首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Podocalyxin (PODXL) is a type I transmembrane protein, which is highly glycosylated. PODXL is expressed in some types of human cancer tissues including oral, breast, and lung cancer tissues and may promote tumor growth, invasion, and metastasis. We previously produced PcMab-47, a novel anti-PODXL monoclonal antibody (mAb) which reacts with endogenous PODXL-expressing cancer cell lines and normal cells independently of glycosylation in Western blot, flow cytometry, and immunohistochemical analysis. In this study, we used enzyme-linked immunosorbent assay (ELISA), flow cytometry, and immunohistochemical analysis to determine the epitope of PcMab-47. The minimum epitope of PcMab-47 was found to be Asp207, His208, Leu209, and Met210. A blocking peptide containing this minimum epitope completely neutralized PcMab-47 reaction against oral cancer cells by flow cytometry and immunohistochemical analysis. These findings could lead to the production of more functional anti-PODXL mAbs, which are advantageous for antitumor activities.  相似文献   

2.
EGFR基因重组T7噬菌体疫苗抗Lewis肺癌的实验研究   总被引:1,自引:0,他引:1  
本研究中制备了表达表皮生长因子受体(EGFR)部分肽段的基因重组T7噬菌体疫苗,并开展了诱导小鼠产生内源性抗EGFR抗体的实验性抗肿瘤作用研究。由T7噬菌体展示系统将7个经筛选的异种属(人源、鸡源)EGFR膜外区片段展示在其壳体次要头蛋白(P10B)上,用所制备的基因重组噬茵体疫苗免疫小鼠,免疫4W后皮下接种Lewis肺癌细胞,10d后分离瘤体并称重,观察各实验组的抗肿瘤效果。Western Blot检测重组的融合壳蛋白均有EGFR抗原性:高表达EGFR的A431 细胞与免疫3W的小鼠抗血清结合并被荧光二抗标记,流式细胞仪检测法确认有抗EGFR抗体产生;各实验组肿瘤均重统计结果显示,P-CL1-670组、P-cp1-130组、P-cp2-136组、P-cp3-145组、 P-cp4-142组与空白噬菌体组差异性显著。说明表达EGFR的基因重组噬菌体疫苗诱导产生的内源性抗体.在一定程度上抑制了EGFR阳性肿瘤的生长.为诱导型内源性抗EGFR抗体的肿瘤靶向治疗研究开辟了新的途径。  相似文献   

3.
EGFR基因重组T7噬菌体疫苗抗Lewis肺癌的实验研究   总被引:2,自引:0,他引:2  
本研究中制备了表达表皮生长因子受体(EGFR)部分肽段的基因重组T7噬菌体疫苗,并开展了诱导小鼠产生内源性抗EGFR抗体的实验性抗肿瘤作用研究。由T7噬菌体展示系统将7个经筛选的异种属(人源、鸡源)EGFR膜外区片段展示在其壳体次要头蛋白(P10B)上,用所制备的基因重组噬菌体疫苗免疫小鼠,免疫4W后皮下接种Lewis肺癌细胞,10d后分离瘤体并称重,观察各实验组的抗肿瘤效果。WesternBlot检测重组的融合壳蛋白均有EGFR抗原性:高表达EGFR的A431细胞与免疫3W的小鼠抗血清结合并被荧光二抗标记.流式细胞仪检测法确认有抗EGFR抗体产生;各实验组肿瘤均重统计结果显示,P—CL1—670组、P—cp1-130组、P—cp2—136组、P—cp3—145组、P—cp4—142组与空白噬菌体组差异性显著。说明表达EGFR的基因重组噬菌体疫苗诱导产生的内源性抗体,在一定程度上抑制了EGFR阳性肿瘤的生长,为诱导型内源性抗EGFR抗体的肿瘤靶向治疗研究开辟了新的途径。  相似文献   

4.
《MABS-AUSTIN》2013,5(1):38-48
Engineered domains of human fibronectin (Adnectins?) were used to generate a bispecific Adnectin targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR), two transmembrane receptors that mediate proliferative and survival cell signaling in cancer. Single-domain Adnectins that specifically bind EGFR or IGF-IR were generated using mRNA display with a library containing as many as 1013 Adnectin variants. mRNA display was also used to optimize lead Adnectin affinities, resulting in clones that inhibited EGFR phosphorylation at 7 to 38 nM compared to 2.6 μM for the parental clone. Individual, optimized, Adnectins specific for blocking either EGFR or IGF-IR signaling were engineered into a single protein (EI-Tandem Adnectin). The EI-Tandems inhibited phosphorylation of EGFR and IGF-IR, induced receptor degradation, and inhibited down-stream cell signaling and proliferation of human cancer cell lines (A431, H292, BxPC3 and RH41) with IC50 values ranging from 0.1 to 113 nM. Although Adnectins bound to EGFR at a site distinct from those of anti-EGFR antibodies cetuximab, panitumumab and nimotuzumab, like the antibodies, the anti-EGFR Adnectins blocked the binding of EGF to EGFR. PEGylated EI-Tandem inhibited the growth of both EGFR and IGF-IR driven human tumor xenografts, induced degradation of EGFR, and reduced EGFR phosphorylation in tumors. These results demonstrate efficient engineering of bispecific Adnectins with high potency and desired specificity. The bispecificity may improve biological activity compared to monospecific biologics as tumor growth is driven by multiple growth factors. Our results illustrate a technological advancement for constructing multi-specific biologics in cancer therapy.  相似文献   

5.
The epidermal growth factor receptor (EGFR) is frequently dysregulated in human malignancies and a validated target for cancer therapy. Two monoclonal anti-EGFR antibodies (cetuximab and panitumumab) are approved for clinical use. However, the percentage of patients responding to treatment is low and many patients experiencing an initial response eventually relapse. Thus, the need for more efficacious treatments remains. Previous studies have reported that mixtures of antibodies targeting multiple distinct epitopes are more effective than single mAbs at inhibiting growth of human cancer cells in vitro and in vivo. The current work describes the rational approach that led to discovery and selection of a novel anti-EGFR antibody mixture Sym004, which is currently in Phase 2 clinical testing. Twenty-four selected anti-EGFR antibodies were systematically tested in dual and triple mixtures for their ability to inhibit cancer cells in vitro and tumor growth in vivo. The results show that targeting EGFR dependent cancer cells with mixtures of antibodies is superior at inhibiting their growth both in vitro and in vivo. In particular, antibody mixtures targeting non-overlapping epitopes on domain III are efficient and indeed Sym004 is composed of two monoclonal antibodies targeting this domain. The superior growth inhibitory activity of mixtures correlated with their ability to induce efficient EGFR degradation.Key words: EGFR, antibody synergy, functional screening, epitope binning, antibody combinations  相似文献   

6.
Engineered domains of human fibronectin (Adnectins™) were used to generate a bispecific Adnectin targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR), two transmembrane receptors that mediate proliferative and survival cell signaling in cancer. Single-domain Adnectins that specifically bind EGFR or IGF-IR were generated using mRNA display with a library containing as many as 1013 Adnectin variants. mRNA display was also used to optimize lead Adnectin affinities, resulting in clones that inhibited EGFR phosphorylation at 7 to 38 nM compared to 2.6 µM for the parental clone. Individual optimized Adnectins specific for blocking either EGFR or IGF-IR signaling were engineered into a single protein (EI-Tandem Adnectin). The EI-Tandems inhibited phosphorylation of EGFR and IGF-IR, induced receptor degradation and inhibited down-stream cell signaling and proliferation of human cancer cell lines (A431, H292, BxPC3 and RH41) with IC50 values ranging from 0.1 to 113 nM. Although Adnectins bound to EGFR at a site distinct from those of anti-EGFR antibodies cetuximab, panitumumab and nimotuzumab, like the antibodies, the anti-EGFR Adnectins blocked the binding of EGF to EGFR. PEGylated EI-Tandem inhibited the growth of both EGFR and IGF-IR driven human tumor xenografts, induced degradation of EGFR and reduced EGFR phosphorylation in tumors. These results demonstrate efficient engineering of bispecific Adnectins with high potency and desired specificity. The bispecificity may improve biological activity compared to monospecific biologics as tumor growth is driven by multiple growth factors. Our results illustrate a technological advancement for constructing multi-specific biologics in cancer therapy.Key words: Adnectin, biologics, EGFR, IGF-IR, bispecific  相似文献   

7.
Nuclear and membrane markers that have been related to proliferative activity were measured by flow cytometry. The markers studied were transferrin receptor (TR), Ki-67 antigen, and epidermal growth factor receptor (EGFR). Two-color analysis for DNA via propidium iodide binding and for antigen expression via either a direct or indirect immunofluorescence assay was performed on three different cell lines and a solid human tumor model. The three cell lines tested were MCF-7 (breast), K-562 (leukemia), and A431 (a squamous cell). The solid tumor was obtained by subcutaneous injection of A431 cells into an athymic nude mouse. Our results demonstrate that TR are cell-cycle specific and can be readily measured in the cell lines. Ki-67 antigen is also cell-cycle specific in the cell lines tested, but the mean channel specific fluorescence uptake varies in the cell types. Finally, the EGFR was observed only in the A431 cell line, with most cells equally expressing this receptor. A bimodal distribution of EGFR was observed in A431 cells obtained from a solid tumor grown in an athymic nude mouse system. This suggests that cell line analysis may not always represent what might be observed under in vivo conditions. There are advantages to flow cytometry measurements of these factors which might be useful in predicting how patients should be treated and possibly the prognosis of cancer patients.  相似文献   

8.
The epidermal growth factor receptor (EGFR) is frequently activated in a wide range of solid tumours and represents an important therapeutic target. MicroRNAs (miRNAs) have recently been recognized as a rational and potential modality for anti‐EGFR therapies. However, more EGFR‐targeting miRNAs need to be explored. In this study, we identified a novel EGFR‐targeting miRNA, miRNA‐134 (miR‐134), in non‐small‐cell lung cancer (NSCLC) cell lines. Luciferase assays confirmed that EGFR is a direct target of miR‐134. In addition, the overexpression of miR‐134 inhibited EGFR‐related signaling and suppressed NSCLC cells proliferation by inducing cell cycle arrest and/or apoptosis, suggesting that miR‐134 functions as a tumour suppressor in NSCLC. Further mechanistic investigation including RNAi and rescue experiments suggested that the down‐regulation of EGFR by miR‐134 partially contributes to the antiproliferative role of miR‐134. Last, in vivo experiments demonstrated that miR‐134 suppressed tumour growth of A549 xenograft in nude mice. Taken together, our findings suggest that miR‐134 inhibits non‐small cell lung cancer growth by targeting the EGFR.  相似文献   

9.
Epidermal growth factor receptor (EGFR) and receptor tyrosine-protein kinase 3 (ErbB3) are two well-established targets in cancer therapy. There is significant crosstalk among these two receptors and others. To block signaling from both EGFR and ErbB3, we generated anti-EGFR and anti-ErbB3 DVD-Ig proteins. Two DVD-Ig proteins maintained the functions of the combination of the two parental antibodies. The DVD-Ig proteins inhibit cell signaling and proliferation in A431 and FaDu cells while half DVD-Ig proteins lost proliferation inhibition function. Interestingly, in the presence of β-Heregulin (HRG), the DVD-Ig proteins show synergies with respect to inhibiting cell proliferation. The DVD-Ig proteins downregulate EGFR protein expression in the presence of HRG, which may be due to receptor internalization. Furthermore, the DVD-Ig proteins remarkably disrupt β-Heregulin binding to FaDu cells.  相似文献   

10.
Aberrant epidermal growth factor receptor (EGFR) signaling is a common feature of multiple tumor types, including glioblastoma (GBM). As such, EGFR has emerged as an attractive target for antitumor therapy. In the present study, we sought to develop an immunotoxin capable of specifically targeting EGFR-expressing cells and mediating inhibition of cell growth and cell killing. The Luffin P1 (LP1) ribosome inactivating protein was chosen to generate a fusion protein, antiEGFR/LP1, based upon its potent protein synthesis inhibition and small size (5 kDa). LP1 was fused to the C-terminus of an anti-EGFR single-chain antibody (scFv). The recombinant antiEGFR/LP1 protein was expressed in Escherichia coli, and refolded and purified on an immobilized Ni(2+)-affinity chromatography column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting analysis revealed that antiEGFR/LP1 was sufficiently expressed. Confocal microscopy and flow cytometry demonstrated that antiEGFR/LP1 bound specifically to EGFR-positive cells (U251), as almost no binding to EGFR-negative (Jurkat cells) was observed under identical time and dosage conditions. Finally, the MTT cell viability assay showed that antiEGFR/LP1 elicited obvious cytotoxicity toward EGFR-positive tumor cells. Collectively, these results suggest that antiEGFR/LP1 is biologically active and specific toward EGFR-positive tumor cells and may represent an effective EGFR-targeted cancer therapy.  相似文献   

11.
Monoclonal antibodies have become a mainstay for the targeted treatment of cancer today. Some of the most successful targets of monoclonal antibodies are constituted by the epidermal growth factor receptor family spearheaded by the epidermal growth factor receptor (EGFR). Prompted by studies indicating that IgE compared to IgG may harness alternate effector functions to eradicate malignant cells, we addressed the establishment, engineering, and the potential tumoricidal effects of recombinant anti-EGFR IgE. Therefore, two different therapeutic EGFR-specific antibodies, 225 and 425, were chosen for re-cloning into different chimeric IgE and IgG formats and produced in human cells. Simultaneous antibody binding to the sEGFR demonstrated accessibility of both epitopes for recombinant IgE. Proliferation and cytotoxicity assays demonstrated signal blocking and effector mediating capability of IgE isotypes. Pronounced degranulation in the presence of sEGFR upon activation exclusively with two IgE antibodies verified the epitope proximity and provides evidence that tumor-targeting by anti-EGFR IgE is safe with regard to soluble target structures. Degranulation mediated by tumor cells expressing EGFR could be demonstrated for singular and combined IgE antibodies; however, use of two IgE specificities was not superior to use of one IgE alone. The data suggest that the surface distribution of EGFR is optimally suited to mount a robust effector cell trigger and corroborate the potential and specificity of the IgE/IgE receptor network to react to xenobiotic or pathogenic patterns for targeting malignancies.  相似文献   

12.
Epidermal growth factor (EGF) activation of the EGF receptor (EGFR) is an important mediator of cell migration, and aberrant signaling via this system promotes a number of malignancies including ovarian cancer. We have identified the cell surface glycoprotein CDCP1 as a key regulator of EGF/EGFR-induced cell migration. We show that signaling via EGF/EGFR induces migration of ovarian cancer Caov3 and OVCA420 cells with concomitant up-regulation of CDCP1 mRNA and protein. Consistent with a role in cell migration CDCP1 relocates from cell-cell junctions to punctate structures on filopodia after activation of EGFR. Significantly, disruption of CDCP1 either by silencing or the use of a function blocking antibody efficiently reduces EGF/EGFR-induced cell migration of Caov3 and OVCA420 cells. We also show that up-regulation of CDCP1 is inhibited by pharmacological agents blocking ERK but not Src signaling, indicating that the RAS/RAF/MEK/ERK pathway is required downstream of EGF/EGFR to induce increased expression of CDCP1. Our immunohistochemical analysis of benign, primary, and metastatic serous epithelial ovarian tumors demonstrates that CDCP1 is expressed during progression of this cancer. These data highlight a novel role for CDCP1 in EGF/EGFR-induced cell migration and indicate that targeting of CDCP1 may be a rational approach to inhibit progression of cancers driven by EGFR signaling including those resistant to anti-EGFR drugs because of activating mutations in the RAS/RAF/MEK/ERK pathway.  相似文献   

13.
Programmed cell death ligand-1 (PD-L1) is a type I transmembrane glycoprotein expressed on antigen-presenting cells and several tumor cells, including melanoma and lung cancer cells. A strong correlation has been reported between PD-L1 expression in tumor cells and negative prognosis in cancer patients. Previously, we established an anti-PD-L1 monoclonal antibody (mAb), L1Mab-13 (IgG1, kappa), by immunizing mice with PD-L1-overexpressing CHO-K1 cells. L1Mab-13 specifically reacts with endogenous PD-L1 in lung cancer cell lines in flow cytometry and Western blot applications, and stains a plasma membrane-like pattern in lung cancer tissues via immunohistochemical analysis. In this study, we investigated whether L1Mab-13 reacts with oral cancer cell lines and exerts antitumor activities. Because L1Mab-13 lacks antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), we first converted the subclass of L1Mab-13 from IgG1 into IgG2a (13-mG2a), and further produced a defucosylated version (13-mG2a-f) using FUT8-deficient ExpiCHO-S (BINDS-09) cells. Defucosylation of 13-mG2a-f was confirmed using fucose-binding lectins, such as Aleuria aurantia and Pholiota squarrosa lectins. The dissociation constants (KD) for 13-mG2a-f in SAS and HSC-2 oral cancer cells were determined via flow cytometry to be 2.8 × 10?9 M and 4.8 × 10?9 M, respectively, indicating that 13-mG2a-f possesses extremely high binding affinity. In vitro analysis demonstrated that 13-mG2a-f showed moderate ADCC and CDC activities against SAS and HSC-2 oral cancer cells. In vivo analysis revealed that 13-mG2a-f significantly reduced tumor development in SAS and HSC-2 xenografts in comparison to control mouse IgG, even after injection seven days post-tumor inoculation. Taken together, these data demonstrate that treatment with 13-mG2a-f may represent a useful therapy for patients with PD-L1-expressing oral cancers.  相似文献   

14.
目的:研究三氧化二砷(As2O3)对人口腔鳞癌A431细胞生长的抑制作用,探讨其抗肿瘤的机制。方法:合成特异性靶向到肿 瘤细胞表面表皮生长因子受体(EGFR)的近红外荧光分子对比剂EGF-Cy5.5,验证试剂合成的靶向特异性。口腔鳞状细胞癌 A431 细胞系暴露于浓度分别为0 滋M,0.5 滋M,2.5 滋M和5.0 滋M的三氧化二砷溶液中0,24 h,48 h和72 h。共聚焦显微镜、流式 细胞仪及免疫组化证实EGFR的表达水平,上述实验均测量三次,结果取平均值。结果:EGF-Cy5.5 靶向荧光对比剂的标记率为 68%~70 %。对比对照组,越高浓度的三氧化二砷处理的肿瘤细胞其获得的细胞荧光信号强度越小,这与药物浓度越高细胞表面表 达EGFR 的量越少相一致。流式细胞仪显示,在72 小时,作用于细胞的三氧化二砷药物浓度分别为0.5 滋M,2.5 滋M,和5.0 滋M, 其相对应获得的细胞EGFR 表达量分别为57.28± 3.2 %(P<0.05), 29.91± 2.2 %(P<0.01) 和10.73± 2.4 %(P<0.01),明显低于对照 组的细胞EGFR 表达量74.42± 1.8 %,(P <0.05)。结论:本研究应用近红外荧光分子成像的方法体外检测口腔鳞状细胞癌A431 的 EGFR表达水平,实验证明三氧化二砷对其EGFR 具有明显的抑制作用,且抑制作用具有时间- 剂量依赖性。  相似文献   

15.
The epidermal growth factor receptor (EGFR) and its ligand amphiregulin (AR) have been shown to be co-over expressed in breast cancer. We have previously shown that an AR/EGFR autocrine loop is required for SUM149 human breast cancer cell proliferation, motility and invasion. We also demonstrated that AR can induce these altered phenotypes when expressed in the normal mammary epithelial cell line MCF10A, or by exposure of these cells to AR in the medium. In the present studies, we demonstrate that SUM149 cells and immortalized human mammary epithelial MCF10A cells that over express AR (MCF10A AR) or are cultured in the presence of exogenous AR, express higher levels of EGFR protein than MCF10A cells cultured in EGF. Pulse-chase analysis showed that EGFR protein remained stable in the presence of AR, yet was degraded in the presence of EGF. Consistent with this observation, tyrosine 1045 on the EGFR, the c-cbl binding site, exhibited less phosphorylation following stimulation with AR than following stimulation with EGF. Ubiquitination of the receptor was also dramatically less following stimulation with AR than following stimulation with EGF. Flow cytometry analysis showed that EGFR remained on the cell surface following stimulation with AR but was rapidly internalized following stimulation with EGF. Immunofluorescence and confocal microscopy confirmed the flow cytometry results. EGFR in MCF10A cells cultured in the presence of EGF exhibited a predominantly intracellular, punctate localization. In stark contrast, SUM149 cells and MCF10A cells growing in the presence of AR expressed EGFR predominantly on the membrane and at cell-cell junctions. We propose that AR alters EGFR internalization and degradation in a way that favors accumulation of EGFR at the cell surface and ultimately leads to changes in EGFR signaling.  相似文献   

16.
Activating mutations in the kinase domain of the EGF receptor have been reported in non-small cell lung cancer. The majority of tumors expressing these mutants are sensitive to ATP mimetics that inhibit the EGFR tyrosine kinase. The effect of antibodies that bind to the ectodomain of the receptor is less clear. We report herein the effects and mechanisms of action of the antibody cetuximab in lung cancer cells that naturally express receptor mutations and in ErbB-null 32D hematopoietic cells transfected with mutant EGFR. Treatment with cetuximab down-regulated EGFR levels and inhibited cell growth both in vitro and in vivo. This was associated with inhibition of ligand-independent EGFR signaling. These effects were seen in 32D cells arguing the growth inhibitory action was not because of the blockade of autocrine ligand action. Both antibody-induced EGFR down-regulation and inhibition of growth required receptor dimerization as monovalent Fab fragments only eliminated receptor levels or reduced cell proliferation in the presence of antihuman IgG. Finally, cetuximab inhibited growth of H1975 lung cancer cells and xenografts, which expressed L858R/T790M EGFR and were resistant to EGFR tyrosine kinase inhibitors. These data suggest that cetuximab is an effective therapy against mutant EGFR-expressing cancer cells and thus can be considered in combination with other anti-EGFR molecules.  相似文献   

17.
TROP2 is a type I transmembrane glycoprotein originally identified in human trophoblast cells that is overexpressed in several types of cancer. To better understand the role of TROP2 in cancer, we herein aimed to develop a sensitive and specific anti-TROP2 monoclonal antibody (mAb) for use in flow cytometry, Western blot, and immunohistochemistry using a Cell-Based Immunization and Screening (CBIS) method. Two mice were immunized with N-terminal PA-tagged and C-terminal RAP/MAP-tagged TROP2-overexpressed Chinese hamster ovary (CHO)–K1 cells (CHO/PA-TROP2-RAP-MAP), and hybridomas showing strong signals from PA-tagged TROP2-overexpressed CHO–K1 cells (CHO/TROP2-PA) and weak-to-no signals from CHO–K1 cells were selected using flow cytometry. We demonstrated using flow cytometry that the established anti-TROP2 mAb, TrMab-29 (mouse IgG1 kappa), detected TROP2 in MCF7 breast cancer cell line as well as CHO/TROP2-PA cells. Western blot analysis showed a 40 kDa band in lysates prepared from both CHO/TROP2-PA and MCF7 cells. Furthermore, TROP2 was strongly detected by immunohistochemical analysis using TrMab-29, indicating that TrMab-29 may be a valuable tool for the detection of TROP2 in cancer.  相似文献   

18.
Epidermal growth factor receptor (EGFR) is highly expressed in head and neck cancer (HNC). Since EGFR has a large extracellular ligand binding as well as an intracellular tyrosine kinase domain, anti-EGFR therapy may involve anti-ligand binding domain antibody- or tyrosine kinase inhibitor therapies. Phase II-III studies confirmed the efficacy of anti-EGFR antibody therapy in case of squamous cell HNC. In combination with irradiation, anti-EGFR antibody therapy improved survival of locally advanced HNC patients. In case of recurrent or metastatic HNC, anti-EGFR antibody therapy in combination with chemotherapy significantly increased remission rate without increasing toxicity. Although studies on EGFR kinase inhibitors in HNC are in early phase, preliminary data are encouraging.  相似文献   

19.
The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling can protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.  相似文献   

20.
Breast cancer is the most common malignancy among women worldwide. The role of epidermal growth factor receptor (EGFR) in many epithelial malignancies has been established, since it is dysregulated, overexpressed or mutated. Its overexpression has been associated with increased aggressiveness and metastatic potential in breast cancer. The well-established interplay between EGFR signaling pathway and estrogen receptors (ERs) as well as major extracellular matrix (ECM) mediators is crucial for regulating basic functional properties of breast cancer cells, including migration, proliferation, adhesion and invasion. EGFR activation leads to endocytosis of the receptor with implications in the regulation of downstream signaling effectors, the modulation of autophagy and cell survival. Therefore, EGFR is considered as a promising therapeutic target in breast cancer. Several anti-EGFR therapies (i.e. monoclonal antibodies and tyrosine kinase inhibitors) have been evaluated both in vitro and in vivo, making their way to clinical trials. However, the response rates of anti-EGFR therapies in the clinical trials is low mainly due to chemoresistance. Novel drug design, phytochemicals and microRNAs (miRNAs) are assessed as new therapeutic approaches against EGFR. The main goal of this review is to highlight the importance of targeting EGFR signaling pathway in terms of its crosstalk with ERs, the involvement of ECM effectors and epigenetics. Moreover, recent insights into the design of specialized delivery systems contributing in the development of novel diagnostic and therapeutic approaches in breast cancer are addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号