共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Elizabeth?S. Chen Carolina?O. Gigek Jill?A. Rosenfeld Alpha?B. Diallo Gilles Maussion Gary?G. Chen Kathryn Vaillancourt Juan?P. Lopez Liam Crapper Rapha?l Poujol Lisa?G. Shaffer Guillaume Bourque Carl Ernst 《American journal of human genetics》2014,95(5):490-508
Neurodevelopmental disorders (NDDs) are caused by mutations in diverse genes involved in different cellular functions, although there can be crosstalk, or convergence, between molecular pathways affected by different NDDs. To assess molecular convergence, we generated human neural progenitor cell models of 9q34 deletion syndrome, caused by haploinsufficiency of EHMT1, and 18q21 deletion syndrome, caused by haploinsufficiency of TCF4. Using next-generation RNA sequencing, methylation sequencing, chromatin immunoprecipitation sequencing, and whole-genome miRNA analysis, we identified several levels of convergence. We found mRNA and miRNA expression patterns that were more characteristic of differentiating cells than of proliferating cells, and we identified CpG clusters that had similar methylation states in both models of reduced gene dosage. There was significant overlap of gene targets of TCF4 and EHMT1, whereby 8.3% of TCF4 gene targets and 4.2% of EHMT1 gene targets were identical. These data suggest that 18q21 and 9q34 deletion syndromes show significant molecular convergence but distinct expression and methylation profiles. Common intersection points might highlight the most salient features of disease and provide avenues for similar treatments for NDDs caused by different genetic mutations. 相似文献
3.
4.
Neurodevelopmental disorders (NDs) are currently thought to be caused by either geneticdefects or various environmental factors. Recent studies have demonstrated that congenital NDs canresult not only from changes in DNA sequence in neuronal genes but also from changes to the secondaryepigenomic modifications of DNA and histone proteins. Thus, epigenomic assays, as well as genomicassays, are currently performed for diagnosis of the congenital NDs. It is recently known thatthe epigenomic modifications can be altered by various environmental factors, which potentially causeacquired NDs. Furthermore these alterations can potentially be restored taking advantage of use of reversibility in epigenomics.Therefore, epigenome-based early diagnosis and subsequent intervention, by using drugs that restore epigenomicalterations, will open up a new era of preemptive medicine for congenital and acquired NDs. 相似文献
5.
The aim of this study was to identify environmental factors that might correlate with the admission rate of patients with major psychiatric disorders. During the years 1988-90, 393 consecutive admissions (119 unipolar depressed patients, 211 schizophrenic patients, and 63 bipolar depressed patients) were monitored. Correlations were calculated between the mean daily admission rate for each month and monthly photoperiod, rate of change in photoperiod, mean temperature, mean relative humidity, and mean barometric pressure. It was found that the admission rate of bipolar depressed patients negatively correlated with monthly photoperiod, which means that during winter the admission rate of these patients increased. 相似文献
6.
7.
Roger R. Williams 《The Western journal of medicine》1984,141(6):799-806
Most major chronic diseases probably result from environmental factors accumulating over time in genetically susceptible persons. A detailed family history assessment can help identify the subset of the general population with a strong predisposition to certain major diseases. An understanding of the environmental factors promoting disease development will facilitate more effective prevention or delay disease in a targeted susceptible population. To effectively use this growing knowledge in genetics and epidemiology, health professionals need to motivate people to follow sound recommendations for preventing and delaying disease.To increase the efficiency and effectiveness of strategies for health promotion and disease prevention, family history data can help determine those diseases for which persons have the greatest risk. They can then concentrate their primary efforts on those preventive measures that will most likely benefit them. 相似文献
8.
The discovery of the genetic causes of syndromic autism spectrum disorders and intellectual disabilities has greatly informed our understanding of the molecular pathways critical for normal synaptic function. The top-down approaches using human phenotypes and genetics helped identify causative genes and uncovered the broad spectrum of neuropsychiatric features that can result from various mutations in the same gene. Importantly, the human studies unveiled the exquisite sensitivity of cognitive function to precise levels of many diverse proteins. Bottom-up approaches applying molecular, biochemical, and neurophysiological studies to genetic models of these disorders revealed unsuspected pathogenic mechanisms and identified potential therapeutic targets. Moreover, studies in model organisms showed that symptoms of these devastating disorders can be reversed, which brings hope that affected individuals might benefit from interventions even after symptoms set in. Scientists predict that insights gained from studying these rare syndromic disorders will have an impact on the more common nonsyndromic autism and mild cognitive deficits.It is estimated that ∼1% of the human population has an autism spectrum disorder (ASD). ASD has widely varied behavioral manifestations, severity, and comorbid conditions (hence the term “spectrum”), but those diagnosed with autism are characterized by impaired communication and reciprocal social interactions, and restricted and repetitive patterns of activities and interests (Baird et al. 2006). Approximately 70% of those diagnosed with autism also have intellectual disability (ID), and 25% have a seizure disorder (Tuchman and Rapin 2002). There is a strong genetic basis for autism, but the risk architecture is highly heterogeneous, and a large number of genes have been implicated (Abrahams and Geschwind 2008). This daunting phenotypic and etiologic complexity, shared by other major psychiatric illnesses, has slowed progress toward developing new therapies.However, autism researchers are optimistic that the possibility of substantial progress may soon be realized (Krueger and Bear 2011). First, the genes have been discovered for numerous syndromic disorders that prominently feature ASD and ID. Second, these gene mutations have been reproduced in animal models that allow detailed examination of the underlying brain pathophysiology. Third, animal research has converged on altered synaptic function as a likely basis for impaired cognition and possibly ASD. Fourth, insights gained on how synapses function differently in the face of these mutations have suggested novel therapeutic interventions validated in preclinical models and that have shown promise in preliminary human clinical trials. Fifth, the fact that ASD and ID can be diagnosed in early childhood maximizes potential benefits of therapy because it can be started at a time when the brain is most plastic. Finally, animal studies using gene reactivation or pharmacological interventions suggest that substantial improvements can be seen even when treatments begin in adulthood (Ehninger et al. 2008b). Thus, a genetic diagnosis of a developmental brain disorder need not be a “life sentence” of permanent and inexorable mental disability.The path from gene discovery to novel treatment is outlined in Figure 1. This process often begins with astute clinical observations that some patients can be distinguished by a common set of phenotypic traits, thus defining a syndrome. Molecular genetic studies can then be undertaken to test the hypothesis that the syndrome has a genetic cause. In the event that disruption of a single gene or DNA segment causes the disease (i.e., a “highly penetrant” mutation), then it is possible to create an animal model (usually a mouse) that carries the same genetic disruption. Although the effects of the genetic lesion will likely manifest differently at the behavioral level in animals and humans because of differences in the complexity of the brains, it is reasonable to postulate that disruptions in elementary neuronal functions are likely to be shared. Understanding this neuronal pathophysiology is critical for identifying potential therapeutic targets. If these targets can be validated in the animal models, then chemistry ensues to generate molecules that can engage the target and satisfy the pharmacodynamic and pharmacokinetic drug requirements. If they are shown to be safe, drug candidates may then advance to human clinical trials. There are currently clinical trials ongoing in several single-gene syndromic disorders associated with ASD and ID. Most of these target alterations in synaptic signaling.Open in a separate windowFigure 1.The promise of molecular medicine in genetically defined disorders of brain development.The notion that some ASD and associated ID represent “synapsopathies” (or “synaptopathies”) is supported by the preponderance of penetrant mutations in genes associated with synaptic structure and function. The most common single-gene mutations in ASD with ID are associated with fragile X syndrome (FMR1), tuberous sclerosis (TSC1, TSC2), neurofibromatosis (NF1), Angelman syndrome (UBE3A), Rett syndrome (MECP2), the PTEN hamartoma tumor syndrome, and Phelan-McDermid syndrome (SHANK3) (for review, see Betancur 2011). Rare mutations in the neuroligin (NLGN3, NLGN2) and neurexin (NRXN1) genes also cause autism (Jamain et al. 2003). Although this is by no means an exhaustive list of genes implicated in autism (and many await discovery), it is notable nonetheless that these highly penetrant mutations occur in genes that are critical regulators of synaptic function, and further, illuminate biochemical pathways that might be pathogenic in ASD and ID (Fig. 2).Open in a separate windowFigure 2.(A) Schematic of a neuron and axonal-dendritic synapse that depict examples of cellular localization of the various types of defects in ASD/ID. (B) A signaling pathway at the excitatory synapses that couples activity as registered by the release of glutamate to local control of protein synthesis. Disruption of the gene products indicated in the colored boxes greatly increases the risk of ASD/ID. Syndromic disorders with increased prevalence of ASD include Phelan-McDermid Syndrome (SHANK3); Noonan syndrome (RAF1, MEK1); Neurofibromatosis type 1 (NF1); Costello syndrome (H-Ras, MEK1); Cowden syndrome (PTEN); Cardio-facio-cutaneous (CFC) syndrome (MEK1/2); Tuberous sclerosis complex (TSC1/2); Fragile X syndrome (FMRP); Angelman syndrome (AS UBE3a); Rett syndrome (RTT–MeCP2); and Rubinstein-Taybi syndrome (RTS–CREB binding protein, p300). Rare, nonsyndromic ASDs include NLGN3/4 and NRXN1; ID/ASD: SHANK2.In this article, we focus on a few syndromic disorders associated with ASD and ID that are characterized by penetrant mutations in genes that have been shown in animal models to disrupt synaptic function. Our goal is to highlight the similarities and differences in these syndromes and their underlying synaptic pathophysiology. Optimal synaptic function occurs within a narrow dynamic range along many dimensions, and it is not surprising that pathophysiology occurs at the edges of these spectra. What has come as a surprise, however, is that ASD and ID appear to be common consequences of disruptive mutations that cause synaptic pathophysiology at both ends of a spectrum. In other words, both “gain-of-function” and “loss-of-function” mutations can manifest in similar ways. Insights into the pathophysiology of ASD and ID have raised the possibility of therapeutic interventions to bring synapses into a normal operating range. 相似文献
9.
10.
11.
12.
Carol A Wise Xiaochong Gao Scott Shoemaker Derek Gordon John A Herring 《Current Genomics》2008,9(1):51-59
Idiopathic scoliosis (AIS) is the most common pediatric spinal deformity, affecting ~3% of children worldwide. AIS significantly impacts national health in the U. S. alone, creating disfigurement and disability for over 10% of patients and costing billions of dollars annually for treatment. Despite many investigations, the underlying etiology of IS is poorly understood. Twin studies and observations of familial aggregation reveal significant genetic contributions to IS. Several features of the disease including potentially strong genetic effects, the early onset of disease, and standardized diagnostic criteria make IS ideal for genomic approaches to finding risk factors. Here we comprehensively review the genetic contributions to IS and compare those findings to other well-described complex diseases such as Crohn’s disease, type 1 diabetes, psoriasis, and rheumatoid arthritis. We also summarize candidate gene studies and evaluate them in the context of possible disease aetiology. Finally, we provide study designs that apply emerging genomic technologies to this disease. Existing genetic data provide testable hypotheses regarding IS etiology, and also provide proof of principle for applying high-density genome-wide methods to finding susceptibility genes and disease modifiers. 相似文献
13.
Susanne Bornel?v Annika S??f Erik Melén Anna Bergstr?m Behrooz Torabi Moghadam Ville Pulkkinen Nathalie Acevedo Christina Orsmark Pietras Markus Ege Charlotte Braun-Fahrl?nder Josef Riedler Gert Doekes Michael Kabesch Marianne van Hage Juha Kere Annika Scheynius Cilla S?derh?ll G?ran Pershagen Jan Komorowski 《PloS one》2013,8(11)
Both genetic and environmental factors are important for the development of allergic diseases. However, a detailed understanding of how such factors act together is lacking. To elucidate the interplay between genetic and environmental factors in allergic diseases, we used a novel bioinformatics approach that combines feature selection and machine learning. In two materials, PARSIFAL (a European cross-sectional study of 3113 children) and BAMSE (a Swedish birth-cohort including 2033 children), genetic variants as well as environmental and lifestyle factors were evaluated for their contribution to allergic phenotypes. Monte Carlo feature selection and rule based models were used to identify and rank rules describing how combinations of genetic and environmental factors affect the risk of allergic diseases. Novel interactions between genes were suggested and replicated, such as between ORMDL3 and RORA, where certain genotype combinations gave odds ratios for current asthma of 2.1 (95% CI 1.2-3.6) and 3.2 (95% CI 2.0-5.0) in the BAMSE and PARSIFAL children, respectively. Several combinations of environmental factors appeared to be important for the development of allergic disease in children. For example, use of baby formula and antibiotics early in life was associated with an odds ratio of 7.4 (95% CI 4.5-12.0) of developing asthma. Furthermore, genetic variants together with environmental factors seemed to play a role for allergic diseases, such as the use of antibiotics early in life and COL29A1 variants for asthma, and farm living and NPSR1 variants for allergic eczema. Overall, combinations of environmental and life style factors appeared more frequently in the models than combinations solely involving genes. In conclusion, a new bioinformatics approach is described for analyzing complex data, including extensive genetic and environmental information. Interactions identified with this approach could provide useful hints for further in-depth studies of etiological mechanisms and may also strengthen the basis for risk assessment and prevention. 相似文献
14.
Neurodegenerative Disorders: The Role of Genetic Factors in Their Origin and the Efficiency of Treatment 总被引:1,自引:0,他引:1
The review considers the main molecular physiological causes of neurodegenerative disorders. The genetic factors involved in Parkinson’s and Alzheimer’s diseases are conventionally divided into pharmacodynamic and pharmacokinetic. The former are analyzed at the levels of dopamine (DA) neurons and polymorphism of the D1, D2, and D3 DA receptors. The role of polymorphisms of some proteins such as parkin (PARK1-PARK10) and α-synuclein in generation of Lewy bodies is described. The pharmacokinetic factors play a role in Parkinson’s disease (PD) at the level of metabolism of DA, dioxyphenylalanine, and tyrosine and include polymorphisms of enzymes and proteins involved in the relevant metabolic reactions. The profile of DA metabolites may contribute to neurotoxicity and the development of PD. Prospects of drug therapy of PD and the risk of adverse drug effects such as mental disorders and dyskinesia are considered in terms of polymorphisms of enzymes and transport proteins.__________Translated from Fiziologiya Cheloveka, Vol. 31, No. 4, 2005, pp. 119–130.Original Russian Text Copyright © 2005 by Sukhanov, Ionov, Piruzyan. 相似文献
15.
16.
Magdalena Ruiz-Rodríguez Juan J. Soler Manuel Martín-Vivaldi Antonio M. Martín-Platero María Méndez Juan M. Peralta-Sánchez Samir Ananou Eva Valdivia Manuel Martínez-Bueno 《Applied and environmental microbiology》2014,80(21):6714-6723
Exploring processes of coevolution of microorganisms and their hosts is a new imperative for life sciences. If bacteria protect hosts against pathogens, mechanisms facilitating the intergenerational transmission of such bacteria will be strongly selected by evolution. By disentangling the diversity of bacterial strains from the uropygium of hoopoes (Upupa epops) due to genetic relatedness or to a common environment, we explored the importance of horizontal (from the environment) and vertical (from parents) acquisition of antimicrobial-producing symbionts in this species. For this purpose, we compared bacterial communities among individuals in nonmanipulated nests; we also performed a cross-fostering experiment using recently hatched nestlings before uropygial gland development and some nestlings that were reared outside hoopoe nests. The capacity of individuals to acquire microbial symbionts horizontally during their development was supported by our results, since cross-fostered nestlings share bacterial strains with foster siblings and nestlings that were not in contact with hoopoe adults or nests also developed the symbiosis. Moreover, nestlings could change some bacterial strains over the course of their stay in the nest, and adult females changed their bacterial community in different years. However, a low rate of vertical transmission was inferred, since genetic siblings reared in different nests shared more bacterial strains than they shared with unrelated nestlings raised in different nests. In conclusion, hoopoes are able to incorporate new symbionts from the environment during the development of the uropygium, which could be a selective advantage if strains with higher antimicrobial capacity are incorporated into the gland and could aid hosts in fighting against pathogenic and disease-causing microbes. 相似文献
17.
18.
Douglas S. Goodin 《PloS one》2012,7(12)
Making only the assumption that twins are representative of the population from which they are drawn, we here develop a simple mathematical model (using widely available epidemiological information) that sheds considerable light on the pathogenesis of complex human diseases. Specifically, for the case of multiple sclerosis (MS), we demonstrate that the vast majority of patients (≥94%), possibly all, require genetic susceptibility in order to get MS. Nevertheless, only a tiny fraction of the population (≤2.2%) is actually susceptible to getting this disease; a finding which is highly consistent in all of the studied populations across both North America and Europe. Men are more likely to be susceptible than women although susceptible women are more than twice as likely to actually develop MS compared to susceptible men (i.e., they have a greater disease penetrance). This is because women are more responsive to the environmental factors involved in MS pathogenesis than men. These differences account for the current gender-ratio (3∶1, favoring women) and also for the increasing incidence of MS in women around the world. By contrast, the most important genetic marker for MS susceptibility (DRB1*1501) influences the likelihood of susceptibility but not the penetrance of the disease. Nevertheless, even for this major susceptibility allele, only a very small fraction of DRB1*1501carriers (<5%) are susceptible to getting MS and for only a minority of MS patients (∼41%) does this allele contribute to their susceptibility. Moreover, each copy of this allele seems to make an independent contribution to susceptibility. Finally, at least three environmental events are necessary for MS pathogenesis and, during the course of their lives, the large majority of the population (≥69%) experiences an environmental exposure, which is sufficient to produce MS in, at least, some susceptible genotypes. Also, susceptible men (compared to susceptible women) have a lower threshold, a greater hazard-rate, or both in response to the environmental factors involved in MS pathogenesis. 相似文献
19.
《PLoS genetics》2016,12(5)
Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS) region have been associated with developmental delay (DD), autism spectrum disorder (ASD) and schizophrenia (SZ). Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA), but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033% compared to 0.0069% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50% of cases. Isodicentric chromosome 15 (idic15) or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of maternally expressed imprinted genes in the contribution of Copy Number Variants (CNVs) at this interval to the incidence of psychotic illness. This work will have tangible benefits for patients with 15q11.2-q13.3 duplications by aiding genetic counseling. 相似文献
20.
Harrison Brand Vamsee Pillalamarri Ryan L. Collins Stacey Eggert Colm O’Dushlaine Ellen?B. Braaten Matthew R. Stone Kimberly Chambert Nathan?D. Doty Carrie Hanscom Jill?A. Rosenfeld Hillary Ditmars Jessica Blais Ryan Mills Charles Lee James?F. Gusella Steven McCarroll Jordan?W. Smoller Michael?E. Talkowski Alysa?E. Doyle 《American journal of human genetics》2014,95(4):454-461
Structural variation (SV) is a significant component of the genetic etiology of both neurodevelopmental and psychiatric disorders; however, routine guidelines for clinical genetic screening have been established only in the former category. Genome-wide chromosomal microarray (CMA) can detect genomic imbalances such as copy-number variants (CNVs), but balanced chromosomal abnormalities (BCAs) still require karyotyping for clinical detection. Moreover, submicroscopic BCAs and subarray threshold CNVs are intractable, or cryptic, to both CMA and karyotyping. Here, we performed whole-genome sequencing using large-insert jumping libraries to delineate both cytogenetically visible and cryptic SVs in a single test among 30 clinically referred youth representing a range of severe neuropsychiatric conditions. We detected 96 SVs per person on average that passed filtering criteria above our highest-confidence resolution (6,305 bp) and an additional 111 SVs per genome below this resolution. These SVs rearranged 3.8 Mb of genomic sequence and resulted in 42 putative loss-of-function (LoF) or gain-of-function mutations per person. We estimate that 80% of the LoF variants were cryptic to clinical CMA. We found myriad complex and cryptic rearrangements, including a “paired” duplication (360 kb, 169 kb) that flanks a 5.25 Mb inversion that appears in 7 additional cases from clinical CNV data among 47,562 individuals. Following convergent genomic profiling of these independent clinical CNV data, we interpreted three SVs to be of potential clinical significance. These data indicate that sequence-based delineation of the full SV mutational spectrum warrants exploration in youth referred for neuropsychiatric evaluation and clinical diagnostic SV screening more broadly. 相似文献