首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Calmodulin‐dependent kinase II (CaMKII) is key for long‐term potentiation of synaptic AMPA receptors. Whether CaMKII is involved in activity‐dependent plasticity of other ionotropic glutamate receptors is unknown. We show that repeated pairing of pre‐ and postsynaptic stimulation at hippocampal mossy fibre synapses induces long‐term depression of kainate receptor (KAR)‐mediated responses, which depends on Ca2+ influx, activation of CaMKII, and on the GluK5 subunit of KARs. CaMKII phosphorylation of three residues in the C‐terminal domain of GluK5 subunit markedly increases lateral mobility of KARs, possibly by decreasing the binding of GluK5 to PSD‐95. CaMKII activation also promotes surface expression of KARs at extrasynaptic sites, but concomitantly decreases its synaptic content. Using a molecular replacement strategy, we demonstrate that the direct phosphorylation of GluK5 by CaMKII is necessary for KAR‐LTD. We propose that CaMKII‐dependent phosphorylation of GluK5 is responsible for synaptic depression by untrapping of KARs from the PSD and increased diffusion away from synaptic sites.  相似文献   

2.
Trafficking of ionotropic glutamate receptors to the plasma membrane commonly requires occupation of the agonist binding sites. This quality control check does not typically involve receptor activation, as binding by competitive antagonists or to non-functional channels may also permit surface expression. The tetrameric kainate receptors can be assembled from five different subunits (GluK1–GluK5). While the “low-affinity” GluK1-3 subunits are able to produce functional homomeric receptors, the “high-affinity” GluK4 and GluK5 subunits require co-assembly with GluK1, 2, or 3 for surface expression. These two different types of subunits have distinct functional roles in the receptor. Therefore, we examined the relative importance of occupancy of the agonist site of the GluK2 or GluK5 subunit for surface expression of heteromeric receptors. We created subunits with a mutation within the S2 ligand-binding domain which decreased agonist affinity. Mutations at this site reduced functional surface expression of homomeric GluK2 receptors, but surface expression of these receptors could be increased with either a competitive antagonist or co-assembly with wild-type GluK5. In contrast, mutations in the GluK5 subunit reduced the production of functional heteromeric receptors at the membrane, and could not be rescued with either an antagonist or wild-type GluK2. These findings indicate that ligand binding to only the GluK5 subunit is both necessary and sufficient to allow trafficking of recombinant GluK2/K5 heteromers to the cell membrane, but that occupancy of the GluK2 site alone is not. Our results suggest a distinct role for the GluK5 subunit in regulating surface expression of heteromeric kainate receptors.  相似文献   

3.
Kainate receptors (KARs) are crucial for the regulation of both excitatory and inhibitory neurotransmission, but little is known regarding the mechanisms controlling KAR surface expression. We used super ecliptic pHluorin (SEP)-tagged KAR subunit GluR6a to investigate real-time changes in KAR surface expression in hippocampal neurons. Sindbis virus-expressed SEP-GluR6 subunits efficiently co-assembled with native KAR subunits to form heteromeric receptors. Diffuse surface-expressed dendritic SEP-GluR6 is rapidly internalized following either N-methyl-d-aspartate or kainate application. Sustained kainate or transient N-methyl-d-aspartate application resulted in a slow decrease of base-line surface KAR levels. Surprisingly, however, following the initial loss of surface receptors, a short kainate application caused a long lasting increase in surface-expressed KARs to levels significantly greater than those prior to the agonist challenge. These data suggest that after initial endocytosis, transient agonist activation evokes increased KAR exocytosis and reveal that KAR surface expression is bidirectionally regulated. This process may provide a mechanism for hippocampal neurons to differentially adapt their physiological responses to changes in synaptic activation and extrasynaptic glutamate concentration.  相似文献   

4.
The trafficking of ionotropic glutamate receptors to and from synaptic sites is regulated by proteins that interact with their cytoplasmic C-terminal domain. Profilin IIa (PfnIIa), an actin-binding protein expressed in the brain and recruited to synapses in an activity-dependent manner, was shown previously to interact with the C-terminal domain of the GluK2b subunit splice variant of kainate receptors (KARs). Here, we characterize this interaction and examine the role of PfnIIa in the regulation of KAR trafficking. PfnIIa directly and specifically binds to the C-terminal domain of GluK2b through a diproline motif. Expression of PfnIIa in transfected COS-7 cells and in cultured hippocampal neurons from PfnII-deficient mice decreases the level of extracellular of homomeric GluK2b as well as heteromeric GluK2a/GluK2b KARs. Our data suggest a novel mechanism by which PfnIIa exerts a dual role on the trafficking of KARs, by a generic inhibition of clathrin-mediated endocytosis through its interaction with dynamin-1, and by controlling KARs exocytosis through a direct and specific interaction with GluK2b.  相似文献   

5.
Kainate receptors (KARs) modulate synaptic transmission at both pre-synaptic and post-synaptic sites. The overlap in the distribution of KA-2 and GluR6/7 subunits in several brain regions suggests the co-assembly of these subunits in native KARs. The molecular mechanisms that control the assembly and surface expression of KARs are unknown. Unlike GluR5-7, the KA-2 subunit is unable to form functional homomeric KAR channels. We expressed the KA-2 subunit alone or in combination with other KAR subunits in HEK-293 cells. The cell surface expression of the KAR subunit homo- and heteromers were analysed using biotinylation and agonist-stimulated cobalt uptake. While GluR6 or GluR7 homomers were expressed on the cell surface, KA-2 alone was retained within the endoplasmic reticulum. We found that the cell surface expression of KA-2 was dramatically increased by co-expression with either of the low-affinity KAR subunits GluR5-7. However, co-expression with other related ionotropic glutamate receptor subunits (GluR1 and NR1) does not facilitate the cell surface expression of KA-2. The analysis of subcellular fractions of neocortex revealed that synaptic KARs have a relatively high KA-2 content compared to microsomal ones. Thus, KA-2 is likely to contain an endoplasmic reticulum retention signal that is shielded on assembly with other KAR subunits.  相似文献   

6.
Kainate receptors (KARs) are one of the ionotropic glutamate receptors that mediate excitatory postsynaptic currents (EPSCs) with characteristically slow kinetics. Although mechanisms for the slow kinetics of KAR-EPSCs are not totally understood, recent evidence has implicated a regulatory role of KAR-associated proteins. Here, we report that decay kinetics of GluK2a-containing receptors is modulated by closely associated 14-3-3 proteins. 14-3-3 binding requires PKC-dependent phosphorylation of serine residues localized in the carboxyl tail of the GluK2a subunit. In transfected cells, 14-3-3 binding to GluK2a slows desensitization kinetics of both homomeric GluK2a and heteromeric GluK2a/GluK5 receptors. Moreover, KAR-EPSCs at mossy fiber-CA3 synapses decay significantly faster in the 14-3-3 functional knock-out mice. Collectively, these results demonstrate that 14-3-3 proteins are an important regulator of GluK2a-containing KARs and may contribute to the slow decay kinetics of native KAR-EPSCs.  相似文献   

7.
Kainate receptors (KARs) are heteromeric ionotropic glutamate receptors that play a variety of roles in the regulation of synaptic network activity. The function of glutamate receptors (GluRs) is highly dependent on their surface density in specific neuronal domains. Alternative splicing is known to regulate surface expression of GluR5 and GluR6 subunits. The KAR subunit GluR7 exists under different splice variant isoforms in the C-terminal domain (GluR7a and GluR7b). Here we have studied the trafficking of GluR7 splice variants in cultured hippocampal neurons from wild-type and KAR mutant mice. We have found that alternative splicing regulates surface expression of GluR7-containing KARs. GluR7a and GluR7b differentially traffic from the ER to the plasma membrane. GluR7a is highly expressed at the plasma membrane, and its trafficking is dependent on a stretch of positively charged amino acids also found in GluR6a. In contrast, GluR7b is detected at the plasma membrane at a low level and retained mostly in the endoplasmic reticulum (ER). The RXR motif of GluR7b does not act as an ER retention motif, at variance with other receptors and ion channels, but might be involved during the assembly process. Like GluR6a, GluR7a promotes surface expression of ER-retained subunit splice variants when assembled in heteromeric KARs. However, our results also suggest that this positive regulation of KAR trafficking is limited by the ability of different combinations of subunits to form heteromeric receptor assemblies. These data further define the complex rules that govern membrane delivery and subcellular distribution of KARs.  相似文献   

8.
Ionotropic glutamate receptors are key players in fast excitatory synaptic transmission within the central nervous system. These receptors have been divided into three subfamilies: the N-methyl-d-aspartic acid (NMDA), 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) and kainate receptors. Kainate has previously been crystallized with the ligand binding domain (LBD) of AMPA receptors (GluA2 and GluA4) and kainate receptors (GluK1 and GluK2). Here, we report the structures of the kainate receptor GluK3 LBD in complex with kainate and GluK1 LBD in complex with kainate in the absence of glycerol. Kainate introduces a conformational change in GluK3 LBD comparable to that of GluK2, but different from the conformational changes induced in GluA2 and GluK1. Compared to their domain closures in a glutamate bound state, GluA2 and GluK1 become more open and kainate induces a domain closure of 60% and 62%, respectively, relative to glutamate (100%). In GluK2 and GluK3 with kainate, the domain closure is 88% and 83%, respectively. In previously determined structures of GluK1 LBD in complex with kainate, glycerol is present in the binding site where it bridges interlobe residues and thus, might contribute to the large domain opening. However, the structure of GluK1 LBD with kainate in the absence of glycerol confirms that the observed domain closure is not an artifact of crystallization conditions. Comparison of the LBD structures with glutamate and kainate reveals that contacts are lost upon binding of kainate in the three kainate receptors, which is in contrast to the AMPA receptors where similar contacts are seen. It was revealed by patch clamp electrophysiology studies that kainate is a partial agonist at GluK1 with 36% efficacy compared to glutamate, which is in between the published efficacies of kainate at GluK2 and AMPA receptors. The ranking of efficacies seems to correlate with LBD domain closures.  相似文献   

9.
Subunit composition of kainate receptors in hippocampal interneurons   总被引:16,自引:0,他引:16  
Kainate receptor activation affects GABAergic inhibition in the hippocampus by mechanisms that are thought to involve the GluR5 subunit. We report that disruption of the GluR5 subunit gene does not cause the loss of functional KARs in CA1 interneurons, nor does it prevent kainate-induced inhibition of evoked GABAergic synaptic transmission onto CA1 pyramidal cells. However, KAR function is abolished in mice lacking both GluR5 and GluR6 subunits, indicating that KARs in CA1 stratum radiatum interneurons are heteromeric receptors composed of both subunits. In addition, we show the presence of presynaptic KARs comprising the GluR6 but not the GluR5 subunit that modulate synaptic transmission between inhibitory interneurons. The existence of two separate populations of KARs in hippocampal interneurons adds to the complexity of KAR localization and function.  相似文献   

10.
Ionotropic glutamate receptors (iGluRs) are involved in excitatory signal transmission throughout the central nervous system and their malfunction is associated with various health disorders. GluK3 is a subunit of iGluRs, belonging to the subfamily of kainate receptors (GluK1–5). Several crystal structures of GluK1 and GluK2 ligand binding domains have been determined in complex with agonists and antagonists. However, little is known about the molecular mechanisms underlying GluK3 ligand binding properties and no compounds displaying reasonable selectivity towards GluK3 are available today. Here, we present the first X-ray crystal structure of the ligand binding domain of GluK3 in complex with glutamate, determined to 1.6 Å resolution. The structure reveals a conserved glutamate binding mode, characteristic for iGluRs, and a water molecule network in the glutamate binding site similar to that seen in GluK1. In GluK3, a slightly lower degree of domain closure around glutamate is observed compared to most other kainate receptor structures with glutamate. The volume of the GluK3 glutamate binding cavity was found to be of intermediate size between those of GluK1 and GluK2. The residues in GluK3 contributing to the subfamily differences in the binding sites are primarily: Thr520, Ala691, Asn722, Leu736 and Thr742. The GluK3 ligand binding domain seems to be less stabilized through interlobe interactions than GluK1 and this may contribute to the faster desensitization kinetics of GluK3.  相似文献   

11.
Glutamate receptors are fundamental for control synaptic transmission, synaptic plasticity, and neuronal excitability. However, many of the molecular mechanisms underlying their trafficking remain elusive. We previously demonstrated that the small GTPase Rab17 regulates dendritic trafficking in hippocampal neurons. Here, we investigated the role(s) of Rab17 in AMPA receptor (AMPAR) and kainate receptor (KAR) trafficking. Although Rab17 knockdown did not affect surface expression of the AMPAR subunit GluA1 under basal or chemically induced long term potentiation conditions, it significantly reduced surface expression of the KAR subunit GluK2. Rab17 co-localizes with Syntaxin-4 in the soma, dendritic shaft, the tips of developing hippocampal neurons, and in spines. Rab17 knockdown caused Syntaxin-4 redistribution away from dendrites and into axons in developing hippocampal neurons. Syntaxin-4 knockdown reduced GluK2 but had no effect on GluA1 surface expression. Moreover, overexpression of constitutively active Rab17 promoted dendritic surface expression of GluK2 by enhancing Syntaxin-4 translocation to dendrites. These data suggest that Rab17 mediates the dendritic trafficking of Syntaxin-4 to selectively regulate dendritic surface insertion of GluK2-containing KARs in rat hippocampal neurons.  相似文献   

12.
Dysiherbaine (DH) and neodysiherbaine A (NDH) selectively bind and activate two kainate-type ionotropic glutamate receptors, GluK1 and GluK2. The ligand-binding domains of human GluK1 and GluK2 were crystallized as bound forms with a series of DH analogues including DH, NDH, 8-deoxy-NDH, 9-deoxy-NDH and 8,9-dideoxy-NDH (MSVIII-19), isolated from natural sources or prepared by total synthesis. Since the DH analogues exhibit a wide range of binding affinities and agonist efficacies, it follows that the detailed analysis of crystal structure would provide us with a significant opportunity to elucidate structural factors responsible for selective binding and some aspects of gating efficacy. We found that differences in three amino acids (Thr503, Ser706 and Ser726 in GluK1 and Ala487, Asn690 and Thr710 in GluK2) in the ligand-binding pocket generate differences in the binding modes of NDH to GluK1 and GluK2. Furthermore, deletion of the C9 hydroxy group in NDH alters the ligand conformation such that it is no longer suited for binding to the GluK1 ligand-binding pocket. In GluK2, NDH pushes and rotates the side chain of Asn690 (substituted for Ser706 in GluK1) and disrupts an interdomain hydrogen bond with Glu409. The present data support the idea that receptor selectivities of DH analogues resulted from the differences in the binding modes of the ligands in GluK1/GluK2 and the steric repulsion of Asn690 in GluK2. All ligands, regardless of agonist efficacy, induced full domain closure. Consequently, ligand efficacy and domain closure did not directly coincide with DH analogues and the kainate receptors.  相似文献   

13.
Intracellular glutamate binding within the endoplasmic reticulum (ER) is thought to be necessary for plasma membrane expression of ionotropic glutamate receptors. Here we determined the importance of glutamate binding to folding and assembly of soluble ligand-binding domains (LBDs), as well as full-length receptors, by comparing the secretion of a soluble GluR6-S1S2 protein versus the plasma membrane localization of GluR6 kainate receptors following mutagenesis of the LBD. The mutations were designed to either eliminate glutamate binding, thereby trapping the bilobate LBD in an “open” conformation, or “lock” the LBD in a closed conformation with an engineered interdomain disulfide bridge. Analysis of plasma membrane localization, medium secretion of soluble LBD proteins, and measures of folding efficiency suggested that loss of glutamate binding affinity significantly impacted subunit protein folding and assembly. In contrast, receptors with conformationally restricted LBDs also exhibited decreased PM expression and altered oligomeric receptor assembly but did not exhibit any deficits in subunit folding. Secretion of the closed LBD protein was enhanced compared with wild-type GluR6-S1S2. Our results suggest that glutamate acts as a chaperone molecule for appropriate folding of nascent receptors and that relaxation of LBDs from fully closed states during oligomerization represents a critical transition that necessarily engages other determinants within receptor dimers. Glutamate receptor LBDs therefore must access multiple conformations for efficient biogenesis.Cellular control over the biogenesis and trafficking of ionotropic glutamate receptors (iGluRs)2 probably constitutes a major regulatory process that prevents aberrant excitatory neurotransmission within the central nervous system. Many receptor trafficking determinants are genetically encoded within the primary amino acid sequences of cytoplasmic carboxyl-terminal domains of iGluR subunits (1, 2). Association of these determinants with accessory or chaperone proteins enhances forward transit from the endoplasmic reticulum (ER), insertion into the plasma membrane (PM), synaptic targeting, or a variety of other trafficking processes (36). Ligand binding and gating domains upstream of carboxyl-terminal domains also are critical in biogenesis of iGluRs (711). Elucidating how these domains are engaged as quality control checkpoints is essential to developing a comprehensive understanding of the neuronal mechanisms for control of excitatory transmission in the central nervous system.Several recent studies have proposed that intracellular glutamate binding within the ER promotes proper folding and maturation of AMPA and kainate receptors and is required for forward trafficking of fully assembled receptors (10, 1215). This hypothesis is based in large part on the observation that mutagenesis of key glutamate-binding residues in the LBD greatly reduces or eliminates PM localization (7, 10, 12, 13); the mechanistic basis of this putative quality control process is not understood. The critical receptor determinants involved in these cellular checkpoints could reside in the LBD, in other regions that undergo glutamate-dependent alterations in structure, or in intersubunit interactions associated with receptor desensitization (710, 16). It is possible that glutamate binding to iGluRs (and subsequent conformational rearrangements) act as tests of the functionality of fully assembled, export-ready receptors (8, 12, 16); alternatively, intact glutamate-binding sites may be required for earlier steps in receptor biogenesis, such as subunit folding and oligomeric assembly (7, 16).We tested here whether the glutamate-dependent conformational changes critical to GluR6a KAR cell surface expression are restricted solely to the bilobate LBD, formed by the S1 and S2 segments of the receptor protein, or instead involve additional domains in the KAR subunits. Toward that end, we compared the effect of an LBD mutation that eliminated binding affinity for glutamate, T690A, on the efficiency of secretion of a soluble GluR6-S1S2 protein versus PM localization of the full-length receptor; this served as one way to test the autonomy of the LBD in quality control processes, because soluble LBDs fold properly, form binding sites similar to those in the full-length receptor, and transit the secretory pathway to be released into culture media. Furthermore, we trapped LBDs of full-length receptors and soluble GluR6-S1S2 proteins in conformations that mimic closed, glutamate-bound states by introduction of a reversible, interdomain (D1-D2) disulfide bond, allowing us to test the role of LBD relaxation or flexibility in assembly and trafficking. We found that the ligand binding mutation resulted in reduced maturation and receptor surface expression in part through misfolding of the LBD. In addition, we found that locking the LBD into a closed state reduced receptor maturation and expression but that this engaged regions outside of the LBD. Although the locked, closed mutant also had assembly defects that occurred at the transition from dimers to tetramers, these did not result from apparent folding defects, suggesting that relaxation or opening of the LBD represents a critical step during oligomerization. In summary, we propose that LBDs must be able to access multiple conformations for efficient KAR biogenesis.  相似文献   

14.
Phosphorylation and SUMOylation of the kainate receptor (KAR) subunit GluK2 have been shown to regulate KAR surface expression, trafficking and synaptic plasticity. In addition, our previous study has shown that a phosphorylation-dependent interaction of 14–3–3τ and GluK2a-containing receptors contributes to the slow decay kinetics of native KAR-EPSCs. However, it is unknown whether SUMOylation participates in the regulation of the interaction between 14–3–3τ and GluK2a-containing receptors. Here we report that SUMOylation of PKC, but not GluK2, represses the binding of 14–3–3τ to GluK2a via decreasing the phosphorylation level of GluK2a. These results suggest that PKC SUMOylation is an important regulator of the 14–3–3 and GluK2a protein complex and may contribute to regulate the decay kinetics of KAR-EPSCs.  相似文献   

15.
We have investigated the mechanisms underlying the facilitatory modulation mediated by kainate receptor (KAR) activation in the cortex, using isolated nerve terminals (synaptosomes) and slice preparations. In cortical nerve terminals, kainate (KA, 100 μM) produced an increase in 4‐aminopyridine (4‐AP)‐evoked glutamate release. In thalamocortical slices, KA (1 μM) produced an increase in the amplitude of evoked excitatory post‐synaptic currents (eEPSCs) at synapses established between thalamic axon terminals from the ventrobasal nucleus onto stellate neurons of L4 of the somatosensory cortex. In both, synaptosomes and slices, the effect of KA was antagonized by 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione, and persisted after pre‐treatment with a cocktail of antagonists of other receptors whose activation could potentially have produced facilitation of release indirectly. Mechanistically, the observed effects of KA appear to be congruent in synaptosomal and slice preparations. Thus, the facilitation by KA of synaptosomal glutamate release and thalamocortical synaptic transmission were suppressed by the inhibition of protein kinase A and occluded by the stimulation of adenylyl cyclase. Dissecting this G‐protein‐independent regulation further in thalamocortical slices, the KAR‐mediated facilitation of synaptic transmission was found to be sensitive to the block of Ca2+ permeant KARs by philanthotoxin. Intriguingly, the synaptic facilitation was abrogated by depletion of intracellular Ca2+ stores by thapsigargin, or inhibition of Ca2+‐induced Ca2+‐release by ryanodine. Thus, the KA‐mediated modulation was contingent on both Ca2+ entry through Ca2+‐permeable KARs and liberation of intracellular Ca2+ stores. Finally, sensitivity to W‐7 indicated that the increased cytosolic [Ca2+] underpinning KAR‐mediated regulation of synaptic transmission at thalamocortical synapses, requires downstream activation of calmodulin. We conclude that neocortical pre‐synaptic KARs mediate the facilitation of glutamate release and synaptic transmission by a Ca2+‐calmodulin dependent activation of an adenylyl cyclase/cAMP/protein kinase A signalling cascade, independent of G‐protein involvement.

  相似文献   


16.
EMBO J (2013) 32: 496–510 doi:10.1038/emboj.2012.334; published online January042013Alteration of the efficacy of excitatory synaptic transmission between neurons is a critical element in the processes of learning, memory, and behaviour. Despite decades of research aimed at elucidating basic cellular mechanisms underlying synaptic plasticity, new pathways and permutations continue to be discovered. Carta et al (2013) now show that activation of the calcium/calmodulin dependent kinase II (CaMKII) induces an unusual postsynaptic form of long-term depression (LTD) at the hippocampal mossy fibre synapse by promoting lateral diffusion of kainate receptors (KARs), a family of ionotropic glutamate receptors (iGluRs) that influence pyramidal neuron excitability. This report therefore reveals a new and mechanistically unique way of fine-tuning synaptic plasticity at this central synapse in the hippocampus.Information transfer within the nervous system is regulated at the synaptic level by diverse cellular mechanisms. Synaptic efficacy is not static (i.e., it is ‘plastic''), and the capacity to adjust the strength of communication between neurons in a network has been shown to be a critical component of diverse aspects of brain function that include many forms of behavioural learning (Martin et al, 2000). The complex means by which neurons adjust their synaptic properties in response to changes in local and global activity in the central nervous system has been the subject of intensive investigation spanning multiple decades (Malenka and Bear, 2004; Feldman, 2009). Nonetheless, new mechanisms underlying plasticity of excitatory and inhibitory synaptic transmission continue to be elucidated; these can vary depending on the experimental parameters for induction of plasticity, the particular type of synapse under investigation, and even the prior history of activation at the synapse. Long-term potentiation (LTP) and LTD of excitatory synaptic transmission are two well-known phenomena in which efficacy is increased or decreased, respectively, and at many synapses in the CNS occur through concomitant alterations in the number of postsynaptic iGluRs. The movement of excitatory receptors in and out of synapses, and more generally to and from the neuronal plasma membrane, is dictated by their association with a wide variety of scaffolding and chaperone proteins, whose interactions are often controlled by various protein kinases (Anggono and Huganir, 2012).It is generally appreciated now that long-term synaptic plasticity can be elicited by a variety of mechanisms even within a single type of synaptic connection. In addition to postsynaptic alterations in receptor content, for example, synaptic efficacy can also be tuned by regulated alterations in the probability of vesicular release of the neurotransmitter. Until recently, this presynaptic form of plasticity was thought to be the exclusive mechanism for altering excitatory synaptic strength at a morphologically unusual synapse in the hippocampus formed between large bouton-like presynaptic terminals arising from granule cell axons, or mossy fibres, and proximal dendrites on CA3 pyramidal neurons (Nicoll and Schmitz, 2005). These synaptic connections allow for single dentate granule cells to profoundly influence the likelihood of action potential firing in CA3 pyramidal neurons in a frequency-dependent manner, and for that reason have been referred to as ‘conditional detonator'' synapses (Henze et al, 2002). The precise mechanisms that lead to increased vesicular release probability following LTP-inducing stimulation of mossy fibre axons, including a potential role for retrograde signalling, remain the subject of debate, although there is general consensus that activation of presynaptic protein kinase A (PKA) is a key step in this form of synaptic plasticity (Figure 1A). Enhancing release probability impacts signalling through all three types of iGluRs present at mossy fibre synapses—AMPA, NMDA, and KARs. Recently, however, novel postsynaptic forms of mossy fibre plasticity were discovered in which induction protocols specifically increased the number of NMDA receptors (Kwon and Castillo, 2008; Rebola et al, 2008) or decreased the number of KARs (Selak et al, 2009), expanding the mechanistic repertoire at this historical site of focus of research on presynaptic LTP. Alterations in the synaptic content of particular iGluRs could serve as an additional means to fine-tune synaptic integration at the mossy fibre—CA3 synapse and therefore have important consequences for hippocampal network excitability.Open in a separate windowFigure 1Kainate receptor-dependent plasticity mechanisms at the hippocampal mossy fibre–CA3 synapse. (A) Activation of presynaptic receptors enhances glutamate release from the mossy fibre terminals. (B) A spike-timing-dependent plasticity protocol known to activate postsynaptic CaMKII results in long-term synaptic depression. CaMKII phosphorylates the GluK5 kainate receptor subunit, which uncouples the receptor from PSD-95 in the postsynaptic density. This leads to an increase in receptor mobility and diffusion away from the synapse. (C) Low-frequency stimulation of mossy fibres and activation of postsynaptic group 1 mGluRs leads to activation of PKC, which promotes the association of SNAP-25 to the GluK5 kainate receptor subunit and the subsequent endocytosis of synaptic receptors.In this issue, Carta et al (2013) identify a new postsynaptic mechanism for shaping mossy fibre plasticity that is specific to synaptic KARs, which serve to influence temporal integration of synaptic input as well as pyramidal neuron excitability through modulation of intrinsic ion channels. The authors paired postsynaptic depolarization of CA3 pyramidal neurons with a precisely timed presynaptic release of glutamate in a pattern that is known to produce LTP at many central synapses (Feldman, 2012). At mossy fibre synapses, however, this form of spike-timing-dependent plasticity (STDP) instead caused LTD of KAR-mediated excitatory synaptic potentials (KAR-LTD) while leaving AMPA receptor function unaltered (Figure 1B) (Carta et al, 2013). Using a series of genetic and pharmacological manipulations, Carta et al (2013) found that KAR-LTD was dependent upon the activation of postsynaptic KARs themselves, a rise in postsynaptic Ca2+, and CaMKII phosphorylation of a specific protein component of synaptic KARs, the GluK5 subunit. Unlike other mechanisms of postsynaptic mossy fibre plasticity, KAR-LTD was independent of NMDA or metabotropic glutamate receptor activation. Most surprisingly, KAR-LTD did not require receptor endocytosis from the plasma membrane, as is the case with most other forms of postsynaptic depression of excitatory transmission, including a distinct form of KAR-LTD reported previously (Selak et al, 2009) (Figure 1C). Instead, CaMKII-mediated phosphorylation of GluK5 subunits likely uncoupled receptors from the postsynaptic scaffolding protein PSD-95, which then led to enhanced lateral diffusion of KARs out of mossy fibre synapses. As KAR endocytosis was not altered in mossy fibre STDP, the activity-dependent reduction in KAR signalling was effectively limited to those receptors in the synapse. A molecular replacement strategy was employed using biolistic-based expression of mutant KARs in cultured hippocampal slices prepared from KAR knockout mice, which allowed Carta et al (2013) to corroborate their detailed biochemical studies by showing that reconstituted KAR currents in CA3 neurons expressing recombinant GluK5 phosphorylation site substitutions were unable to express KAR-LTD. In summary, KAR-mediated activation of CaMKII leads to phosphorylation of the GluK5 subunit and subsequent KAR-LTD through enhanced lateral mobility of synaptic receptors (Figure 1B).These findings are intriguing for several reasons. Most notably, they stand in stark contrast to studies in which CaMKII activation primarily triggers potentiation, rather than depression, of excitatory synaptic transmission at other synapses (Lisman et al, 2012). CaMKII recently was shown to cause diffusional trapping of AMPA receptor complexes within the postsynaptic density following phosphorylation of a closely associated auxiliary subunit, stargazin (Opazo et al, 2010), which is precisely the opposite of the effects of activation of the enzyme on KAR mobility at mossy fibre synapses. Further, these divergent consequences are both dependent upon carboxy-terminal PDZ interactions with scaffolding proteins, although in each case further research is needed to dissect out the relevant binding partners that control lateral mobility. It is of interest that KAR-LTD required synaptic activation of KARs to initiate signalling via CaMKII, which implies a tight coupling exists between KARs and the holoenzyme in the mossy fibre postsynaptic density. This observation also raises the possibility that activated CaMKII could phosphorylate other targets to effect other, yet-to-be-discovered, changes in synaptic function. Finally, the report by Carta et al expands our understanding of how excitatory synaptic transmission is fine-tuned at an important central synapse and underscores the fact that even well-trod ground (or synapses) continue to yield surprises that inform our understanding of the remarkable mechanistic diversity underlying synaptic plasticity in the CNS.  相似文献   

17.
Kainate receptors (KARs) play fundamentally important roles in controlling synaptic function and regulating neuronal excitability. Postsynaptic KARs contribute to excitatory neurotransmission but the molecular mechanisms underlying their activity‐dependent surface expression are not well understood. Strong activation of KARs in cultured hippocampal neurons leads to the downregulation of postsynaptic KARs via endocytosis and degradation. In contrast, low‐level activation augments postsynaptic KAR surface expression. Here, we show that this increase in KARs is due to enhanced recycling via the recruitment of Rab11‐dependent, transferrin‐positive endosomes into spines. Dominant‐negative Rab11 or the recycling inhibitor primaquine prevents the kainate‐evoked increase in surface KARs. Moreover, we show that the increase in surface expression is mediated via a metabotropic KAR signalling pathway, which is blocked by the protein kinase C inhibitor chelerythrine, the calcium chelator BAPTA and the G‐protein inhibitor pertussis toxin. Thus, we report a previously uncharacterized positive feedback system that increases postsynaptic KARs in response to low‐ or moderate‐level agonist activation and can provide additional flexibility to synaptic regulation.   相似文献   

18.
Ionotropic glutamate receptors (iGluRs) mediate the majority of fast excitatory synaptic neurotransmission in the central nervous system. The selective assembly of iGluRs into AMPA, kainate, and N-methyl-d-aspartic acid (NMDA) receptor subtypes is regulated by their extracellular amino-terminal domains (ATDs). Kainate receptors are further classified into low-affinity receptor families (GluK1-GluK3) and high-affinity receptor families (GluK4-GluK5) based on their affinity for the neurotoxin kainic acid. These two families share a 42% sequence identity for the intact receptor but only a 27% sequence identity at the level of ATD. We have determined for the first time the high-resolution crystal structures of GluK3 and GluK5 ATDs, both of which crystallize as dimers but with a strikingly different dimer assembly at the R1 interface. By contrast, for both GluK3 and GluK5, the R2 domain dimer assembly is similar to those reported previously for other non-NMDA iGluRs. This observation is consistent with the reports that GluK4-GluK5 cannot form functional homomeric ion channels and require obligate coassembly with GluK1-GluK3. Our analysis also reveals that the relative orientation of domains R1 and R2 in individual non-NMDA receptor ATDs varies by up to 10°, in contrast to the 50° difference reported for the NMDA receptor GluN2B subunit. This restricted domain movement in non-NMDA receptor ATDs seems to result both from extensive intramolecular contacts between domain R1 and domain R2 and from their assembly as dimers, which interact at both R1 and R2 domains. Our results provide the first insights into the structure and function of GluK4-GluK5, the least understood family of iGluRs.  相似文献   

19.
Kainate receptors (KARs) are a class of ionotropic glutamate receptors that are expressed throughout the central nervous system. The function and subcellular localization of KARs are tightly regulated by accessory proteins. We have previously identified the single-pass transmembrane proteins, Neto1 and Neto2, to be associated with native KARs. In the hippocampus, Neto1, but not Neto2, controls the abundance and modulates the kinetics of postsynaptic KARs. Here we evaluated whether Neto2 regulates synaptic KAR levels in the cerebellum where Neto1 expression is limited to the deep cerebellar nuclei. In the cerebellum, where Neto2 is present abundantly, we found a ∼40% decrease in GluK2-KARs at the postsynaptic density (PSD) of Neto2-null mice. No change, however, was observed in total level of GluK2-KARs, thereby suggesting a critical role of Neto2 on the synaptic localization of cerebellar KARs. The presence of a putative class II PDZ binding motif on Neto2 led us to also investigate whether it interacts with PDZ domain-containing proteins previously implicated in regulating synaptic abundance of KARs. We identified a PDZ-dependent interaction between Neto2 and the scaffolding protein GRIP. Furthermore, coexpression of Neto2 significantly increased the amount of GRIP associated with GluK2, suggesting that Neto2 may promote and/or stabilize GluK2:GRIP interactions. Our results demonstrate that Neto2, like Neto1, is an important auxiliary protein for modulating the synaptic levels of KARs. Moreover, we propose that the interactions of Neto1/2 with various scaffolding proteins is a critical mechanism by which KARs are stabilized at diverse synapses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号