首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malonate is a three-carbon dicarboxylic acid. It is well known as a competitive inhibitor of succinate dehydrogenase. It occurs naturally in biological systems, such as legumes and developing rat brains, which indicates that it may play an important role in symbiotic nitrogen metabolism and brain development. Recently, enzymes that are related to malonate metabolism were discovered and characterized. The genes that encode the enzymes were isolated, and the regulation of their expression was also studied. The mutant bacteria, in which the malonate-metabolizing gene was deleted, lost its primary function, symbiosis, between Rhizobium leguminosarium bv trifolii and clover. This suggests that malonate metabolism is essential in symbiotic nitrogen metabolism, at least in clover nodules. In addition to these, the genes matB and matC have been successfully used for generation of the industrial strain of Streptomyces for the production of antibiotics.  相似文献   

2.
Carbofuran is a carbamate pesticide used in agricultural practice throughout the world. Its effect as a pesticide is due to its ability to inhibit acetylcholinesterase activity. Though carbofuran has a long history of use, there is little information available with respect to its metabolic fate and disposition in mammals. The present study was designed to investigate the comparative in vitro metabolism of carbofuran from human, rat, and mouse liver microsomes (HLM, RLM, MLM, respectively), and characterize the specific enzymes involved in such metabolism, with particular reference to human metabolism. Carbofuran is metabolized by cytochrome P450 (CYP) leading to the production of one major ring oxidation metabolite, 3-hydroxycarbofuran, and two minor metabolites. The affinity of carbofuran for CYP enzymes involved in the oxidation to 3-hydroxycarbofuran is significantly less in HLM (Km = 1.950 mM) than in RLM (Km = 0.210 mM), or MLM (Km = 0.550 mM). Intrinsic clearance rate calculations indicate that HLM are 14-fold less efficient in the metabolism of carbofuran to 3-hydroxycarbofuran than RLM or MLM. A screen of 15 major human CYP isoforms for metabolic ability with respect to carbofuran metabolism demonstrated that CYP3A4 is the major isoform responsible for carbofuran oxidation in humans. CYP1A2 and 2C19 are much less active while other human CYP isoforms have minimal or no activity toward carbofuran. In contrast with the human isoforms, members of the CYP2C family in rats are likely to have a primary role in carbofuran metabolism. Normalization of HLM data with the average levels of each CYP in native HLM, indicates that carbofuran metabolism is primarily mediated by CYP3A4 (percent total normalized rate (% TNR) = 77.5), although CYP1A2 and 2C19 play ancillary roles (% TNR = 9.0 and 6.0, respectively). This is substantiated by the fact that ketoconazole, a specific inhibitor of CYP3A4, is an excellent inhibitor of 3-hydroxycarbofuran formation in HLM (IC50: 0.31 μM). Chlorpyrifos, an irreversible non-competitive inhibitor of CYP3A4, inhibits the formation of 3-hydroxycarbofuran in HLM (IC50: 39 μM). The use of phenotyped HLM demonstrated that individuals with high levels of CYP3A4 have the greatest potential to metabolize carbofuran to its major metabolite. The variation in carbofuran metabolism among 17 single-donor HLM samples is over 5-fold and the best correlation between CYP isoform activity and carbofuran metabolism was observed with CYP3A4 (r2 = 0.96). The interaction of carbofuran and the endogenous CYP3A4 substrates, testosterone and estradiol, were also investigated. Testosterone metabolism was activated by carbofuran in HLM and CYP3A4, however, less activation was observed for carbofuran metabolism by testosterone in HLM and CYP3A4. No interactions between carbofuran and estradiol metabolism were observed.  相似文献   

3.
The translation process, central to life, is tightly connected to the one-carbon (1-C) metabolism via a plethora of macromolecule modifications and specific effectors. Using manual genome annotations and putting together a variety of experimental studies, we explore here the possible reasons of this critical interaction, likely to have originated during the earliest steps of the birth of the first cells. Methionine, S-adenosylmethionine and tetrahydrofolate dominate this interaction. Yet, 1-C metabolism is unlikely to be a simple frozen accident of primaeval conditions. Reactive 1-C species (ROCS) are buffered by the translation machinery in a way tightly associated with the metabolism of iron–sulfur clusters, zinc and potassium availability, possibly coupling carbon metabolism to nitrogen metabolism. In this process, the highly modified position 34 of tRNA molecules plays a critical role. Overall, this metabolic integration may serve both as a protection against the deleterious formation of excess carbon under various growth transitions or environmental unbalanced conditions and as a regulator of zinc homeostasis, while regulating input of prosthetic groups into nascent proteins. This knowledge should be taken into account in metabolic engineering.  相似文献   

4.
During the development of larvae of Callitroga macellaria the rate of metabolism and the resistance against heat and low oxygen pressure was examined. The high rate of metabolism of very young larvae is correlated with low resistance, and the low rate of metabolism of old larvae is correlated with high resistance.The Q10 value for the oxygen consumption of Callitroga larvae during five different phases has been measured within a temperature range of 2 to 47°C so far as phase III (mature feeding larvae) is concerned. It is shown that the assumption that tolerance and resistance limits depend on oxidative phosphorylation is correct.  相似文献   

5.
Adipose tissue expansion has been associated with system‐wide metabolic dysfunction and increased vulnerability to diabetes, cancer, and cardiovascular disease. A reduction in adiposity is a hallmark of caloric restriction (CR), an intervention that extends longevity and delays the onset of these same age‐related conditions. Despite these parallels, the role of adipose tissue in coordinating the metabolism of aging is poorly defined. Here, we show that adipose tissue metabolism and secretory profiles change with age and are responsive to CR. We conducted a cross‐sectional study of CR in adult, late‐middle‐aged, and advanced‐aged mice. Adiposity and the relationship between adiposity and circulating levels of the adipose‐derived peptide hormone adiponectin were age‐sensitive. CR impacted adiposity but only levels of the high molecular weight isoform of adiponectin responded to CR. Activators of metabolism including PGC‐1a, SIRT1, and NAMPT were differentially expressed with CR in adipose tissues. Although age had a significant impact on NAD metabolism, as detected by biochemical assay and multiphoton imaging, the impact of CR was subtle and related to differences in reliance on oxidative metabolism. The impact of age on circulating lipids was limited to composition of circulating phospholipids. In contrast, the impact of CR was detected in all lipid classes regardless of age, suggesting a profound difference in lipid metabolism. These data demonstrate that aspects of adipose tissue metabolism are life phase specific and that CR is associated with a distinct metabolic state, suggesting that adipose tissue signaling presents a suitable target for interventions to delay aging.  相似文献   

6.
Energetics, body size, and the limits to endothermy   总被引:1,自引:0,他引:1  
The scaling rate of metabolism with respect to body mass is analysed. Scaling of heat production implies that scaling also exists between temperature regulation and body mass. Most vertebrates follow a Kleiber relation down to a "critical mass, below which the scaling of metabolism must be changed to ensure the maintenance of endothermy. Such an adjustment is found interspecifically in birds and mammals, and is found intraspecifically in mammals during post-natal growth. If the Kleiber scaling relation is maintained below the critical mass, mammals and birds shiR from endothermic temperature regulation (above critical mass) to endothermy with obligatory torpor (below critical mass). If the Kleiber relation is followed to masses far below the critical mass, ectothermy results. Critical mass varies inversely with the level of energy expenditure, which therefore accounts for the fact that most mammals and birds are endotherms and most reptiles and fish are ectotherms. The same relationship permits the facultative endothermy found in some insects and plants.
The scaling relations existing among rate of metabolism, endothermy, and body mass can be written as a modification of the Kleiber relation. This analysis suggests that any organism, irrespective of phylogenetic position, can be endothermic at any body size, if its rate of metabolism is high enough, or can be endothermic with any rate of metabolism, if it is large enough. Consequently, it is difficult to distinguish minimal endothermy from inertial homoiothermy in animals having a large mass. The boundary conditions for effective endothermy are similar to the relationship described between metabolism and mass in the evolution of endothermy through a decrease in mass in the phylogeny of mammals. Even though endothermy may evolve with an increase in mass, its perfection may always require an evolutionary decrease in mass.  相似文献   

7.
PURPOSE OF REVIEW: Recent evidence suggests that cholesterol metabolism participates in the pathogenesis of Alzheimer's disease. Apolipoprotein E is the main lipid carrier in the brain and the best-established risk factor for late-onset Alzheimer's disease. Intracellular cholesterol levels influence the generation of amyloid-beta peptides, the toxic species thought to be a primary cause of Alzheimer's disease. Finally, compounds that modulate cholesterol metabolism affect amyloid-beta generation. This review summarizes data linking apolipoprotein E and adenosine triphosphate-binding cassette transporters to aspects of cholesterol metabolism and Alzheimer's disease pathogenesis. RECENT FINDINGS: In vivo, the lipidation status of apolipoprotein E affects amyloid-beta burden in mice with Alzheimer's disease, which appears to caused by the modulation of amyloid-beta deposition or clearance rather than amyloid-beta production. State-of-the-art in-vivo assays reveal that amyloid-beta is cleared from the brain by multiple pathways. Members of the adenosine triphosphate-binding cassette superfamily of transporters regulate lipid homeostasis and apolipoprotein metabolism in the brain, and may affect Alzheimer's disease pathogenesis by modulating apolipoprotein E lipidation as well as intracellular sterol homeostasis. SUMMARY: Proteins involved in brain cholesterol metabolism may affect the pathogenesis of Alzheimer's disease. Compounds that modulate the expression of these proteins may be of therapeutic benefit in Alzheimer's disease.  相似文献   

8.
Recent advances in research on iron metabolism have revealed the identity of a number of genes, signal transduction pathways, and proteins involved in iron regulation in mammals. The emerging paradigm is a coordination of homeostasis within a network of classical iron metabolic pathways and other cellular processes such as cell differentiation, growth, inflammation, immunity, and a host of physiologic and pathologic conditions. Iron, immunity, and infection are intricately linked and their regulation is fundamental to the survival of mammals. The mutual dependence on iron by the host and invading pathogenic organisms elicits competition for the element during infection. While the host maintains mechanisms to utilize iron for its own metabolism exclusively, pathogenic organisms are armed with a myriad of strategies to circumvent these measures. This review explores iron metabolism in mammalian host, defense mechanisms against pathogenic microbes and the competitive devices of microbes for access to iron.  相似文献   

9.

Background  

A metabolism is a complex network of chemical reactions. This network synthesizes multiple small precursor molecules of biomass from chemicals that occur in the environment. The metabolic network of any one organism is encoded by a metabolic genotype, defined as the set of enzyme-coding genes whose products catalyze the network's reactions. Each metabolic genotype has a metabolic phenotype. We define this metabolic phenotype as the spectrum of different sources of a chemical element that a metabolism can use to synthesize biomass. We here focus on the element sulfur. We study properties of the space of all possible metabolic genotypes in sulfur metabolism by analyzing random metabolic genotypes that are viable on different numbers of sulfur sources.  相似文献   

10.
For vertebrates, body mass underlies much of the variation in metabolism, but among animals of the same body mass, metabolism varies six-fold. Understanding how natural selection can influence variation in metabolism remains a central focus of Physiological Ecologists. Life-history theory postulates that many physiological traits, such as metabolism, may be understood in terms of key maturational and reproductive characteristics over an organism's life-span. Although it is widely acknowledged that physiological processes serve as a foundation for life-history trade-offs, the physiological mechanisms that underlie the diversification of life-histories remain elusive. Data show that tropical birds have a reduced basal metabolism (BMR), field metabolic rate, and peak metabolic rate compared with temperate counterparts, results consistent with the idea that a low mortality, and therefore increased longevity, and low productivity is associated with low mass-specific metabolic rate. Mass-adjusted BMR of tropical and temperate birds was associated with survival rate, in accordance with the view that animals with a slow pace of life tend to have increased life spans. To understand the mechanisms responsible for a reduced rate of metabolism in tropical birds compared with temperate species, we summarized an unpublished study, based on data from the literature, on organ masses for both groups. Tropical birds had smaller hearts, kidneys, livers, and pectoral muscles than did temperate species of the same body size, but they had a relatively larger skeletal mass. Direct measurements of organ masses for tropical and temperate birds showed that the heart, kidneys, and lungs were significantly smaller in tropical birds, although sample sizes were small. Also from an ongoing study, we summarized results to date on connections between whole-organism metabolism in tropical and temperate birds and attributes of their dermal fibroblasts grown in cell culture. Cells derived from tropical birds had a slower rate of growth, consistent with the hypothesis that these cells have a slower metabolism. We found that dermal fibroblasts from tropical birds resisted chemical agents that induce oxidative and non-oxidative stress better than do cells from temperate species, consistent with the hypothesis that birds that live longer invest more in self-maintenance such as antioxidant properties of cells.  相似文献   

11.
Dietary effects on cytochromes P450, xenobiotic metabolism, and toxicity.   总被引:8,自引:0,他引:8  
The levels and activities of cytochrome P450 enzymes are influenced by a variety of factors, including the diet. In this article, the effects of selected non-nutritive dietary chemicals, macronutrients, micronutrients, and ethanol on cytochromes P450 and xenobiotic metabolism are reviewed in the light of our current understanding of the multiplicity and substrate specificity of cytochrome P450 enzymes. Although the mechanisms of action of several dietary chemicals on specific cytochrome P450 isozymes have been established, those for macro- and micronutrients are largely unknown. It is known, however, that specific nutrients may have varied effects on different cytochrome P450 forms and thus may affect the metabolism of various drugs differently. Nutritional deficiencies generally cause lowered rates of xenobiotic metabolism. In certain cases, such as thiamin deficiency and mild riboflavin deficiency, however, enhanced rates of metabolism of xenobiotics were observed. The effects of dietary modulation of xenobiotic metabolism on chemical toxicity and carcinogenicity are discussed.  相似文献   

12.
13.
The standard metabolism of Aotus trivirgatus (Night monkey, Owl monkey) is 22.5 to 46.2 per cent below Kleiber's prevision curve for mammals, which applies to other cebid monkeys like Saimiri sciureus and Alouatta. However the metabolic rate of Aotus is not reduced to the extent found in two hypometabolic prosimians Perodicticus potto and Nycticebus coucang. The low metabolism in Aotus is associated with a normal body temperature and a thick fur of high insulating power. These results are discussed.  相似文献   

14.
It is noteworthy that in the rat the early postnatal life is marked by an activation of both the corticostimulating function of the adenohypophysis in neonates of both sexes and of the gonadostimulating function mainly in males. In order to specify if such neuroendocrine variations are temporally correlated with changes in the hypothalamic metabolism of neurotransmitters, the hypothalamic metabolism of serotonin (5 HT), norepinephrine (NE), and dopamine (DA) and the hypothalamic content of neuropeptide Y (NPY) have been investigated in newborn rats of both sexes, delivered at term by cesarean section, as well as changes in the activity of both the hypothalamo-pituitary adrenal axis (HPA) and the hypothalamo-pituitary gonadal axis (HPG). Experimental data suggested that 1) in males a rise in hypothalamic metabolism of 5 HT, NE and DA occurs during the first two hours after delivery, whereas in females, only the metabolism of NE increases. Moreover, the postnatal metabolism of NE was higher in females than in littermate males; 2) NPY content of the hypothalamus, which was at birth significantly higher in males than in females, dropped in the former but not in the latter; 3) in newborn males, an early surge of plasma testosterone occurs, suggesting postnatal activation of the HPG axis; on the other hand, in females, a late and slight increase in plasma estradiol is observed; 4) in early postnatal life, a sex-independent rise in plasma ACTH and adrenal and plasma corticosterone levels suggest a comparable activation of the HPA axis in newborns of both sexes. In conclusion, the early postnatal activation of the corticostimulating function in neonates of both sexes and that of the gonadostimulating function, mainly in males, could be temporally correlated with a rise in the hypothalamic metabolism of two neurotransmitters, 5 HT and NE, and of NPY content. According to our data, a sex-dependent metabolsim of neurotransmitters in the hypothalamus is already apparent in early postnatal life.  相似文献   

15.
As the immune response is activated during infection, multiple changes in lipid metabolism, especially increased production of VLDL, occur. Many of the cytokines that mediate the immune response are able to produce such changes in lipid metabolism in vivo. The induction of hypertriglyceridemia or other changes in lipid metabolism during infection do not directly cause the wasting syndrome. It appears that such changes in lipid metabolism may be beneficial to the host, as lipoproteins inactivate a variety of infectious agents. Cytokine-driven hepatic VLDL production during infection most likely represents a part of the acute phase response. The body is thus able to increase serum lipids during infection, or at least maintain triglyceride-rich lipoproteins despite the anorexia of infection. In this manner, the anti-infective, protective effects of lipoproteins are maintained.  相似文献   

16.
植物作为无机硫的主要还原者, 在全球的硫循环中起着关键作用。植物对土壤中硫酸盐的吸收运输和同化代谢, 以及一系列具有重要生物学功能的含硫代谢产物的合成, 不但与植物生长发育、耐逆和抗病虫害等密切相关, 而且影响农作物产量与品质。硫营养的代谢和调控非常复杂, 且生物学功能众多。本文综述了近年来植物硫营养代谢及调控及其在逆境胁迫中的生物学功能等方面的新进展, 同时讨论了该领域悬而未决的重要生物学问题和研究动向, 进而提出硫营养在农业生产上的重要性和所面临的新问题。  相似文献   

17.
植物硫营养代谢、调控与生物学功能   总被引:14,自引:0,他引:14  
植物作为无机硫的主要还原者,在全球的硫循环中起着关键作用。植物对土壤中硫酸盐的吸收运输和同化代谢,以及一系列具有重要生物学功能的含硫代谢产物的合成,不但与植物生长发育、耐逆和抗病虫害等密切相关,而且影响农作物产量与品质。硫营养的代谢和调控非常复杂,且生物学功能众多。本文综述了近年来植物硫营养代谢及调控及其在逆境胁迫中的生物学功能等方面的新进展,同时讨论了该领域悬而未决的重要生物学问题和研究动向,进而提出硫营养在农业生产上的重要性和所面临的新问题。  相似文献   

18.
19.
酒是生活中常见的饮品,过度饮酒会对机体产生毒害作用。要防治急性酒精中毒首要的就是了解乙醇的代谢途径以及致病机制,从而找到加速乙醇代谢,减轻危害的方法。因为菌群与乙醇代谢相关,并可以通过菌群修复乙醇带来的损伤。本研究以乙醇代谢和损伤机制为基础,对菌群调节乙醇代谢及对酒精中毒的缓解作用进行综述。  相似文献   

20.
A LC-MS based method, which utilizes both reversed-performance (RP) chromatography and hydrophilic interaction chromatography (HILIC) separations, has been carried out in conjunction with multivariate data analysis to discriminate the global serum profiles of renal cell carcinoma (RCC) patients and healthy controls. The HILIC was found necessary for a comprehensive serum metabonomic profiling as well as RP separation. The feasibility of using serum metabonomics for the diagnosis and staging of RCC has been evaluated. One-hundred percent sensitivity in detection has been achieved, and a satisfactory clustering between the early stage and advanced-stage patients is observed. The results suggest that the combination of LC-MS analysis with multivariate statistical analysis can be used for RCC diagnosis and has potential in the staging of RCC. The MS/MS experiments have been carried out to identify the biomarker patterns that made great contribution to the discrimination. As a result, 30 potential biomarkers for RCC are identified. It is possible that the current biomarker patterns are not unique to RCC but just the result of any malignancy disease. To further elucidate the pathophysiology of RCC, related metabolic pathways have been studied. RCC is found to be closely related to disturbed phospholipid catabolism, sphingolipid metabolism, phenylalanine metabolism, tryptophan metabolism, fatty acid beta-oxidation, cholesterol metabolism, and arachidonic acid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号