better clinical accuracy in assessing ischemic disease, where it could be used as a valid marker and a therapeutic target.  相似文献   

5.
The response of Potamogeton crispus L. breakdown to controlled doses of different levels of chlorine and chlorine + ammonia was investigated over two years in outdoor experimental streams. In 1985, downstream riffles of 2 streams were dosed (observed in-stream concentrations) at ca. 10 μg/L Total Residual Chlorine (TRC), one stream at 64 μg/L TRC and one stream at 230 μg/L TRC. Two control streams were not dosed and the upstream riffles of each stream served as within stream controls. In 1986, the downstream riffle of one stream was dosed at 70 μg/L TRC and a second stream was dosed at 200 μg/L TRC. Four streams were also dosed with 2.5 mg/L NH3-N: one stream with no chlorine, one stream with ca. 10 μg/L TRC, one with 56 μg/L TRC, and one with 150 μg/L TRC. A seventh stream was dosed for 2 h at 2000 μg/L TRC and 2.5 mg/L ammonia and then allowed to recover (recovery stream). Each year, litter decomposition (degree day k values) was measured during two 35 day trials (Jun–Jul and Aug–Sep). In 1985, when streams were dosed with chlorine alone, decomposition was significantly reduced with the high (230 μg/L TRC) chlorine dose. Downstream decomposition was 27% (Jun–Jul) and 59% (Aug–Sep) of the upstream (control) rate. No other chlorine effects were found during this period. In Jun–Jul 1986, there was significantly lower decomposition in the downstream dosed sites of the 200 μg/L TRC alone stream, the 146 μg/L TRC + ammonia stream and the recovery stream; downstream decay rates were (respectively) 56%, 42% and 64% of the upstream control sites. No other up-down pairs were different in July 1986. In Aug–Sep, all three streams with chlorine + ammonia (6, 56 and 146 μg/L TRC + 2,5 mg/L ammonia) and the 70 μg/L TRC alone stream had significantly lower decomposition rates in the downstream dosed sites. For these streams, downstream decay rates ranged from 46% (high chlorine + ammonia) to 73% (low chlorine + ammonia) of the upstream control rates. No other up-down pairs were different during this trial. Up and downstream sites of the stream dosed with 2.5 mg/L ammonia alone were nearly identical for both trials (< 3% difference). These results indicate that TRC at less than 250 μg/L can significantly reduce litter decomposition and strongly suggest that addition of ammonia to chlorinated water can increase the toxic effect of chlorine. currently at the Department of Fisheries and Wildlife currently at the Department of Fisheries and Wildlife  相似文献   

6.
Abstract: We have previously shown that the basal acetylcholine release in the ventral striatum is under the enhancing influence of endogenous nitric oxide (NO) and that NO donors cause pronounced increases in the acetylcholine release rate. To investigate the role of cyclic GMP, glutamate, and GABA in the NO-induced acetylcholine release, we superfused the nucleus accumbens, (Nac) of the anesthetized rat with various compounds through a push-pull cannula and determined the neurotransmitter released in the perfusate. Superfusion of the Nac with the NO donors diethylamine/NO (DEANO; 100 µmol/L), S-nitroso-N-acetylpenicillamine (SNAP; 200 µmol/L), or 3-morpholinosydnonimine (SIN-1; 200 µmol/L) enhanced the acetylcholine release rate. The guanylyl cyclase inhibitor 1H-(1,2,4)-oxodiazolo(4,3-a)quinoxalin-1-one (ODQ; 10 µmol/L) abolished the effects of DEANO and SIN-1. 6-(Phenylamino)-5,8-quinolinedione (LY-83583; 100 µmol/L), which also inhibits cyclic GMP synthesis, inhibited the releasing effects of DEANO and of SNAP, whereas the effect of SIN-1 on acetylcholine release was not influenced. The DEANO-induced release of acetylcholine was also abolished in the presence of 20 µmol/L 6,6-dinitroquinoxaline-2,3-dione (DNQX) and 10 µmol/L (±)-2-amino-5-phosphonopentanoic acid (AP-5). Simultaneous superfusion with 50 µmol/L quinpirole and 10 µmol/L 7-bromo-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF 83566) was ineffective. Superfusion with 500 µmol/L DEANO decreased the release of acetylcholine. The inhibitory effect of 500 µmol/L DEANO was reversed to an enhanced release on superfusion with 20 µmol/L bicuculline. Bicuculline also enhanced the basal release rate. These findings indicate that cyclic GMP mediates the NO-induced release of acetylcholine by enhancing the outflow of glutamate. Dopamine is not involved in this process. Only high concentrations of NO increase the output of GABA, which in turn decreases acetylcholine release. Our results suggest that cells that are able to release glutamate, such as glutamatergic neurons, are the main target of NO in the Nac.  相似文献   

7.
We report for the first time that the sensitivity of the luminol–hypochlorite chemiluminescence (CL) reaction was enhanced approximately 10 times by the addition of phloxine B. The maximum wavelength of CL emission shifted from 431 to 595 nm in the absence and presence, respectively, of phloxine B, suggesting that an efficient chemiluminescence resonance energy transfer occurred between a luminol donor and a phloxine B acceptor in the luminol–hypochlorite–phloxine B system. Based on this observation, a simple, rapid and sensitive microflow injection CL method, using a microchip with spiral channel configurations, was developed for the determination of hypochlorite. Under optimized conditions, a linear calibration curve (R2 = 0.9944) over the range 0.1–10.0 µmol/L was obtained, with a detection limit of 0.025 µmol/L (S:N = 3). The relative standard deviation (RSD) was found to be 4.2% (n = 10) for 2.5 µmol/L hypochlorite. The sample consumption was only 2 μL, with a sample throughput of 90/h. The method has been used for determining trace amounts of hypochlorite in water samples with satisfactory results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.

Background

Hyperhomocysteinemia has been identified as a potential risk for atherosclerotic disease in epidemiologic studies. This study investigates the impact of elevated serum homocysteine on restenosis after carotid endarterectomy (CEA).

Methods

In a retrospective study, we compared fasting plasma homocysteine levels of 51 patients who developed restenosis during an eight year period after CEA with 45 patients who did not develop restenosis. Restenosis was defined as at least 50% stenosis and was assessed by applying a routine duplex scan follow up investigation. Patients with restenosis were divided into a group with early restenosis (between 3 and 18 months postoperative, a total of 39 patients) and late restenosis (19 and more months; a total of 12 patients).

Results

The groups were controlled for age, sex, and risk factors such as diabetes, nicotine abuse, weight, hypertension, and hyperlipidemia. Patients with restenosis had a significant lower mean homocysteine level (9.11 μmol/L; range: 3.23 μmol/L to 26.49 μmol/L) compared to patients without restenosis (11.01 μmol/L; range: 5.09 μmol/L to 23.29 μmol/L; p = 0.03). Mean homocysteine level in patients with early restenosis was 8.88 μmol/L (range: 3.23–26.49 μmol/L) and 9.86 μmol/L (range 4.44–19.06 μmol/L) in late restenosis (p = 0.50).

Conclusion

The finding suggests that high plasma homocysteine concentrations do not play a significant role in the development of restenosis following CEA.  相似文献   

9.
In this study, a straightforward and automated pulsed flow‐based procedure was developed for the chemiluminometric determination of gabapentin [1‐(aminomethyl)cyclo‐hexaneacetic acid], a new generation antiepileptic drug, in different formulated dosage forms. The software‐controlled time‐based injection method capitalizes on the decrease of the background chemiluminescence (CL) readout of the luminol–hypochlorite reaction in the presence of gabapentin. In short, gabapentin works as a hypochlorite scavenger. The analytical procedure was implemented in a multi‐pumping flow network furnished with a suite of microdispensing solenoid‐actuated pumps. The diaphragm‐type micropumps might be configured to operate as fluid propellers, commutation units and metering injectors. A dynamic linear working range for gabapentin concentrations in the range 60–350 µmol/L was obtained, with an estimated detection limit of 40 µmol/L. The flow analyser handles about 41 injections/h and yields precise results (RSD < 2%). The miniaturized flow analyser thus has potential to be exploited for in‐line monitoring of drug manufacturing within the quality assurance framework of modern pharmaceutical companies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Xiong X  Zhang Q  Nan Y  Gu X 《Luminescence》2012,27(5):371-378
A simple one‐step method is established for plasma determination of ibuprofen and its pharmacokinetic study. The method involves simple sample pre‐treatment by dilution, rapid separation by ultrafiltration (UF) and online sensitive detection by chemiluminescence (CL) based on significant intensity enhancement of ibuprofen on the weak CL of potassium permanganate and sodium sulphite in an acidic system. The calibration curve for ibuprofen is linear in the range 0.1–50.0 µg/mL in rat plasma. Average recoveries of ibuprofen at 0.80, 12.0 and 40.0 µg/mL amounted to 98.0 ± 4.2%, 101.2 ± 3.6% and 99.3 ± 5.4%, respectively. Standard deviations of intra‐ and inter‐day measurement precision and accuracy are within ±10.0%. The detection limit for ibuprofen is 10.0 µg/L in plasma samples. Pharmacokinetic study of ibuprofen by the validated method shows that the mean plasma drug concentration–time course confirms to a classical two‐compartment open model with first‐order absorption. The proposed method will be an alternative for pre‐clinical pharmacokinetic study of ibuprofen and other non‐steroidal anti‐inflammatory drugs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
《Biomarkers》2013,18(5):477-481
Context: Diagnosis of sepsis in elderly is challenging.

Objectives: We investigated whether procalcitonin concentrations in elderly differed from values for the general population.

Methods: Procalcitonin measurement was assessed prospectively in 307 apyretic patients ≥75 years visiting the emergency department.

Results: Median age was 86 years [IQR81–90] and 222 (72%) were female. Procalcitonin concentration was 0.057 µg/L [0.040–0.092]; 99th percentile was 0.661 µg/L. Patients with procalcitonin concentrations above decisional thresholds had lower glomerular filtration rate and higher C-reactive protein concentrations. Conclusions: Baseline procalcitonin levels are increased in elderly. Elevated values are common and associated to low-grade inflammation and lower eGFR.  相似文献   

12.
Abstract

A well-defined relationship has to exist between substance concentrations in blood and in breath if blood-borne volatile organic compounds (VOCs) are to be used as breath markers of disease or health. In this study, the impact of inspired substances on this relationship was investigated systematically. VOCs were determined in inspired and expired air and in arterial and mixed venous blood of 46 mechanically ventilated patients by means of SPME, GC/MS. Mean inspired concentrations were 25% of expired concentrations for pentane, 7.5% for acetone, 0.7% for isoprene and 0.4% for isoflurane. Only if inspired concentrations were <5% did substance disappearance rates from blood and exhalation rates correlate well. Exhaled substance concentrations depended on venous and inspired concentrations. Patients with sepsis had higher n-pentane and lower acetone concentrations in mixed venous blood than patients without sepsis (2.27 (0.37–8.70) versus 0.65 (0.33–1.48) nmol L?1 and 69 (22–99) versus 18 (6.7–56) µmol L?1). n-Pentane and acetone concentrations in breath showed no differences between the patient groups, regardless whether or not expired concentrations were corrected for inspired concentrations. In mechanically ventilated patients, concentration profiles of volatile substances in breath may considerably deviate from profiles in blood depending on the relative amount of inspired concentrations. A simple correction for inspired substance concentrations was not possible. Hence, substances having inspired concentrations >5% of expired concentrations should not be used as breath markers in these patients without knowledge of concentrations in blood and breath.  相似文献   

13.
Romanian populations of Norway spruce are induced to set terminal buds by four inductive cycles of 8 h light/16 h darkness. To distinguish between circadian and hourglass timekeeping for the photoperiodic control of budset, seedlings were raised in continuous light at 300 µmol m-2s-1 at 20°C for 10 weeks. They were then exposed to an extended night regime consisting of three cycles of 8 h light/40 h dark with 4-h or 1-h nightbreaks (120 µmol m-2s-1) applied to groups of plants at intervals during the extended night. Following a final cycle of 8 h light/16 h dark to maximize budset, the plants were transferred to continuous light. Budset was delayed when the night-break was applied close to the critical nightlength (CNL) of 6–7 h or about 22–23 h later in the extended night, consistent with circadian rather than hourglass timekeeping. Confidence intervals were calculated for the times to maximum effect of the night-breaks.  相似文献   

14.
15.
A simple and sensitive flow‐injection chemiluminescence (CL) method has been developed for the determination of gentamicin sulfate. The method is based on the inhibitory effect of gentamicin on the CL emission accompanying oxidation of luminol by H2O2 in an alkaline medium in the presence of Cu(II) as a catalyst. Inhibition was caused by the formation of a strong complex between analyte and the catalyst. Experimental variables, including the concentrations of luminol (µmol/L), H2O2 (mol/L), Cu(II) (mol/L) and NaOH (mol/L), were optimized using a central composite design. Under optimum conditions, the plot of CL intensity versus gentamicin concentration was found to have two linear ranges. One range was at low concentrations from 1.0 to 10.0 mg/L and the other was from 10.0 to 30.0 mg/L. Precision was calculated by analyzing samples containing 5.0 mg/L gentamicin (n = 11) and the relative standard deviation (RSD) was 1.7%. Also, a high injection throughput of 120 samples/h was achieved. This method was successfully applied to the determination of gentamicin sulfate in pharmaceutical formulations and water samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Using AgNO3 as the precursor, stable silver nanochain (AgNC) sols, orange‐red in color, were prepared using hydrazine hydrate. A strong surface plasmon resonance Rayleigh scattering (RRS) peak occurred at 420 nm plus two surface plasmon resonance (SPR) absorption peaks at 410 nm and 510 nm. Rhodamine S (RhS) cationic dye was absorbed on the as‐prepared AgNC substrate to obtain a RhS–AgNC surface‐enhanced Raman scattering (SERS) nanoprobe that exhibited a strong SERS peak at 1506 cm–1 and a strong RRS peak at 375 nm. Upon addition of the analyte sodium hexametaphosphate (HP), it reacted with RhS, which resulted in a decrease in the SERS and RRS peaks that was studied in detail. The decreased SERS and RRS intensities correlated linearly with HP concentration in the range of 0.0125–0.3 µmol/L and 0.05–1.0 µmol/L, with a detection limit of 6 nmol/L and 20 nmol/L HP respectively. Due to advantages of high sensitivity, good selectivity and simple operation, the RhS molecular probes were used to determine HP concentration in real samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Introduction – Honokiol and magnolol are the active components of Magnolia officinalis, which is a widely used traditional Chinese medicine. Their simultaneous analysis is, therefore, important for the quality control of the product. Objective – To establish a simple, sensitive and rapid electrochemical method for the simultaneous detection of honokiol and magnolol based on the remarkable enhancement effect of acetylene black nanoparticle (AB). Methodology – The AB‐modified electrode was prepared via solvent evaporation. The electrochemical response of honokiol and magnolol was investigated using cyclic voltammetry. The simultaneous detection was performed with differential pulse voltammetry. The method was validated in terms of linearity, sensitivity, precision and accuracy. Results – The linear range for honokiol is 0.5–300 µg/L, and the limit of detection (LOD) is 0.25 µg/L (9.4 × 10?10 mol/L). For magnolol, the linear range is 10–250 µg/L, and the LOD is 5 µg/L (1.88 × 10?8 mol/L). Conclusion – The new method was successfully used to determine honokiol and magnolol in a traditional Chinese medicine called Ageratum liquid. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The ketone bodies (KBs) D‐3‐hydroxybutyrate (D‐3HB) and acetoacetate (AcAc) play a role in starvation and have been associated with insulin resistance. The dose–response relationship between insulin and KBs was demonstrated to be shifted to the right in type 2 diabetes patients. However, KB levels have also been reported to be decreased in obesity. We investigated the metabolic adaptation to fasting with respect to glucose and KB metabolism in lean and obese men without type 2 diabetes using stable glucose and D‐3HB isotopes in a two‐step pancreatic clamp after 38 h of fasting. We found that D‐3HB fluxes in the basal state were higher in lean compared to obese men: 15.2 (10.7–27.1) vs. 7.0 (3.5–15.1) µmol/kg lean body mass (LBM)·min, respectively, P < 0.01. No differences were found in KB fluxes between lean and obese volunteers during the pancreatic clamp (step 1: 6.9 (1.8–12.0) vs. 7.4 (4.2–17.8) µmol/kg LBM·min, respectively; and step 2: 2.9 (0–7.2) vs. 3.4 (0.85–18.7) µmol/kg LBM·min, respectively), despite similar plasma insulin levels. Meanwhile, peripheral glucose uptake was higher in lean compared to obese men (step 1: 15.2 (12.3–25.6) vs. 14.7 (11.9–22.7) µmol/kg LBM·min, respectively, P ≤ 0.05; and step 2: 12.5 (7.0–17.3) vs. 10.8 (5.2–15.0) µmol/kg LBM·min, respectively, P ≤ 0.01). These data show that obese subjects who display insulin resistance on insulin‐mediated peripheral glucose uptake have the same sensitivity for the insulin‐mediated suppression of ketogenesis. This implies differential insulin sensitivity of intermediary metabolism in obesity.  相似文献   

19.
The concentrations of copper, zinc and molybdenum were measured in samples of cattle liver from 10 slaughter-houses in Norway. A total of 335 samples were analysed. A clear accumulation of copper with age was found, the average copper level in the younger animals (≦ 3 years, n = 194) being 30 µg Cu/g liver wet weight, and in the older ones (> 3 years, n = 141) 59 µg Gu/g. The range in the copper values found was considerable, though significant differences between some of the districts were recorded. Copper concentrations were classified as low (≦10 µg Gu/g) in 9.6 % of the samples. Zinc showed no accumulation with age, nor were there any differences in zinc levels found in animals from different districts, the average level being 32 µg Zn/g liver wet weight. The picture was the same for molybdenum, no differences between age groups or districts being found. The average level was 1.0 µg Mo/g liver. There was no significant correlation between levels of copper, zinc or molybdenum. The supply of copper and zinc to cattle in Norway seems close to sufficient, but copper- and zinc-fortified mineral supplementation of cattle feed is still to be recommended. There seems to be no need for molybdenum supplementation in cattle.  相似文献   

20.
《Epigenetics》2013,8(10):1133-1141
Aberrations in global LINE-1 DNA methylation have been related to risk of cancer and cardiovascular disease. Micronutrients including methyl-donors and retinoids are involved in DNA methylation pathways. We investigated associations of micronutrient status and LINE-1 methylation in a cross-sectional study of school-age children from Bogotá, Colombia. Methylation of LINE-1 repetitive elements was quantified in 568 children 5–12 years of age using pyrosequencing technology. We examined the association of LINE-1 methylation with erythrocyte folate, plasma vitamin B12, vitamin A ferritin (an indicator of iron status) and serum zinc concentrations using multivariable linear regression. We also considered associations of LINE-1 methylation with socio-demographic and anthropometric characteristics. Mean (± SD) LINE-1 methylation was 80.25 (± 0.65) percentage of 5-mC (%5-mC). LINE-1 methylation was inversely related to plasma vitamin A. After adjustment for potential confounders, children with retinol levels higher than or equal to 1.05 µmol/L showed 0.19% 5-mC lower LINE-1 methylation than children with retinol levels lower than 0.70 µmol/L. LINE-1 methylation was also inversely associated with C-reactive protein, a marker of chronic inflammation, and female sex. We identified positive associations of maternal body mass index and socioeconomic status with LINE-1 methylation. These associations were not significantly different by sex. Whether modification of these exposures during school-age years leads to changes in global DNA methylation warrants further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号