首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Free radical-mediated mitochondrial dysfunction may play a role in the genesis of sepsis-induced multiorgan failure. Several cellular defenses protect against free radicals, including heme oxygenase. No previous study has determined if measures that increase heme oxygenase levels reduce mitochondrial dysfunction following endotoxin. The purpose of the present study was to determine if mitochondrial dysfunction following endotoxin (LPS) administration can be attenuated by administration of hemin, a pharmacological inducer of heme oxygenase. Blood pressure, heart rate, cardiac and diaphragm mitochondrial function, plasma nitrite/nitrate levels, and tissue markers of free radical generation were compared among rats given saline, LPS, hemin, or a combination of hemin and LPS. Endotoxin (LPS) administration produced large reductions in mitochondrial function (e.g., ATP production rate decreased in both tissues, P < 0.001). Administration of hemin increased tissue heme oxygenase levels, ablated LPS-induced alterations in mitochondrial function, attenuated LPS-induced increases in plasma nitrite/nitrate levels, and prevented LPS-mediated increases in tissue markers of free radical generation. These data indicate that tissue heme oxygenase levels modulate the degree of LPS-induced mitochondrial dysfunction. Measures that increase heme oxygenase levels may provide a means of reducing sepsis-induced mitochondrial dysfunction and tissue injury.  相似文献   

2.
The pesticide paraquat (PQ) was found to be a suitable xenobiotic to model Parkinson’s disease. The reactive oxygen species (ROS) production was suggested to be the main cause of PQ toxicity but very few evidences were found for its generation in the brain in vivo after ip administration. We compared the effects of PQ-induced ROS generation between the brain structures and the peripheral tissues using two different hydroxyl radical generation markers. Repeated but not single ip PQ administration increased the levels of ROS in the striatal homogenates but, when measured in the extracellular microdialysis filtrate, no change was observed. The increased dopamine release was detected in the striatum after the fourth PQ administration and its basal levels were decreased. A single treatment with the pesticide did not influence ROS production in the lungs or kidneys but repeated intoxication decreased its levels. These results suggest that repeated, systemic administration of a low dose of PQ triggers intracellular ROS formation in the brain and can cause slowly progressing degenerative processes, without the toxic effects in the peripheral tissues.  相似文献   

3.
Huntington’s disease (HD) is an autosomal dominantly inherited neurodegenerative disease characterized by symptoms attributable to the death of striatal and cortical neurons. The molecular mechanisms mediating neuronal death in HD involve oxidative stress and mitochondrial dysfunction. Administration of 3-nitropropionic acid (3-NP), an irreversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, in rodents has been proposed as a useful experimental model of HD. This study evaluated the effects of probucol, a lipid-lowering agent with anti-inflammatory and antioxidant properties, on the biochemical parameters related to oxidative stress, as well as on the behavioral parameters related to motor function in an in vivo HD model based on 3-NP intoxication in rats. Animals were treated with 3.5 mg/kg of probucol in drinking water daily for 2 months and, subsequently, received 3-NP (25 mg/kg i.p.) once a day for 6 days. At the end of the treatments, 3-NP-treated animals showed a significant decrease in body weight, which corresponded with impairment on motor ability, inhibition of mitochondrial complex II activity and oxidative stress in the striatum. Probucol, which did not rescue complex II inhibition, protected against behavioral and striatal biochemical changes induced by 3-NP, attenuating 3-NP-induced motor impairments and striatal oxidative stress. Importantly, probucol was able to increase activity of glutathione peroxidase (GPx), an enzyme important in mediating the detoxification of peroxides in the central nervous system. The major finding of this study was that probucol protected against 3-NP-induced behavioral and striatal biochemical changes without affecting 3-NP-induced mitochondrial complex II inhibition, indicating that long-term probucol treatment resulted in an increased resistance against neurotoxic events (i.e., increased oxidative damage) secondary to mitochondrial dysfunction. These data appeared to be of great relevance when extrapolated to human neurodegenerative processes involving mitochondrial dysfunction and indicates that GPx is an important molecular target involved in the beneficial effects of probucol.  相似文献   

4.
Abstract: High doses of methamphetamine (METH) produce a long-term depletion in striatal tissue dopamine content. The mechanism mediating this toxicity has been associated with increased concentrations of dopamine and glutamate and altered energy metabolism. In vivo microdialysis was used to assess and alter the metabolic environment of the brain during high doses of METH. METH significantly increased extracellular concentrations of lactate in striatum and prefrontal cortex. This increase was significantly greater in striatum and coincided with the greater vulnerability of this brain region to the toxic effects of METH. To examine the effect of supplementing energy metabolism on METH-induced dopamine content depletions, the striatum was perfused directly with decylubiquinone or nicotinamide to enhance the energetic capacity of the tissue during or after a neurotoxic dosing regimen of METH. When decylubiquinone or nicotinamide was perfused into striatum during the administration of METH, there was no significant effect on METH-induced striatal dopamine efflux, glutamate efflux, or the long-term dopamine depletions measured 7 days later. However, a delayed perfusion with decylubiquinone or nicotinamide for 6 h beginning immediately after the last METH injection attenuated the METH-induced striatal dopamine depletions measured 1 week later. These results support the hypothesis that the compromised metabolic state produced by METH administration predisposes dopamine terminals to the neurotoxic effects of glutamate, dopamine, and/or free radicals.  相似文献   

5.
Paraquat (PQ; 1, 1′‐dimethyl‐4‐4′‐bipyridinium), an herbicide and model neurotoxicant, is identified to be one of the prime risk factors in Parkinson's disease (PD). In the Drosophila system, PQ is commonly used to measure acquired resistance against oxidative stress (PQ resistance test). Despite this, under acute PQ exposure, data on the oxidative stress response and associated impact on mitochondria among flies is limited. Accordingly, in this study, we measured markers of oxidative stress and mitochondrial dysfunctions among adult male flies (8–10 days old) exposed to varying concentrations of PQ (10, 20, and 40 mM in 5% sucrose solution) employing a conventional filter disc method for 24 h. PQ exposure resulted in significant elevation in the levels of oxidative stress biomarkers (malondialdehyde: 43% increase: hydroperoxide: 32–39% increase), with concomitant enhancement in reduced glutathione and total thiol levels in cytosol. Higher activity of antioxidant enzymes were also evident along with increased free iron levels. Furthermore, PQ exposure caused a concentration‐dependent increase in mitochondrial superoxide generation and activity of manganese‐superoxide dismutase (Mn‐SOD). The activity levels of complex I‐III, complex II‐III, and Mg+2 adinosine triphosphatase (ATPase) were also decreased significantly. A robust diminution in the activity of succinate dehydrogenase and moderate decline in the citrate synthase activity suggested a specific effect on citric acid cycle enzymes. Collectively, these data suggest that acute PQ exposure causes significant oxidative stress and mitochondrial dysfunction among flies in vivo. It is suggested that in various experimental settings, while conducting the “PQ resistance stress test” incorporation of selected biochemical end points is likely to enhance the quality of the data.  相似文献   

6.
Glutamate receptor activation participates in mediation of neurotoxic effects in the striatum induced by the psychomotor stimulant amphetamine. The effects of the non-competitive NMDA receptor antagonist dizocilpine (MK-801) on amphetamine-induced toxicity and formation of nitric oxide (NO) in both striatum and cortex and on induced transmitter release in the nucleus accumbens were investigated. Repeated, systemic application of amphetamine elevated striatal and cortical lipid peroxidation and NO production. Moreover, amphetamine caused an immediate release of acetylcholine and aspartate and a delayed release of GABA in the nucleus accumbens. Surprisingly, glutamate release was not affected. Dizocilpine abolished the amphetamine-induced lipid peroxidation and NO production in striatum and cortex and diminished the elevation of neurotransmitter release. These findings suggest that amphetamine evokes neurotoxic effects in both striatal and cortical brain areas that are prevented by inhibiting NMDA receptor activation. The amphetamine-induced acetylcholine, aspartate and GABA release in the nucleus accumbens is also mediated through NMDA receptor-dependent mechanisms. Interestingly, the enhanced aspartate release might contribute to NMDA receptor activation in the nucleus accumbens, while glutamate does not seem to mediate amphetamine-evoked transmitter release in this striatal brain area.  相似文献   

7.
《Free radical research》2013,47(8):614-623
Abstract

Paraquat is a highly toxic herbicide capable of generating oxidative stress and producing brain damage after chronic exposure. The aim of this research was to investigate the contribution of mitochondria to the molecular mechanism of apoptosis in an in vivo experimental model of paraquat neurotoxicity. Sprague-Dawley adult female rats received paraquat (10 mg/kg i.p.) or saline once a week during a month. Paraquat treatment increased cortical and striatal superoxide anion levels by 45% and 18%, respectively. As a consequence, mitochondrial aconitase activity was significantly inhibited in cerebral cortex and striatum. Paraquat treatment increased cortical and striatal lipid peroxidation levels by 16% and 28%, respectively, as compared with control mitochondria Also, cortical and striatal cardiolipin levels were decreased by 13% and 49%, respectively. Increased Bax and Bak association to mitochondrial membranes was observed after paraquat treatment in cerebral cortex and striatum. Also, paraquat induced cytochrome c and AIF release from mitochondria.

These findings support the conclusion that a weekly dose of paraquat during four weeks induces oxidative damage that activates mitochondrial pathways associated with molecular mechanisms of cell death. The release of apoptogenic proteins from mitochondria to cytosol after paraquat treatment would be the consequence of an alteration in mitochondrial membrane permeability due to the presence of high superoxide anion levels. Also, our results suggest that under chronic exposure, striatal mitochondria were more sensitive to paraquat oxidative damage than cortical mitochondria. Even in the presence of a high oxidative stress in striatum, equal levels of apoptosis were attained in both brain areas.  相似文献   

8.
This present study was carried out to investigate the likely mechanisms by which methyl jasmonate (MJ), ‘an agent widely used in aromatherapy for neurological disorders, attenuates lipopolysaccharide (LPS)-induced memory deficits in mice. Mice were given intraperitoneal administration of LPS (250 µg/kg) alone or in combination with MJ (10–40 mg/kg), donepezil, DP (1 mg/kg), or vehicle for 7 successive days. Thereafter, memory was assessed using object recognition test (ORT). Acetylcholinesterase and myeloperoxidase activities were estimated in brain tissue homogenates. Brain levels of nitric oxide and markers of oxidative stress as well as histopathologic changes of the prefrontal cortex and cornu ammonis 1 (CA1) of the hippocampal region were also assessed. MJ (10–40 mg/kg) attenuated LPS-induced memory impairment in ORT. Moreover, the increased brain activities of acetylcholinesterase and myeloperoxidase enzymes were suppressed by MJ when compared with control (p?<?0.05). Increased brain oxidative stress and nitric oxide levels in LPS-treated mice were significantly decreased by MJ. It offers protection against LPS-induced neuronal degeneration of the prefrontal cortex and CA1 of the hippocampus, suggesting neuroprotective effect. Taken together, these findings showed that MJ offers protection against LPS-induced memory deficits via mechanisms related to inhibition of acetylcholinesterase, myeloperoxidase, oxidative stress and neuronal degeneration.  相似文献   

9.
J G Sheng  D L Xu  H Z Yu  X R Xu  Q M Tang 《Life sciences》1987,40(20):2007-2010
The administration of MPTP to man and monkey has been shown to cause a neurotoxic effect on the nigrostriatal dopamine system. MPTP was injected in C57-BL black mice, 36 mg per kg for 7 days, which resulted in permanent reduction of dopamine and serotonin levels in the striatum. In the mice pretreated with PLG, although the striatal dopamine level was also reduced, mean dopamine and serotonin levels were significantly higher than in mice given MPTP alone. It is concluded that PLG could protect at least partially the neurotoxic effect of MPTP.  相似文献   

10.
Psychostimulant methamphetamine (METH) is toxic to striatal dopaminergic and serotonergic nerve terminals in adult, but not in the adolescent, brain. Betulinic acid (BA) and its derivatives are promising anti‐HIV agents with some toxic properties. Many METH users, particularly young men, are HIV‐positive; therefore, they might be treated with BA or its derivative for HIV infection. It is not known whether BA, or any of its derivatives, are neurotoxic in combination with METH in the adolescent brain. The present study investigated the effects of BA and binge METH in the striatum of late adolescent rats. BA or METH alone did not decrease the levels of dopaminergic or serotonergic markers in the striatum whereas BA and METH together decreased these markers in a BA dose‐dependent manner. BA+METH also caused decreases in the levels of mitochondrial complex I in the same manner; BA alone only slightly decreased the levels of this enzyme in striatal synaptosomes. BA or METH alone increased cytochrome c. METH alone decreased parkin, increased complex II and striatal BA levels. These results suggest that METH in combination with BA can be neurotoxic to striatal dopaminergic and serotonergic nerve terminals in the late adolescent brain via mitochondrial dysfunction and parkin deficit.

  相似文献   


11.
Blood-brain barrier (BBB) impairment in systemic inflammation leads to neuroinflammation. Several factors including cytokines, chemokines and signal transduction molecules are implicated in BBB dysfunction in response to systemic inflammation. Here, we have adopted a novel in vivo technique; namely, cerebral open flow microperfusion (cOFM), to perform time-dependent cytokine analysis (TNF-alpha, IL-6 and IL-10) in the frontal cortex of the rat brain in response to a single peripheral administration of lipopolysaccharide (LPS). In parallel, we monitored BBB function using sodium fluorescein as low molecular weight reporter in the cOFM sample. In response to the systemic LPS administration, we observed a rapid increase of TNF-alpha in the serum and brain, which coincides with the BBB disruption. Brain IL-6 and IL-10 synthesis was delayed by approximately 1 h. Our data demonstrate that cOFM can be used to monitor changes in brain cytokine levels and BBB disruption in a rat sepsis model.  相似文献   

12.

Background

We have investigated whether an acute metabolic damage to astrocytes during the neonatal period may critically disrupt subsequent brain development, leading to neurodevelopmental disorders. Astrocytes are vulnerable to glutaric acid (GA), a dicarboxylic acid that accumulates in millimolar concentrations in Glutaric Acidemia I (GA-I), an inherited neurometabolic childhood disease characterized by degeneration of striatal neurons. While GA induces astrocyte mitochondrial dysfunction, oxidative stress and subsequent increased proliferation, it is presently unknown whether such astrocytic dysfunction is sufficient to trigger striatal neuronal loss.

Methodology/Principal Findings

A single intracerebroventricular dose of GA was administered to rat pups at postnatal day 0 (P0) to induce an acute, transient rise of GA levels in the central nervous system (CNS). GA administration potently elicited proliferation of astrocytes expressing S100β followed by GFAP astrocytosis and nitrotyrosine staining lasting until P45. Remarkably, GA did not induce acute neuronal loss assessed by FluoroJade C and NeuN cell count. Instead, neuronal death appeared several days after GA treatment and progressively increased until P45, suggesting a delayed onset of striatal degeneration. The axonal bundles perforating the striatum were disorganized following GA administration. In cell cultures, GA did not affect survival of either striatal astrocytes or neurons, even at high concentrations. However, astrocytes activated by a short exposure to GA caused neuronal death through the production of soluble factors. Iron porphyrin antioxidants prevented GA-induced astrocyte proliferation and striatal degeneration in vivo, as well as astrocyte-mediated neuronal loss in vitro.

Conclusions/Significance

Taken together, these results indicate that a transient metabolic insult with GA induces long lasting phenotypic changes in astrocytes that cause them to promote striatal neuronal death. Pharmacological protection of astrocytes with antioxidants during encephalopatic crisis may prevent astrocyte dysfunction and the ineluctable progression of disease in children with GA-I.  相似文献   

13.
Abstract: The effects of 2-deoxyglucose (2-DG), an inhibitor of the uptake and use of glucose, on ATP loss caused by the neurotoxicant 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) were determined in the mouse brain. 2-DG alone had no effect on brain ATP levels, but when administered 30 min before MPTP exposure, 2-DG significantly enhanced MPTP-induced ATP reduction. This was reflected as an increase in ATP loss in the striatum (from 15 to 27%) as well as a significant decrease in ATP in the cerebellar cortex, an area of the brain that was not affected after exposure to MPTP alone. In mice pretreated with 2-DG, striatal ATP levels remained significantly decreased for >8 h after MPTP administration. In contrast, ATP levels in the cerebellar cortex returned to normal values within 4 h from MPTP exposure. Mazindol, a catecholamine uptake blocker, completely protected against MPTP-induced loss of striatal ATP in the absence of 2-DG, but it only partially prevented striatal ATP decrease after administration of both 2-DG and MPTP; mazindol was also ineffective in protecting against ATP loss caused by 2-DG and MPTP in the cerebellar cortex. 2-DG/MPTP-induced ATP loss appeared to be associated with the presence of the 1 -methyl-4-phenylpyridinium (MPP+) metabolite because (1) the pattern of ATP recovery in the striatum and cerebellar cortex appeared to reflect the pattern of MPP+clearance from these areas of the brain (i.e., significant MPP+ levels persisted longer in the striatum than in the cerebellar cortex), and (2) ATP decrease was completely prevented by blocking the conversion of MPTP to MPP+with the monoamine oxidase B inhibitor deprenyl. Data indicate that impairment of glucose metabolism dramatically enhances the effects of MPTP/MPP+ on cerebral energy supplies, making these effects relatively nonselective for dopaminergic neurons of the nigrostriatal pathway.  相似文献   

14.
In this study, we administered aminoguanidine, a relatively selective inducible nitric oxide synthase (iNOS) inhibitor, to study the role of nitric oxide (NO) in LPS-induced decrease in IGF-I and IGFBP-3. Adult male Wistar rats were injected intraperitoneally with LPS (100 microg/kg), aminoguanidine (100 mg/kg), LPS plus aminoguanidine, or saline. Rats were injected at 1730 and 0830 the next day and killed 4 h after the last injection. LPS administration induced an increase in serum concentrations of nitrite/nitrate (P < 0.01) and a decrease in serum concentrations of growth hormone (GH; P < 0.05) and IGF-I (P < 0.01) as well as in liver IGF-I mRNA levels (P < 0.05). The LPS-induced decrease in serum concentrations of IGF-I and liver IGF-I gene expression seems to be secondary to iNOS activation, since aminoguanidine administration prevented the effect of LPS on circulating IGF-I and its gene expression in the liver. In contrast, LPS-induced decrease in serum GH was not prevented by aminoguanidine administration. LPS injection decreased IGFBP-3 circulating levels (P < 0.05) and its hepatic gene expression (P < 0.01), but endotoxin did not modify the serum IGFBP-3 proteolysis rate. Aminoguanidine administration blocked the inhibitory effect of LPS on both IGFBP-3 serum levels and its hepatic mRNA levels. When aminoguanidine was administered alone, IGFBP-3 serum levels were increased (P < 0.05), whereas its hepatic mRNA levels were decreased. This contrast can be explained by the decrease (P < 0.05) in serum proteolysis of this binding protein caused by aminoguanidine. These data suggest that iNOS plays an important role in LPS-induced decrease in circulating IGF-I and IGFBP-3 by reducing IGF-I and IGFBP-3 gene expression in the liver.  相似文献   

15.
One month (but not 1–3 days) after intermittent morphine administration, the hyperresponsiveness of rats toward the locomotor effects of morphine and amphetamine was associated with an increase in dopamine (DA) D-1 receptor-stimulated adenylyl cyclase activity and enhanced steady state levels of preprodynorphin gene expression in slices of the caudate/putamen and nucleus accumbens. Such an enduring increase in postsynaptic D-1 receptor efficacy also occurred in cultured γ-aminobutyric acid (GABA) neurons of the striatum obtained from rats prenatally treated with morphine. Interestingly, in vitro glucocorticoid receptor activation in these cultured striatal neurons by corticosterone potentiated this neuroadaptive effect of prior in vivo morphine exposure. Since activation of glucocorticoid receptors by corticosterone did not affect D-1 receptor functioning in cultured neurons of saline-pretreated rats, prior intermittent exposure to morphine (somehow) appears to induce a long-lasting state of corticosterone hyperresponsiveness in striatal neurons. Therefore, DA-sensitive striatal GABA neurons may represent common neuronal substrates acted upon by morphine and corticosterone. We hypothesize that the delayed occurrence of these long-lasting morphine-induced neuroadaptive effects in GABA/dynorphin neurons of the striatum is involved in the enduring nature of behavioral sensitization to drugs of abuse and cross-sensitization to stressors. Special issue dedicated to Dr. Eric J. Simon.  相似文献   

16.
Prenatal infection is a major risk responsible for the occurrence of psychiatric conditions in infants. Mimicking maternal infection by exposing pregnant rodents to bacterial endotoxin lipopolysaccharide (LPS) also leads to major brain disorders in the offspring. The mechanisms of LPS action remain, however, unknown. Here, we show that LPS injection during pregnancy in rats, 2 days before delivery, triggered an oxidative stress in the hippocampus of male fetuses, evidenced by a rapid rise in protein carbonylation and by decreases in alpha-tocopherol levels and in the ratio of reduced/oxidized forms of glutathione (GSH/GSSG). Neither protein carbonylation increase nor decreases in alpha-tocopherol levels and GSH/GSSG ratio were observed in female fetuses. NMDA synaptic currents and long-term potentiation in CA1, as well as spatial recognition in the water maze, were also impaired in male but not in female 28-day-old offspring. Pretreatment with the antioxidant N-acetylcysteine prevented the LPS-induced changes in the biochemical markers of oxidative stress in male fetuses, and the delayed detrimental effects in male 28-day-old offspring, completely restoring both long-term potentiation in the hippocampus and spatial recognition performance. Oxidative stress in the hippocampus of male fetuses may thus participate in the neurodevelopmental damage induced by a prenatal LPS challenge.  相似文献   

17.
Ma  Yan  Zhu  Mingkun  Miao  Liping  Zhang  Xiaoyun  Dong  Xinyang  Zou  Xiaoting 《Biological trace element research》2018,186(1):185-198
Over the last decade, there has been an increased concern about the health risks from exposure to arsenic at low doses, because of their neurotoxic effects on the developing brain. The exact mechanism underlying arsenic-induced neurotoxicity during sensitive periods of brain development remains unclear, although enhanced oxidative stresses, leading to mitochondrial dysfunctions might be involved. Here, we highlight the generation of reactive oxygen species (ROS) and oxidative stress which leads to mitochondrial dysfunctions and apoptosis in arsenic-induced developmental neurotoxicity. Here, the administration of sodium arsenite at doses of 2 or 4 mg/kg body weight in female rats from gestational to lactational (GD6-PD21) resulted to increased ROS, led to oxidative stress, and increased the apoptosis in the frontal cortex, hippocampus, and corpus striatum of developing rats on PD22, compared to controls. Enhanced levels of ROS were associated with decreased mitochondrial membrane potential and the activity of mitochondrial complexes, and hampered antioxidant levels. Further, neuronal apoptosis, as measured by changes in the expression of pro-apoptotic (Bax, Caspase-3), anti-apoptotic (Bcl2), and stress marker proteins (p-p38, pJNK) in arsenic-exposed rats, was discussed. The severities of changes were found to more persist in the corpus striatum than in other brain regions of arsenic-exposed rats even after the withdrawal of exposure on PD45 as compared to controls. Therefore, our results indicate that perinatal arsenic exposure leads to abrupt changes in ROS, oxidative stress, and mitochondrial functions and that apoptotic factor in different brain regions of rats might contribute to this arsenic-induced developmental neurotoxicity.  相似文献   

18.
Repeated administration of methamphetamine to animals can lead to long-lasting decreases in striatal monoamine content. In the present study, the effects of neurotoxic doses of methamphetamine on basal and evoked overflow of striatal serotonin and of its primary metabolite 5-hydroxyindoleacetic acid were examined in awake rats using in vivo microdialysis. Male Fischer-344 rats were administered methamphetamine (5 mg/kg, s.c.) or saline four times in 1 day at 2-h intervals. Microdialysis studies were carried out 1 week, 1 month, and 6 months later. At 1 week posttreatment there were significant decreases in potassium- and amphetamine-evoked overflow of serotonin in the striatum of the methamphetamine-treated animals. Basal extracellular levels of 5-hydroxyindoleacetic acid but not of serotonin were also decreased. Evoked overflow of serotonin recovered by 1 month, and extracellular levels of 5-hydroxyindoleacetic acid had recovered by 6 months. Tissue levels of serotonin and 5-hydroxyindoleacetic acid were decreased at 1 week posttreatment but back to control levels by 1 month after treatment. These results indicate that presynaptic serotonergic functioning is attenuated in the striatum of rats treated 1 week earlier with neurotoxic doses of methamphetamine. However, in the model used, the changes are transient, and recovery can occur within 1-6 months posttreatment.  相似文献   

19.
This study was undertaken to examine changes in Zn and Cu homeostasis in the liver and kidney of rats caused by cadmium (Cd) or lipopolysaccharide (LPS) administration. Twenty-five male, 7- to 8-week-old Wistar rats were divided into five groups: saline only treatment, saline treatment and food deprivation, exposure to a single dose of Cd, exposure to LPS alone, and exposure to Cd + LPS. Changes in plasma nitrate concentrations and hepatic and renal Zn and Cu contents were measured together with urinary excretion rates for the metals and nitrate on 3 consecutive days: 24 h before treatment and 24 and 48 h after treatments. Cd exposure alone for 48 h caused a nearly 2-fold increase in plasma nitrate levels with no changes in urinary nitrate excretion whereas LPS treatment caused plasma nitrate levels to increase by 10-fold and urinary nitrate excretion to increase by 4-fold. Administration of LPS 24 h after Cd exposure caused a 10-fold increase in plasma nitrate concentrations and a 100-fold increase in urinary nitrate excretion compared to the rates prior to LPS administration. These results indicate a synergistic interaction between Cd and LPS toxicity. Cd exposure also caused a marked increase in hepatic Zn levels, but LPS did not cause any changes in hepatic Zn or Cu content. In sharp contrast, both Zn and Cu contents were decreased in the kidneys by 16 and 36% in animals exposed to Cd or LPS. A correlation analysis of measured variables reveals that renal Cu contents were inversely associated with plasma nitrate concentrations while urinary Cu excretion on day 3 showed a strong positive correlation with both urinary nitrate and Cd excretions on the same day. A linear regression analysis shows 20% of the variation in urinary Cu excretion was associated with urinary Cd excretion on the same day. It is concluded that reductions in renal Cu contents caused by Cd or LPS administration may be a result of Cd and NO displacement of Cu previously bound to metallothionein.  相似文献   

20.
Infection and inflammation affect adipose triglyceride metabolism, resulting in increased plasma free fatty acid (FFA) and VLDL levels during the acute-phase response. Lipin-1, a multifunctional protein, plays a critical role in adipose differentiation, mitochondrial oxidation, and triglyceride synthesis. Here, we examined whether LPS [a Toll-like receptor (TLR)-4 activator], zymosan (a TLR-2 activator), and proinflammatory cytokines regulate lipin-1 in adipose tissue. LPS administration caused a marked decrease in the levels of lipin-1 mRNA and protein in adipose tissue. The decrease in lipin-1 mRNA levels occurred rapidly and lasted for at least 24 h. In contrast, lipin-2 and -3 mRNA levels did not change, suggesting specific repression of lipin-1. Zymosan similarly decreased lipin-1 mRNA without affecting lipin-2 or lipin-3 mRNA levels. To determine the pathways by which LPS repressed lipin-1, we examined the effect of proinflammatory cytokines on cultured adipocytes. In 3T3-L1 adipocytes, TNF-alpha, IL-1beta, and IFN-gamma, but not LPS or IL-6, caused a decrease in lipin-1 mRNA levels. Furthermore, TNF-alpha and IL-1beta administration also decreased mRNA levels of lipin-1 in adipose tissue in mice. Importantly, the LPS-induced decrease in lipin-1 mRNA levels was significantly but not totally blunted in TNF-alpha/IL-1 receptor-null mice compared with controls, suggesting key roles for TNF-alpha/IL-1beta and other cytokines in mediating LPS-induced repression of lipin-1. Together, our results demonstrate that expression of lipin-1, one of the essential triglyceride synthetic enzymes, was suppressed by LPS, zymosan, and proinflammatory cytokines in mouse adipose tissue and in cultured 3T3-L1 adipocytes, which could contribute to a decrease in the utilization of FFA to synthesize triglycerides in adipose tissue, thus promoting the release of FFA into the circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号