首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlamydomonas: An Increasingly Powerful Model Plant Cell System   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

2.
The later steps of carotenoid biosynthesis involve the formation of cyclic carotenoids. The reaction is catalyzed by lycopene β-cyclase (LCY-B), which converts lycopene into β-carotene, and by capsanthin-capsorubin synthase (CCS), which is mainly dedicated to the synthesis of κ-cyclic carotenoids (capsanthin and capsorubin) but also has LCY-B activity. Although the peptide sequences of plant LCY-Bs and CCS contain a putative dinucleotide-binding motif, it is believed that these two carotenoid cyclases proceed via protic activation and stabilization of resulting carbocation intermediates. Using pepper (Capsicum annuum) CCS as a prototypic carotenoid cyclase, we show that the monomeric protein contains one noncovalently bound flavin adenine dinucleotide (FAD) that is essential for enzyme activity only in the presence of NADPH, which functions as the FAD reductant. The reaction proceeds without transfer of hydrogen from the dinucleotide cofactors to β-carotene or capsanthin. Using site-directed mutagenesis, amino acids potentially involved in the protic activation were identified. Substitutions of alanine, lysine, and arginine for glutamate-295 in the conserved 293-FLEET-297 motif of pepper CCS or LCY-B abolish the formation of β-carotene and κ-cyclic carotenoids. We also found that mutations of the equivalent glutamate-196 located in the 194-LIEDT-198 domain of structurally divergent bacterial LCY-B abolish the formation of β-carotene. The data herein reveal plant carotenoid cyclases to be novel enzymes that combine characteristics of non-metal-assisted terpene cyclases with those attributes typically found in flavoenzymes that catalyze reactions, with no net redox, such as type 2 isopentenyl diphosphate isomerase. Thus, FAD in its reduced form could be implicated in the stabilization of the carbocation intermediate.Later steps of carotenoid biosynthesis involve the formation of diverse cyclic carotenoids. For example, β-carotene, the vitamin A precursor, is synthesized de novo by photosynthetic organisms, limited nonphototrophic bacteria and fungi, and also by aphids (Moran and Jarvik, 2010) according to a multistep pathway that ends with the cyclization of lycopene by lycopene β-cyclase (LCY-B). Similarly, in pepper (Capsicum annuum) chromoplasts, antheraxanthin and violaxanthin are converted into the κ-cyclic carotenoids capsanthin and capsorubin, respectively, by capsanthin-capsorubin synthase (CCS). In both cases, the proposed mechanism involves a concerted protic attack and stabilization of a transient carbocation without any net redox change (Camara, 1980; Bouvier et al., 1994; Britton, 1998). Several cDNAs for LCY-B have been cloned from bacteria (Misawa et al., 1990; Cunningham et al., 1994; Armstrong, 1997; Cunningham and Gantt, 2001), fungi (Verdoes et al., 1999; Velayos et al., 2000; Arrach et al., 2001), and plants (Hugueney et al., 1995; Ronen et al., 2000) using functional complementation. Information available from primary structures suggest that the cyclization of lycopene is catalyzed by holomeric proteins in photosynthetic organisms (Cunningham et al., 1994; Maresca et al., 2007), by holomeric (Misawa et al., 1990) or heteromeric (Krubasik and Sandmann, 2000; Viveiros et al., 2000) proteins in nonphotosynthetic bacteria, and by holomeric, bifunctional proteins in fungi that combine the activities of phytoene synthase and lycopene cyclase (Verdoes et al., 1999; Velayos et al., 2000; Arrach et al., 2001). This structural diversity of LCY-Bs coupled to a lack of significant amino acid sequence identity between the lycopene cyclases from bacteria, fungi, and plants hinder our understanding of the catalytic mechanism of LCY-Bs and CCS. In addition, the N terminus of plant LCY-B and CCS contains an amino sequence motif characteristic of a polypeptide predicted to adopt a Rossmann fold (Rossmann et al., 1974) and suggests the binding of an as yet unknown dinucleotide prosthetic ligand. It has been shown using recombinant bacterial enzyme that the cyclization of lycopene into β-carotene strictly requires NADPH but proceeds without any net redox change (Schnurr et al., 1996; Hornero-Mendez and Britton, 2002). Under the same conditions, FAD alone could not sustain bacterial LCY-B activity (Schnurr et al., 1996). Much less is known about the dinucleotide requirements of plant carotenoid cyclases, which are highly conserved within plants but are extremely divergent in nonplant organisms. Previously, a crucial acidic domain for lycopene cyclase activity was identified using an affinity-labeling strategy followed by site-directed mutagenesis (Bouvier et al., 1997) in the absence of any crystal structures. This so-called 293-FLEET-297 motif of LCY-B and CCS contained two tandem Glu-295-Glu-296 residues that were essential for LCY-B- and κ-cyclase activities (Bouvier et al., 1997). However, it still remains unclear how the protic mechanism is compatible with the requirement of dinucleotide cofactors.To further explore the mechanism of plant carotenoid cyclases, we first choose pepper CCS as a prototypic enzyme because it displays a strong identity (52%) to pepper LCY-B, and we have shown previously that CCS could also catalyze the cyclization of lycopene into β-carotene (up to 25% of activity compared with LCY-B; Hugueney et al., 1995). Herein, we have shown that monomeric CCS purified to homogeneity from plant chromoplasts or recombinant CCS purified from Escherichia coli-transformed cells are typical flavoproteins containing one noncovalently bound FAD. We also observed that CCS-bound FAD is required for enzyme activity in the presence of NADPH, which functions as a reductant of FAD. During this process, no hydrogen is transferred to β-carotene or κ-cyclic carotenoids. In addition to this cofactor requirement, we also show from extensive site-directed mutagenesis using pepper CCS and LCY-B and Erwinia herbicola LCY-B (Mialoundama, 2009) that Glu-295 of pepper CCS and LCY-B plays a key role in the formation of β-carotene and κ-cyclic carotenoids, and we demonstrate that a similar role is played in structurally divergent bacterial LCY-Bs by Glu-196. These characteristics suggest that plant CCS and LCY-Bs are mechanistically similar to non-metal-assisted terpene cyclases, such as squalene:hopene cyclase and oxidosqualene cyclase, and additionally represent a new subfamily of flavoproteins like isopentenyl diphosphate isomerase type II, which catalyze carotenoid cyclization without any net redox modification of the substrate.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Suspension cultures of Rosa sp., soybean (Glycine max L.), wheat (Triticum monococcum L.), sweet clover (Melilotus alba Desc.), Haplopappus gracilis Nutt., and rue (Ruta graveolens) produced ethylene. The amount varied with the species. The rate of formation in rose and Haplopappus cells paralleled growth but accelerated when the stationary phase was reached, after which the rate declined sharply. Light was not required for ethylene production. Exogenous ethylene could not replace 2,4-dichlorophenoxyacetic acid or naphthalineacetic acid in the cell cultures, and there was no stimulation of growth in the normal medium. Ethylene at 20 mm reduced growth of Ruta and rose cells by 30 and 20%, respectively. The amounts of ethylene produced by the cultures do not affect growth.  相似文献   

10.
11.
SOS基因家族与植物耐盐性   总被引:2,自引:0,他引:2  
介绍了模式植物--以南芥SOS(Salt overly sensitve)基因家族(SOS1、SOS2、SOS3、SOS4和SOS5)的发现及其遗传学和分子生物学的研究新进展.  相似文献   

12.
糖原合成酶激酶 (GSK 3)是一种高度保守的丝氨酸 苏氨酸蛋白激酶 ,在动物中参与诸如糖原合成、胰岛素调节、多种蛋白的转录激活和发育调控等许多生命活动的信号转导。在植物中也分离到了GSK 3 Like基因 ,在拟南芥中的GSKs家族分为四种。GSKs家族在植物中也扮演着重要的角色 ,现有的证据表明 ,植物GSKs可能参与植物的渗透胁迫应答、伤害应答以及油菜素内酯信号转导 ,调节花的发育等等一系列生命活动进程。讨论植物GSKs的发现及其功能研究的最新进展。  相似文献   

13.
14.
速生欧美黑杨愈伤组织诱导及植株再生   总被引:3,自引:1,他引:3  
1植物名称速生欧美黑杨(Populus euramericana). 2材料类别一年生幼嫩的健壮枝条. 3培养条件基本培养基为MS培养基.愈伤组织诱导及芽分化培养基:(1)MS 6-BA 0.3 mg·L-1(单位下同) NAA 0.01;(2)MS 6-BA 0.5 NAA 0.03;(3)MS 6-BA 1.5 NAA 0.3;(4)MS KT 0.5 NAA0.03;(5)MS KT 1.0 NAA 0.2;(6)MS 6-BA 0.5 2,4-D 0.3;(7)MS 6-BA 0.3 IAA 0.5;(8)MS 6-BA 0.3 IBA 0.5.芽继代增殖培养基:(9)MS 6-BA 1.0 NAA 0.1;(10)MS 6-BA 1.0 NAA0.1 GA32.0.生根培养基:(11)MS IBA 2.0.以上培养基中的蔗糖除生根培养基加30 g·L-1外,均附加40 g·L-1,琼脂6 g·L-1.培养温度(25±2)℃,光照12 h·d-1,光照度1500 lx.  相似文献   

15.
Y. Matsuo  T. Yamazaki 《Genetics》1989,122(1):87-97
Nucleotide differences in the histone H3 gene family in Drosophila melanogaster were studied on three levels: (1) within a chromosome, (2) within a population and (3) between species (D. melanogaster and Drosophila simulans). The average difference within the H3 gene within a chromosome was 0.0040 per nucleotide site, about 52% of that within a population (0.0077). The proportion of divergent sites between the two species was 0.0575, which is about 8.5 times the difference within a species. The distribution of divergence between species was similar to that of variation within a species. Divergence and variation were noted to be greatest in the 3' noncoding region and least in the coding region. Values intermediate between these were found for the 5' noncoding region. Divergence and variation in silent sites exceeded those in the total coding region, thus indicating possible purifying selection for amino-acid-altering change. Phylogenetic relations among H3 genes and genetic differences on these three levels are evidence for the concerted evolution of the histone gene family. The molecular mechanism by which variation is produced and maintained is discussed.  相似文献   

16.
We present a software platform for reconstructing and analyzing the growth of a plant root system from a time-series of 3D voxelized shapes. It aligns the shapes with each other, constructs a geometric graph representation together with the function that records the time of growth, and organizes the branches into a hierarchy that reflects the order of creation. The software includes the automatic computation of structural and dynamic traits for each root in the system enabling the quantification of growth on fine-scale. These are important advances in plant phenotyping with applications to the study of genetic and environmental influences on growth.  相似文献   

17.
18.
ATP inactivated plant pyruvate dehydrogenase complex (PDC) from broccoli (Brassica oleracea) mitochondria. ATP inactivation of the complex was time-dependent and proportional to the ATP concentration. Time-dependent incorporation of 32P from [γ32P]ATP into trichloroacetic acid-precipitable protein corresponded to the inactivation of the PDC. It is concluded that plant PDC is phosphorylated and inactivated by a PDC kinase.  相似文献   

19.
中介体是一种大分子蛋白复合物,由至少25个亚基组成,是转录因子和转录起始复合物间信息传递的平台。中介体在植物蛋白编码基因和非蛋白编码基因的转录调控中均发挥重要的作用,是植物生长发育和胁迫抗性中不可缺少的关键调节因子。不同中介体亚基基因的功能缺失导致植物生长发育的表型变异不同,说明单个中介体亚基的功能缺失并没有影响全基因组基因的整体表达水平,而仅仅改变了特异靶基因的表达水平。可见,植物不同的发育进程和信号途径由特定的中介体亚基基因所调控,阐明不同中介体亚基的功能对于全面了解植物的发育和胁迫响应具有重要的意义。该文结合近年来国内外有关植物中介体研究的成果,对植物中介体复合物的结构和组成、植物中介体在植物发育调控中的功能以及植物中介体亚基基因的组织表达特性等方面的研究进展进行综述,并对植物中介体将来的研究进行展望。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号