首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Root development is sensitive to environmental stimuli. We have recently reported that the light signal could promote the helical growth of seminal roots and drive the wavy root morphology in rice (Oryza sativa L.) young seedlings. The light-stimulated wavy roots were mostly performed in indica-type rice varieties (e.g., Taichung Native 1; TCN1) but not in japonica rice (e.g., Tainung 67; TNG67). Here, we demonstrated that the light-driven circumutation trajectory of TCN1 seminal roots could be changed if the seedling roots were grown in the medium containing high concentration of Phytagel. The data showed the root morphology would be modulated from wavy to curling when the Phytagel concentration was increased to 2%. However, the touch-stimulated curling root phenotype could not be performed in dark. In addition, the touch-induced curling roots were not appeared in the TNG67 rice cultivar. Although touch stimuli could not induce wavy/curling root phenotype in dark, it could modify the light-promoted helical growth to conduct curling roots in TCN1 rice seedlings. Thus, it was suggested that there is a crosstalk mechanism between touching-induced root curling and light-stimulated root waving.Key words: curling root, light stimuli, Oryza sativa, seminal root, touch stimuli, wavy rootRoot development and architecture could be changed to adapt the environmental conditions. Although root is usually grown in soil, it still exposes to light penetrated through soil particles. Some studies also indicated light can be conducted from shoots to roots through vascular bundle tissues.1,2 Recently, we have reported that the light-exposed seminal roots of indica-type rice, i.e., Taichung Native 1 (TCN1), presented the wavy morphology.3 The light-induced wavy root was not performed in japonica rice such as Tainung 67 (TNG67). Moreover, the circumutation of TCN1 seminal root tip were observed with time-lapse photography during root growth. According to the investigations among various rice varieties, it has been found that the root morphology was determined by helix period and circumnutation trajectory of root tip moving behavior.3 For example, the root tip movement of light-exposed TCN1 seedlings was a regular circumntation; therefore, the roots performed a regular wavy phenotype. In the other rice variety (i.e., Taichung Sen 17) with the curling root morphology, the circumnutation trajectory of seminal roots was significantly irregular compared with that was observed in TCN1. In the previous report, we showed that the auxin and oxylipins (i.e., ketol) played important roles to trigger the light-induced wavy roots.3The wavy root phenotype has also been observed in Arabidopsis when it was cultured on an agar-plate that was inclined at an angle of less than 90°.4 Based on the studies in Arabidopsis mutants, the performance of obstacle-touching induced wavy phenotype in seedlings roots was related to the functions of auxin efflux/influx carriers and some proteins involved in cell expansion.46 Moreover, ethylene also played a role to modulate the wavy root morphology.7In our previous experiments for studying the light-induced wavy roots, rice seedlings were cultured in water. In order to reveal the effect of interaction between light signal pathway and touch stimuli on rice seminal root growth, the sterilized rice seeds of TCN1 and TNG67 cultivars were germinated at 30°C in dark for 2 d and moved to continuous white light conditions (90 µmol m−2 s−1) to grow in vertically oriented square dishes containing 1.5% and 2% (w/v) Phytagel (Sigma, St. Louis, MO), respectively. The Phytagel percentage of the medium that we used here were higher than that was used for plant tissue culture in usual. After 3 d culture, the seminal roots of seedlings on 1.5% Phytagel performed wavy phenotype that was similar to the wavy roots observed in water-cultured seedlings under light conditions. Furthermore, the seminal roots in 2% Phytagel was grown to be a curling type (Fig. 1). On the other hand, no wavy or curling root morphology was presented in dark conditions either in 1.5% or 2% Phytagel-containing medium (Fig. 1). These results showed that root-Phytagel interaction could not directly induce the significant wavy or curling root morphology under dark growth conditions, but it could modify the light-stimulated helical growth and conduct the curling root morphology.Open in a separate windowFigure 1Effect of the interaction between light signals and touch stimuli on seminal root growth in rice seedlings. The TCN1 rice seeds were germinated in dark for 2 d and then germinated seeds were transferred to 1.5% and 2% Phytagel-containing plates for continuously growing. The root morphology was investigated after 3 d of Phytagelculture under light and dark conditions.Photomorphology of the seminal roots was diverse among rice varieties. Our previous data showed light-induced wavy roots could not be conducted in TNG67 rice cultivar.3 Here, we also observed the root growth of TNG67 rice seedlings on Phytagel-containing plates, and the results showed the straight root morphology in both light and dark conditions (data not shown). These results indicated that the phenomena of touch-stimulated curling roots were also rice variety-dependent.Based on above mentioned results, it was suggested that mechanisms of root-gel interaction for conducting curling phenotype was highly correlated with the transduction pathway of light signal to induce root waving. This hypothesis was supported by the observation on physiological mechanisms of light-induced wavy roots in rice plants and the obstacle-touching stimulated wavy roots in Arabidopsis. Our previous observation in rice plants suggested that auxin polar transport was essential for light-induced root waving and fatty acid oxygenation was involved to the mechanism of root waving in light.3 In Arabidopsis, auxin polar transport was also indicated to play a role in obstacle-touching stimulated root waving.8,9 In addition, wavy roots of Arabidopsis could be induced by several products of fatty acid oxygenation, i.e., ketols, ketones and hydroxides.10In conclusion, both light signal and touch stimuli were the important environmental cues to guide root growth and determine root morphology. Touch stimuli were able to modify the trajectory of light-induced root waving. Phenomena of both light-induced wavy roots and touch-stimulated curling roots were rice variety-dependent. Furthermore, it was suggested that touch-induced signaling may be associated with the light-induced signal pathway to conduct curling phenotype in seminal roots of rice seedlings.  相似文献   

2.
Response of root system architecture to nutrient availability is an essential way for plants to adapt to soil environments. Nitrogen can affect root development either as a result of changes in the external concentration, or through changes in the internal nutrient status of the plant. Low soil N stimulates root elongation in maize. Recent evidence suggests that plant hormones auxin and cytokinin, as well as NO signaling pathway, are involved in the regulation of root elongation by low nitrogen nutrition.Key words: nitrogen, root growth, auxin, cytokinin, NONitrogen acquisition is determined by N demand for plant growth. At low N stress, N demand for maximum plant growth rate is not matched by plant N uptake. To acquire adequate N, plants may increase root length density to explore a larger soil volume and/or increase N uptake activity. High root density is also an important root trait for competition with soil microorganisms.1 Since nitrate is a highly mobile, non-adsorbing ion, theoretic analysis predicts that its uptake is not limited by transport through soil, and a small root system is sufficient for nitrate acquisition.24 In field conditions, however, genotypes that are efficient in N acquisition generally had a larger root system and higher root length density.5,6 Under conditions of insufficient N supply, N mass flow to roots may not be adequate to meet the N demand for plant growth. Even in N-sufficient soils, various soil constraints (low water content, etc) may reduce the N mass flow rate. In these cases, large root size and high density will be very important for the utilization of the spatially distributed N, especially newly mineralized N, and the competition for organic N with soil microorganisms.7,8The development of lateral roots in Arabidopsis in response to nitrate supply has been widely studied.9 Less attention has been paid to primary root growth in response to N, possibly because root elongtion is insensitive to increased N supply in Arabidopsis.10,11 In maize, however, root elongation was sigificantly promoted by suboptimal N supply, and inhibited by overdose supply of N (Fig. 1).12,13 Until recently less is known about the underlying physiological mechansms. It is well documented that cytokinin is a root-to-shoot signal communicating N availability in addition to nitrate itself.14 Exogenous cytokinin application suppresses the elongation of primary roots.15 Recent work in Arabidopsis overexpressing cytokinin synthase (IPT) demonstrate that long-term CK overproduction inhibited primary root elongation by reducing quantitative parameters of primary root meristem.16 By comparing two maize inbred lines whose root elongation had a differential response to low N stress, it was found that the change of cytokinin content in roots was closely related to low-N induced root elongation.13 In the N-sensitive genotype 478, cytokinin (Zeatin + Zeatin riboside) content was significantly lower at low N condition. While in N-insensitive genotype Wu312, cytokinin content was hardly affected at various N supplies. Higher N supply shortened the distance from root apex to the first visible lateral roots, a phenomenen similar to that caused by exogenous cytokinins. Furthermore, exogenous cytokinin 6-benzylaminopurine (6-BA) completely reversed the stimulatory effect of low nitrate on root elongation. All the data suggests that the inhibitory effect of high concentration of nitrate on root elongation is, at least in part, mediated by increased cytokinin level in roots.Open in a separate windowFigure 1Root elongation is inhibited at high nitrate supply.Auxin regulates many cellular responses crucial for plant development. Auxin plays a key role in establishing and elaborating patterns in root meristems.17,18 Root elongation of Arabidopsis is enhanced by exogenous auxin at low concentrations, but is inhibited at high concentrations.19 In an earlier report, a high external nitrate supply (8 mM) did cause a 70% decrease in the auxin concentration of the root in soybean.20 In maize, inhibition of root growth by high nitrate was found closely related to the reduction of IAA levels in roots and exogenous NAA and IAA restored primary root growth in high nitrate concentrations.21 Interesting, it was found that auxin concentrations in phloem exudates were reduced by a greater nitrate supply, suggesting that shoot-to-root auxin transport may be inhibited by high N supply. Considering the antagonism between auxin and cytokinin.22 it was possible that, by increasing the cytokinin level and decreasing the auxin level, high nitrate supply may have negative influences on root apex activity so that root apical dominance is weakened and, therefore, root elongation is suppressed and lateral roots grow closer to the root apex.Nitric oxide (NO) is emerging as an important messenger molecule associated with many biochemical and physiological processes in plants. The involvement of NO in IAA-induced adventitious root development has also been reported.23 Given that nitrate is a substrate for NR-catalysed NO production, and root development and growth are closely related to NO, it is expected that NO may play a role in nitrate-dependent root growth. Surprisingly, endogenous levels of NO in the root apices of maize seedlings grown in high nitrate solution were much lower than those in apices grown in low nitrate. The nitrate-induced inhibition of root elongation in maize was markedly reversed by treatments of the roots with a NO donor (SNP) and IAA.24 These data suggest that the arrest of root elongation by high levels of external nitrate concentrations may result from an alteration of endogenous NO levels in root apical cells. NR mediated NO production is unlikely to be involved in the nitrate-dependent NO production and root elongation because NR activity is lower at low N supply. A NO synthase (NOS) inhibitor reduced root elongation in maize plants grown in the low-nitrate medium, suggest that NOS activity may be inhibited in plants grown in high-nitrate solution, thus leading to a reduction of the endogenous NO levels.Taken together, high nitrogen supply increases cytokinin level, but decreases auxin and NO levels in roots of maize. Besides, it was well documented ethylene has a negative effect on root elongation of various plants.2527 Exogenous supply of cytokinin increase ethylene production (Stenlid 1982; Bertell et al., 1990). Recently, it was demonstrated in Arabidopsis that auxin transport from the root apex via the lateral root cap is required for ethylene-mediated inhibition of root growth.28 Therefore, a complex multiple siganlling pathways may be involved in N-mediated root elongation (Fig. 2). Further study is required to understand how these pathways interact with each other to reduce root elongation in response to high nitrate supply.Open in a separate windowFigure 2A simplified model explaining nitogen-mediated root elongation in maize.  相似文献   

3.
To optimize photosynthetic activity, chloroplasts change their intracellular location in response to ambient light conditions; chloroplasts move toward low intensity light to maximize light capture and away from high intensity light to avoid photodamage. Although several proteins have been reported to be involved in chloroplast photorelocation movement response, any physical interaction among them was not found so far. We recently found a physical interaction between two plant-specific coiled-coil proteins, WEB1 (Weak Chloroplast Movement under Blue Light 1) and PMI2 (Plastid Movement Impaired 2), that were indentified to regulate chloroplast movement velocity. Since the both coiled-coil regions of WEB1 and PMI2 were classified into an uncharacterized protein family having DUF827 (DUF: Domain of Unknown Function) domain, it was the first report that DUF827 proteins could mediate protein-protein interaction. In this mini-review article, we discuss regarding molecular function of WEB1 and PMI2, and also define a novel protein family composed of WEB1, PMI2 and WEB1/PMI2-like proteins for protein-protein interaction in land plants.Key words: Arabidopsis, blue light, chloroplast velocity, coiled-coil region, organelle movement, phototropin, protein-protein interactionIntracellular locations of chloroplasts change in response to different light conditions to capture sunlight efficiently for energy production through photosynthesis. Chloroplasts move toward weak light to maximize light capture (the accumulation response),1,2 and away from strong light to reduce photodamage (the avoidance response).3 In higher plants such as Arabidopsis thaliana, the responses are induced by blue light-dependent manner.1,2 Recently, chloroplast actin (cp-actin) filaments were found to be involved in chloroplast photorelocation movement and positioning.4,5 The cp-actin filaments are localized at the interface between the chloroplast and the plasma membrane to anchor the chloroplast to the plasma membrane, and are relocalized to the leading edge of chloroplasts before and during the movement.4,5 The difference of cp-actin filament amounts between the front and the rear halves of chloroplasts determines the chloroplast movement velocity; as the difference increases, chloroplast velocity also increases.4,5Several proteins have been reported to be involved in chloroplast movement. The blue light receptors, phototropin 1 (phot1) and phot2, mediate the accumulation response,6 and phot2 solely mediates the avoidance response.7,8 Chloroplast Unusual Positioning 1 (CHUP1), Kinesin-like Protein for Actin-Based Chloroplast Movement 1 (KAC1) and KAC2 are involved in the cp-actin filament formation.4,911 Other proteins with unknown molecular function involved in the chloroplast movement responses have also been reported. They are J-domain Protein Required for Chloroplast Accumulation Response 1 (JAC1),12,13 Plastid Movement Impaired 1 (PMI1),14 a long coiled-coil protein Plastid Movement Impaired 2 (PMI2), a PMI2-homologous protein PMI15,15 and THRUMIN1.16Recently, we characterized two plant-specific coiled-coil proteins, Weak Chloroplast Movement under Blue Light 1 (WEB1) and PMI2, which regulate the velocity of chloroplast photorelocation movement.17 In this mini-review article, we discuss about molecular function of WEB1 and PMI2 in chloroplast photorelocation movement, and also define the WEB1/PMI2-related (WPR) protein family as a new protein family for protein-protein interaction.  相似文献   

4.
A healthy root system is crucial to plant growth and survival. To maintain efficiency of root function, plants have to dynamically modulate root system architecture through various adaptive mechanisms such as lateral root formation to respond to a changing and diversified soil environment. Exogenous application of a coumarin derivative, 4-methylumbelliferone (4-MU), in Arabidopsis thaliana inhibits seed germination by mainly reducing primary root growth. UDP-glycosyltransferases play an integral role in the biochemical mechanism of 4-MU detoxification in plant roots.1 However, 4-MU treatment also dramatically led to increased lateral root initiation, elongation and density. Moreover, marked root bending at the root-hypocotyl junction and auxin redistribution appeared to contribute to the 4-MU-mediated lateral root formation. We propose that 4-MU would serve as a useful chemical tool to study auxin-mediated root branching.Plant roots are required for the acquisition of water and nutrients, for response to abiotic and biotic factors in the soil, and to anchor the plant in the ground.2 To maintain efficiency of root function, plants have to dynamically modulate root system architecture (RSA) by regulation of primary root growth, lateral root (LR) formation and elongation and root hair increase.2 Recent studies on root patterning have made significant progress toward understanding the molecular and physiological basis of RSA.3 For example, auxin synthesis, transport and distribution are required for LR initiation and primordium development.2 However, determination of the underlying RSA patterning mechanism remains to be elucidated.Coumarins are a group of natural products in plants that originate from the general phenylpropanoid pathway.4 They are often found to accumulate in the root tissues5 and are involved in plant defense, root development and nitrogen uptake and metabolism.1,6-8 Some coumarins also receive attention for their pharmacological properties. For example, 4-MU is a potent apoptotic agent with strong anti-invasive and antiangiogenic properties against prostate cancer cells.9We have demonstrated that exogenous 4-MU was accumulated in the root system in a concentration-dependent manner. After continuous exposure to 4-MU, growth of the primary roots exhibited a dosage-dependent inhibition of root length, whereas the growth of cotyledon and hypocotyls was not significantly changed. Moreover, 4-MU was found to be glycosylated to 4-methylumbelliferyl-β-D-glucoside (4-MU-Glc) by UDP-glycosyltransferases (UGTs) for detoxification.1 Here we report that marked bending of the primary roots and auxin redistribution in root system contributes to 4-MU-induced root branching. After exposure to 125 µM 4-MU for 6 d, the primary root length was reduced by 25% compared with the untreated seedlings, but the first LR emerged at the root-hypocotyl junction 3 d earlier in the Arabidopsis DR5::GUS lines compared with untreated seedlings. The GUS activity and distribution in the primary roots of DR5::GUS seedlings were coordinately regulated in response to 4-MU treatment (Fig. 1A-D). Interestingly, primary root shape was also affected upon 4-MU treatment as evidenced by marked bending of the primary roots followed by emergence of lateral roots at the root-hypocotyl junctions. As the roots grew, the bend continued to develop and a hook formed at the root-hypocotyl junction (Fig. 1F). After exposure to 125 μM 4-MU for 22 d, abundant lateral roots formed from the bent region (Fig. 1F). We also observed that auxin accumulation in the bent region was significantly reduced after root branching was well established, compared with the untreated plants (Fig. 1E and F). It has been demonstrated that LR formation can be induced mechanically by either gravitropic curvature or by transient bending.10,11 We suggest that 4-MU-induced LR proliferation is triggered by both mechanical bending of the primary roots at the root-hypocotyl junctions and the local auxin redistribution.Open in a separate windowFigure 1.Changes of auxin distribution in response to 4-MU as observed using DR5::GUS reporter fusion. (A) Auxin accumulation in root-hypocotyl junction after exposure to 125 µM 4-MU for 6 d. (B-D) Detection of 4-MU accumulation in root under UV (325 nm). (B) Brightfield; (C) UV channel (325 nm); (D) Merge of (B) and (C). (E) An untreated root system of 22-d-old DR5::GUS seedling. (F) A root system of 22-d-old DR5::GUS seedling in the presence of 125 µM 4-MU. Asterisks indicate the localization of auxin accumulation. It was noted that LR formation upon 4-MU treatment was closely associated with auxin distribution and 4-MU accumulation in roots.Our finding of 4-MU-dependent root patterning is intriguing in light of the important role of RSA in plant physiology. Given that LR initiation is stimulated by 4-MU and that this compound is effectively detoxified in plant roots by glycosylation, a new way to augment root function could be provided through applying 4-MU to modulate RSA. In addition, 4-MU could serve as a useful chemical tool for understanding auxin-mediated root branching, for example, by screening Arabidopsis mutants in the presence of this compound.Coumarins synthesis from phenylpropanoid precursors occurs with an especially high number of structural variations in higher plants via numerous possible modifications at specific positions of the benzene ring.4,5 For example, hydroxylation of coumarins at 6-position catalyzed by a 2-oxoglutarate-dependant dioxygenase (F6''H1) is important for the biosynthesis of scopoletin.12 Coumarin synthesis in Arabidopsis plants can result in the accumulation of umbelliferone and its derivative skimmin but not 4-MU5 in which 4-MU possesses a pivotal methyl group at the 4-position of the benzene ring. Our results suggest that 4-MU uptake does not benefit plant growth as it is a phytotoxic compound found to inhibit primary root growth and seed germination. This finding explains why Arabidopsis plants do not naturally accumulate 4-MU and its derivatives. Nevertheless, 4-MU has been found and isolated from other higher plants such as Dalbergia volubilis and Eupatorium pauciflorum, indicating the existence of a biosynthetic pathway leading to the formation of 4-MU in nature.13  相似文献   

5.
Root colonization by the basidiomycete fungus Piriformospora indica induces host plant tolerance against abiotic and biotic stress, and enhances growth and yield. As P. indica has a broad host range, it has been established as a model system to study beneficial plant-microbe interactions. Moreover, its properties led to the assumption that P. indica shows potential for application in crop plant production. Therefore, possible mechanisms of P. indica improving host plant yield were tested in outdoor experiments: Induction of higher grain yield in barley was independent of elevated pathogen levels and independent of different phosphate fertilization levels. In contrast to the arbuscular mycorrhiza fungus Glomus mosseae total phosphate contents of host plant roots and shoots were not significantly affected by P. indica. Analysis of plant development and yield parameters indicated that positive effects of P. indica on grain yield are due to accelerated growth of barley plants early in development.Key words: mycorrhiza, barley development, Piriformospora indica, phosphate uptake, grain yield, pathogen resistanceThe wide majority of plant roots in natural ecosystems is associated with fungi, which very often play an important role for the host plants'' fitness.1 The widespread arbuscular mycorrhizal (AM) symbiosis formed by fungi of the phylum Glomeromycota is mainly characterized by providing phosphate to their host plant in exchange for carbohydrates.2,3 Fungi of the order Sebacinales also form beneficial interactions with plant roots and Piriformospora indica is the best-studied example of this group.4 This endophyte was originally identified in the rhizosphere of shrubs in the Indian Thar desert,5 but it turned out that the fungus colonizes roots of a very broad range of mono- and dicotyledonous plants,6 including major crop plants.79 Like other mutualistic endophytes, P. indica colonizes roots in an asymptomatic manner10 and promotes growth in several tested plant species.6,11,12 The root endophyte, moreover, enhances yield in barley and tomato and increases in both plants resistance against biotic stresses,7,9 suggesting that application in agri- and horticulture could be successful.  相似文献   

6.
7.
The majority of understanding of root gravity responses comes from the study of primary roots, even though lateral roots make a far greater contribution to root system architecture. The focus of this report is the analysis of gravitropic responses in lateral roots of wild-type background and pgm-1 mutants. Despite the significant reduction in gravitropic response of primary roots of pgm-1 mutants, the lateral roots of this mutant demonstrate wild-type rates of gravitropism, suggesting a significant difference in gravity signal transduction between primary and lateral roots.Key words: gravitropism, lateral roots, pgm-1, root system architecturePlants are extremely sensitive to numerous environmental stimuli, including touch, gravity, light and humidity, among many others. As a pervasive signal on Earth, gravity exerts a persistent influence on plant morphogenesis by directing the primary roots and shoots of most species to align parallel with the gravity vector. The vertical orientations obtained by primary organs has provided for a simple assay of gravitropic responses, and much of our understanding of gravity stimulus perception, signal transduction and differential growth response has been gained by a focus on primary organ systems.With respect to gravity stimulus perception, there is strong evidence that the movement of starch-filled plastids plays a primary role in the detection of a change in the orientation of an organ relative to gravity.1 Consistent with this evidence, we have recently demonstrated that roots of the starchless mutant of Arabidopsis, pgm-1, respond to gravity at approximately 30% the rate of wild-type roots, and that they lack the wild-type relationship between cap angle and response rate.2 Furthermore, pgm-1 roots lack the gravity-induced gradient of auxin reported by DR5-GFP expression, found in wild-type roots, linking plastid sedimentation with the differential auxin transport thought to mediate the differential growth response.3While our understanding of root gravitropism has grown in sophistication and detail, the emerging picture has been compiled almost entirely from observations of primary organ behavior. The degree to which our model of signaling involved in primary root gravitropic responses applies to the behavior of lateral roots is an almost entirely open question, with only a handful of studies investigating lateral root gravitropic responses.46 Toward that end, we have begun to explore the question of lateral root gravitropism in the overall context of root system architecture, and wish to report here on the gravitropic response of lateral roots in wild-type and pgm-1 genetic backgrounds.  相似文献   

8.
The symbiotic interaction between the soil bacteria Frankia and actinorhizal plants leads to the formation of nitrogen-fixing nodules resembling modified lateral roots. Little is known about the signals exchanged between the two partners during the establishment of these endosymbioses. However, a role for plant hormones has been suggested.Recently, we studied the role of auxin influx activity during actinorhizal symbioses. An inhibitor of auxin influx was shown to perturb nodule formation. Moreover we identified a functional auxin influx carrier that is produced specifically in Frankia-infected cells. These results together with previous data showing auxin production by Frankia lead us to propose a model of auxin action during the symbiotic infection process.Key words: lateral roots, nitrogen fixation, Frankia, AUX1, actinorhizal symbioses, phenylacetic acid, auxin influxActinorhizal symbioses result from the interaction between the soil actinomycete Frankia and plants belonging to eight angiosperm families collectively called actinorhizal plants.1 This symbiotic interaction leads to the formation of a new organ on the root system, the actinorhizal nodule, where the bacteria are hosted and fix nitrogen.2 Unlike legume nodules, actinorhizal nodules are structurally and developmentally related to lateral roots.3 Little is known about the signals exchanged between the two partners during the establishment of the symbiosis.2 Diffusible signals are emitted by Frankia at early stages of the interaction resulting in root hair deformation.2 The chemical nature of these signals remains unknown, however, detailed studies revealed that they are different from rhizobial Nod factors.4 Phytohormones are chemicals that control many developmental processes5 and have been linked to many plant-microbe interactions. Recently, we studied the role of auxin influx in actinorhizal nodule formation in the tropical tree Casuarina glauca.6  相似文献   

9.
Strigolactones (SLs) have been recently identified as a new group of plant hormones or their derivatives thereof, shown to play a role in plant development. Evolutionary forces have driven the development of mechanisms in plants that allow adaptive adjustments to a variety of different habitats by employing plasticity in shoot and root growth and development. The ability of SLs to regulate both shoot and root development suggests a role in the plant''s response to its growth environment. To play this role, SL pathways need to be responsive to plant growth conditions, and affect plant growth toward increased adaptive adjustment. Here, the effects of SLs on shoot and root development are presented, and possible feedback loops between SLs and two environmental cues, light and nutrient status, are discussed; these might suggest a role for SLs in plants'' adaptive adjustment to growth conditions.Key words: strigolactones, light, nutrient status, root, shoot, branching, lateral roots, root hairsStrigolactones (SLs) are carotenoid-derived terpenoid lactones suggested to stem from the carotenoid pathway1 via the activity of various oxygenases.2,3 SLs production has been demonstrated in both monocotyledons and eudicotyledons (reviewed in ref. 4), suggesting their presence in many plant species.5 SLs are synthesized mainly in the roots and in some parts of the stem and then move towards the shoot apex (reviewed ref. 7).6,8,9SLs were first characterized more than 40 years ago as germination stimulants of the parasitic plants Striga and Orobanche and later, as stimulants of arbuscular mycorrhiza hyphal branching as well (reviewed in ref. 4, 1013). Recently, SLs or derivatives thereof, have been identified as a new group of plant hormones, shown to play a role in inhibition of shoot branching,2,3,8,9 thereby affecting shoot architecture; more recently they have also been shown to affect root growth by affecting auxin efflux.14Plants have developed mechanisms that allow adaptive adjustments to a variety of different habitats by employing plasticity in their growth and development.15 Shoot architecture is affected by environmental cues, such as light quality and quantity and nutrient status.1619 Root-system architecture and development are affected by environmental conditions such as nutrient availability (reviewed in ref. 20, 21). At the same time, plant hormones are known to be involved in the regulation of plant growth, development and architecture (reviewed in ref. 2224) and to be mediators of the effects of environmental cues on plant development; one classic example is auxin''s role in the plant''s shade-avoidance response (reviewed in ref. 25).The ability of SLs to regulate shoot and root development suggests that these phytohormones also have a role in the plant''s growth response to its environment. To play this putative role, SL pathways need to be responsive to plant growth conditions, and affect plant growth toward enhancing its adaptive adjustment. The present review examines the SLs'' possible role in adaptive adjustment of the plant''s response to growth conditions, by discussing their effect on plant development and the possible associations and feedback loops between SLs and two environmental cues: light and nutrient status.  相似文献   

10.
11.
To adapt to waterlogging, maize (Zea mays) forms lysigenous aerenchyma in root cortex as a result of ethylene-promoted programmed cell death (PCD). Respiratory burst oxidase homolog (RBOH) gene encodes a homolog of gp91phox in NADPH oxidase, and has a role in the generation of reactive oxygen species (ROS). Recently, we found that during aerenchyma formation, RBOH was upregulated in all maize root tissues examined, whereas an ROS scavengingrelated metallothionein (MT) gene was downregulated specifically in cortical cells. Together these changes should lead to high accumulations of ROS in root cortex, thereby inducing PCD for aerenchyma formation. As further evidence of the involvement of ROS in root aerenchyma formation, the PCD was inhibited by diphenyleneiodonium (DPI), an NADPH oxidase inhibitor. Based on these results, we propose a model of cortical cell-specific PCD for root aerenchyma formation.Key words: aerenchyma, ethylene, laser microdissection, maize (Zea mays), metallothionein, programmed cell death, reactive oxygen species, respiratory burst oxidase homologIn both wetland and non-wetland plants, lysigenous aerenchyma is formed in roots by creating gas spaces as a result of death and subsequent lysis of some cortical cells, and allows internal transport of oxygen from shoots to roots under waterlogged soil conditions.13 In rice (Oryza sativa) and some other wetland plant species, lysigenous aerenchyma is constitutively formed under aerobic conditions, and is further enhanced under waterlogged conditions.4 On the other hand, in non-wetland plants, including maize (Zea mays), lysigenous aerenchyma does not normally form under well-drained soil conditions, but is induced by waterlogging.5 Ethylene is involved in lysigenous aerenchyma formation,13,6,7 but the molecular mechanisms are unclear.We recently identified two reactive oxygen species (ROS)-related genes that were specifically regulated in maize root cortex by waterlogged conditions, but not in the presence of an ethylene perception inhibitor 1-methylcyclopropene (1-MCP).5 One was respiratory burst oxidase homolog (RBOH), which has a role in ROS generation and the other was metallothionein (MT), which has a role in ROS scavenging. These results suggest that ROS has a role in ethylene signaling in the PCD that occurs during lysigenous aerenchyma formation.  相似文献   

12.
The development of Casparian strips (CSs) on the endo- and exodermis and their chemical components in roots of three cultivars of rice (Oryza sativa) with different salt tolerance were compared using histochemistry and Fourier transform infrared (FTIR) spectroscopy. The development and deposition of suberin lamellae of CSs on the endo- and exodermis in the salt-tolerant cultivar Liaohan 109 was earlier than in the moderately tolerant cultivar Tianfeng 202 and the sensitive cultivar Nipponbare. The detection of chemical components indicated major contributions to the structure of the outer part from aliphatic suberin, lignin and cell wall proteins and carbohydrates to the rhizodermis, exodermis, sclerenchyma and one layer of cortical cells in series (OPR) and the endodermal Casparian strip. Moreover, the amounts of these major chemical components in the outer part of the Liaohan 109 root were higher than in Tianfeng 202 and Nipponbare, but there was no distinct difference in endodermal CSs among the three rice cultivars. The results suggest that the exodermis of the salt-tolerant cultivar Liaohan 109 functions as a barrier for resisting salt stress.Key words: casparian strip, chemical components, development, rice, rootPlant roots are in direct contact with the soil environment and thus particularly affected by unfavorable conditions. To withstand the surrounding environment, roots have developed anatomical and physiological adaptations. The development of Casparian strips (CSs) in the root endo- and exodermis is one such strategy.13 In roots of most species, the sequence of development of the endo- and exodermis is roughly the same and involves two consecutive developmental stages: (1) formation of CSs in radial and transverse walls impregnating the primary cell wall pores with lipophilic and aromatic substances and (2) deposition of suberin lamellae to the inner surface of anticlinal and tangential cell walls.46A major function of the CS is to block the non-selective apoplastic bypass flow of water and ions into the stele.3 Therefore, the structure,79 chemical nature,1012 and physiological function13,14 of endo- and exdodermal CSs in roots have been the focus of many investigations. Although oxygen loss, drought and salinity can influence the development and chemical nature of CSs in different rice cultivars,1519 few investigations have considered the development and formation of endo- and exdodermal CSs in the roots of rice cultivars with different salt tolerance under normal growing conditions.In the present paper, light microscopy and Fourier transform infrared (FTIR) spectroscopy were used to examine the cytochemistry and root anatomy of isolated CSs. The aim was to compare anatomical development and chemical characteristics of the endoand exdodermal CSs of three rice (Oryza sativa L.) cultivars having different salt tolerance in north China: the salt-tolerant Liaohan 109 and two widely grown cultivars, Tianfeng 202 and Nipponbare.  相似文献   

13.
14.
15.
Rhizosphere is the complex place of numerous interactions between plant roots, microbes and soil fauna. Whereas plant interactions with aboveground organisms are largely described, unravelling plant belowground interactions remains challenging. Plant root chemical communication can lead to positive interactions with nodulating bacteria, mycorriza or biocontrol agents or to negative interactions with pathogens or root herbivores. A recent study1 suggested that root exudates contribute to plant pathogen resistance via secretion of antimicrobial compounds. These findings point to the importance of plant root exudates as belowground signalling molecules, particularly in defense responses. In our report,2 we showed that under Fusarium attack the barley root system launched secretion of phenolic compounds with antimicrobial activity. The secretion of de novo biosynthesized t-cinnamic acid induced within 2 days illustrates the dynamic of plant defense mechanisms at the root level. We discuss the costs and benefits of induced defense responses in the rhizosphere. We suggest that plant defense through root exudation may be cultivar dependent and higher in wild or less domesticated varieties.Key words: root exudates, plant defense, t-cinnamic acid, fusarium, induced defensePlants grow and live in very complex and changing ecosystems. Because plants lack the mobility to escape from attack by pathogens or herbivores, they have developed constitutive and in addition inducible defenses that are triggered by spatiotemporally dynamic signaling mechanisms. These defenses counteract the aggressor directly via toxins or defense plant structures or indirectly by recruitment of antagonists of aggressors. Whereas induced defenses are well described in aboveground interactions, evidence of the occurrence of such mechanisms in belowground interactions remains limited. The biosynthesis of a defensive molecule could be both constitutive and inducible with a low level of a preformed pool (Fig. 1). In addition, upon encounter of an attacking organism, those levels could be induced to rise locally to a high level of active compound that is able to disarm the pathogen.2,3 Only a few examples show that root exudates play a role in induced plant defense. Hairy roots of Ocimum basilicum secrete rosmarinic acid only when challenged by the pathogenic fungus Pythium ultimum.4 Wurst et al.5 reported on the induction of irridoid glycosides in root exudates of Plantago lanceolata in presence of nematodes. In vivo labelling experiments2 with 13CO2 showed the induction of phenolic compounds secreted by barley roots after Fusarium graminearum infection and the de novo biosynthesis of root secreted t-cinnamic acid within 2 days. These results show that the pool of induced t-cinnamic acid originated from both pre-formed and newly formed carbon pools (Fig. 1), highlighting a case of belowground induced defense inside and outside the root system.Open in a separate windowFigure 1Suggested mechanisms for the induction of root defense exudates in barley in response to Fusarium attack. Upon pathogen attack by Fusarium, the initial preformed pool of phenolic compounds is increased by the addition of inducible, de novo biosynthesized t-cinnamic acid. Both, the preformed pool and the de novo biosynthesized pool fuel the exudation of defense compounds from infected roots.The concept of fitness costs is frequently presented to explain the coexistence of both constitutive and induced defense.6 In the case of induced defense, resources are invested in defenses only when the plant is under attack. In the absence of an infection, plants can optimize allocation of their resources to reproduction and growth to compete with neighbours.7 Constitutive defenses are thought to be more beneficial when the probability of attack is high, whereas adjustable, induced defenses are more valuable to fight against an unpredictable pathogen. Non disturbed soil is a heterogeneous matrix where biodiversity is very high and patchy8,9 and organism motility is rather restricted.10 As a consequence of the patchiness, belowground environment is expected to be favourable to selection for induced responses.11 The absence of defense root exudates between two infections may form an unpredictable environment for soil pathogens and reduce the chance for adaptation of root attackers. Plants may also use escape strategies to reduce the effect of belowground pathogens. Henkes et al. (unpublished) showed that Fusarium-infected barley plants reduced carbon allocation towards infected roots within a day and increased allocation carbon to uninfected roots. These results illustrate how reallocation of carbon toward non infected root parts represents a way to limit the negative impact of root infection.We have demonstrated the potential of barley plants to defend themselves against soil pathogen by root exudation.2 Even the barley cultivar ‘Barke’ used in our study, a modern cultivated variety, was able to launch defense machinery via exudation of antimicrobial compounds when infected by F. graminearum. We suggest that plant defense through root exudation might be cultivar dependent and perhaps higher in wild or less domesticated varieties. Taddei et al.12 reported that constitutivelyproduced root exudates from a resistant Gladiolus cultivar inhibit spore germination of Fusarium oxysporum whereas root exudates from a susceptible cultivar do not affect F. oxysporum germination. Root exudates from the resistant cultivar contained higher amounts of aromaticphenolic compounds compared to the susceptible cultivar and these compounds may be responsible for the inhibition of spore germination. Metabolic profiling of wheat cultivars, ‘Roblin’ and ‘Sumai3’, respectively, susceptible and resistant to Fusarium Head Blight, showed that t-cinnamic acid was a discriminating factor responsible for resistance/defense function.13 Therefore it is likely that wild barley varieties hold higher defense capacities compare to cultivated varieties selected for high yield. In the future, plant breeders in organic and low-input farming could use root-system defense ability as new trait in varietal variation.  相似文献   

16.
Plants are known to be highly responsive to environmental heterogeneity and normally allocate more biomass to organs that grow in richer patches. However, recent evidence demonstrates that plants can discriminately allocate more resources to roots that develop in patches with increasing nutrient levels, even when their other roots develop in richer patches. Responsiveness to the direction and steepness of spatial and temporal trajectories of environmental variables might enable plants to increase their performance by improving their readiness to anticipated resource availabilities in their immediate proximity. Exploring the ecological implications and mechanisms of trajectory-sensitivity in plants is expected to shed new light on the ways plants learn their environment and anticipate its future challenges and opportunities.Key words: Gradient perception, phenotypic plasticity, anticipatory responses, plant behavior, plant learningNatural environments present organisms with myriad challenges of surviving and reproducing under changing conditions.1 Depending on its extent, predictability and costs, environmental heterogeneity may select for various combinations of genetic differentiation and phenotypic plasticity.26 However, phenotypic plasticity is both limited and costly.7 One of the main limitations of phenotypic plasticity is the lag between the perception of the environment and the time the products of the plastic responses are fully operational.7 For instance, the developmental time of leaves may significantly limit the adaptive value of their plastic modification due to mismatches between the radiation levels and temperatures prevailing during their development and when mature and fully functional.8,9 Accordingly, selection is expected to promote responsiveness to cues that bear information regarding the probable future environment.9,10Indeed, anticipatory responses are highly prevalent, if not universal, amongst living organisms. Whether through intricate cerebral processes, such as in vertebrates, nervous coordination, as in Echinoderms,11 or by relatively rudimentary non-neural processes, such as in plants12 and bacteria,13 accumulating examples suggest that virtually all known life forms are able to not only sense and plastically respond to their immediate environment but also anticipate probable future conditions via environmental correlations.10Perhaps the best known example of plants'' ability to anticipate future conditions is their responsiveness to spectral red/far-red cues, which is commonly tightly correlated with future probability of light competition.14 Among others, plants have been shown to respond to cues related to anticipated herbivory15,16 and nitrogen availability.17 Imminent stress is commonly anticipated by the perception of a prevailing stress. For example, adaptation to anticipated severe stress was demonstrated to be inducted by early priming by sub-acute drought,18 root competition19 and salinity.20Future conditions can also be anticipated by gradient perception: because resource and stress levels are often changing along predictable spatial and temporal trajectories, spatio-temporal dynamics of environmental variables might convey information regarding anticipated growth conditions (Fig. 1). For example, the order of changes in day length, rather than day length itself, are known to assist plants in differentiating fall from spring and thus avoid blooming in the wrong season.21 In addition, responsiveness to environmental gradients as such, i.e., sensitivity to the direction and steepness of environmental trajectories, independently from the stationary levels of the same factors, has been demonstrated in higher organisms, such as the perception of acceleration in contrast to velocity;22 and the dynamics of skin temperature in contrast to stationary skin temperature;23 where the adaptive value of the second-order derivatives of environmental factors is paramount. Similar perception capabilities have also been demonstrated in rudimentary life forms such as bacteria (reviewed in refs. 13 and 24) and plants.25,26 Specifically, perception of environmental trajectories might assist organisms to both anticipate future conditions and better utilize the more promising patches in their immediate environment.27,28Open in a separate windowFigure 1Trajectory sensitivity in plants. The hypothetical curves depict examples of spatio-temporal trajectories of resource availability, which might be utilized by plants to increase foraging efficiency in newly-encountered patches. When young or early-in-the-season (segment 1–2), plants are expected to allocate more resources to roots that experience the most promising (steepest increases or shallowest decreases) resource availabilities (e.g., allocating more resources to organs in INC-1 than INC-2). In addition, plants are predicted to avoid allocation to roots experiencing decreasing trajectories (DEC, segment 1–2); although temporarily more abundant with resources, such DEC patches are expected to become poorer than alternative patches in the longer run (segment 2–3).29 However, responsiveness to environmental trajectories is only predicted where the expected period of resource uptake is relatively long, e.g., when plants are still active in segment 2–3, a stipulation which might not be fulfilled in e.g., short-living annuals with life span shorter than segment 1–2.In a recent study, Pisum plants have been demonstrated to be sensitive to temporal changes in nutrient availabilities. Specifically, plants allocated greater biomass to roots growing under dynamically-improving nutrient levels than to roots that grew under continuously higher, yet stationary or deteriorating, nutrient availabilities.29 Allocation to roots in poorer patches might seem maladaptive if only stationary nutrient levels are accounted for, and indeed-almost invariably, plants are known to allocate more resources to organs that experience higher (non-toxic) resource levels (reviewed in ref. 33). Accordingly, the new findings suggest that rather than merely responding to the prevailing nutrient availabilities, root growth and allocation are also responsive to trajectories of nutrient availabilities (Fig. 1).10Although Shemesh et al.29 demonstrated trajectory-sensitivity of individual roots to temporal gradient of nutrient availabilities, it is likely that this sensitivity helps plants sense spatial gradients, whereby root tips perceive changes in growth conditions as they move through space.34 Interestingly, because the trajectory-sensitivity was observed when whole roots were subjected to changing nutrient levels, it is likely that trajectory sensitivity in roots is based on the integration of sensory inputs perceived by yet-to-be-determined parts of the root over time, i.e., temporal sensitivity/memory (e.g. reviewed in ref. 35), rather than on the integration of sensory inputs at different locations on the same individual roots (i.e., spatial sensitivity).Besides the direction of change, it is hypothesized that plants are also sensitive to the steepness of environmental trajectories (Fig. 1). This might be especially crucial in short-living annuals, which are expected to only be responsive to trajectories steep enough to be indicative of changes in growth conditions before the expected termination of the growth season (Fig. 1).Studying responsiveness to environmental variability is pivotal for understanding the ecology and evolution of any living organism. However, until recently most attention has been given to the study of responses to stationary spatial and temporal heterogeneities in growth conditions. Exploring the ecological implications and mechanisms of trajectory sensitivity in plants is expected to shed new light on the ways plants learn their immediate environment and anticipate its future challenges and opportunities.  相似文献   

17.
18.
Polar auxin transport (PAT), which is controlled precisely by both auxin efflux and influx facilitators and mediated by the cell trafficking system, modulates organogenesis, development and root gravitropism. ADP-ribosylation factor (ARF)-GTPase protein is catalyzed to switch to the GTP-bound type by a guanine nucleotide exchange factor (GEF) and promoted for hybridization to the GDP-bound type by a GTPase-activating protein (GAP). Previous studies showed that auxin efflux facilitators such as PIN1 are regulated by GNOM, an ARF-GEF, in Arabidopsis. In the November issue of The Plant Journal, we reported that the auxin influx facilitator AUX1 was regulated by ARF-GAP via the vesicle trafficking system.1 In this addendum, we report that overexpression of OsAGAP leads to enhanced root gravitropism and propose a new model of PAT regulation: a loop mechanism between ARF-GAP and GEF mediated by vesicle trafficking to regulate PAT at influx and efflux facilitators, thus controlling root development in plants.Key Words: ADP-ribosylation factor (ARF), ARF-GAP, ARF-GEF, auxin, GNOM, polar transport of auxinPolar auxin transport (PAT) is a unique process in plants. It results in alteration of auxin level, which controls organogenesis and development and a series of physiological processes, such as vascular differentiation, apical dominance, and tropic growth.2 Genetic and physiological studies identified that PAT depends on efflux facilitators such as PIN family proteins and influx facilitators such as AUX1 in Arabidopsis.Eight PIN family proteins, AtPIN1 to AtPIN8, exist in Arabidopsis. AtPIN1 is located at the basal side of the plasma membrane in vascular tissues but is weak in cortical tissues, which supports the hypothesis of chemical pervasion.3 AtPIN2 is localized at the apical side of epidermal cells and basally in cortical cells.1,4 GNOM, an ARF GEF, modulates the localization of PIN1 and vesicle trafficking and affects root development.5,6 The PIN auxin-efflux facilitator network controls root growth and patterning in Arabidopsis.4 As well, asymmetric localization of AUX1 occurs in the root cells of Arabidopsis plants,7 and overexpression of OsAGAP interferes with localization of AUX1.1 Our data support that ARF-GAP mediates auxin influx and auxin-dependent root growth and patterning, which involves vesicle trafficking.1 Here we show that OsAGAP overexpression leads to enhanced gravitropic response in transgenic rice plants. We propose a model whereby ARF GTPase is a molecular switch to control PAT and root growth and development.Overexpression of OsAGAP led to reduced growth in primary or adventitious roots of rice as compared with wild-type rice.1 Gravitropism assay revealed transgenic rice overxpressing OsAGAP with a faster response to gravity than the wild type during 24-h treatment. However, 1-naphthyl acetic acid (NAA) treatment promoted the gravitropic response of the wild type, with no difference in response between the OsAGAP transgenic plants and the wild type plants (Fig. 1). The phenotype of enhanced gravitropic response in the transgenic plants was similar to that in the mutants atmdr1-100 and atmdr1-100/atpgp1-100 related to Arabidopsis ABC (ATP-binding cassette) transporter and defective in PAT.8 The physiological data, as well as data on localization of auxin transport facilitators, support ARF-GAP modulating PAT via regulating the location of the auxin influx facilitator AUX1.1 So the alteration in gravitropic response in the OsAGAP transgenic plants was explained by a defect in PAT.Open in a separate windowFigure 1Gravitropism of OsAGAP overexpressing transgenic rice roots and response to 1-naphthyl acetic acid (NAA). (A) Gravitropism phenotype of wild type (WT) and OsAGAP overexpressing roots at 6 hr gravi-stimulation (top panel) and 0 hr as a treatment control (bottom panel). (B) Time course of gravitropic response in transgenic roots. (C and D) results correspond to those in (A and B), except for treatment with NAA (5 × 10−7 M).The polarity of auxin transport is controlled by the asymmetric distribution of auxin transport proteins, efflux facilitators and influx carriers. ARF GTPase is a key member in vesicle trafficking system and modulates cell polarity and PAT in plants. Thus, ARF-GDP or GTP bound with GEF or GAP determines the ARF function on auxin efflux facilitators (such as PIN1) or influx ones (such as AUX1).ARF1, targeting ROP2 and PIN2, affects epidermal cell polarity.9 GNOM is involved in the regulation of PIN1 asymmetric localization in cells and its related function in organogenesis and development.6 Although VAN3, an ARF-GAP in Arabidopsis, is located in a subpopulation of the trans-Golgi transport network (TGN), which is involved in leaf vascular network formation, it does not affect PAT.10 OsAGAP possesses an ARF GTPase-activating function in rice.11 Specifically, our evidence supports that ARF-GAP bound with ARF-GTP modulates PAT and gravitropism via AUX1, mediated by vesicle trafficking, including the Golgi stack.1Therefore, we propose a loop mechanism between ARF-GAP and GEF mediated by the vascular trafficking system in regulating PAT at influx and efflux facilitators, which controls root development and gravitropism in plants (Fig. 2). Here we emphasize that ARF-GEF catalyzes a conversion of ARF-bound GDP to GTP, which is necessary for the efficient delivery of the vesicle to the target membrane.12 An opposite process of ARF-bound GDP to GTP is promoted by ARF-GTPase-activating protein via binding. A loop status of ARF-GTP and ARF-GDP bound with their appurtenances controls different auxin facilitators and regulates root development and gravitropism.Open in a separate windowFigure 2Model for ARF GTPase as a molecular switch for the polar auxin transport mediated by the vesicle traffic system.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号