首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Mate selection by selection index prediction of total merit in expected progeny is proposed as a rational basis for making recommendations in the choice of a bull to which a cow may be mated. Growth in USA of service programs recommending bulls to particular cows has motivated the need to rationalize mate selection processes. This paper illustrates that mate selection on the basis of highest index value for expected progeny among potential mates can justify special mate selection programs, when a nonlinear relationship exists between at least one trait in the index and merit.Contribution while on leave to Department Animal Breeding, Agricultural Research Institute of Republic of Ireland and partial support from Senior Fulbright-Hays Research Grant.Approved as Journal Article 180-79 of the Ohio Agricultural Research & Development Center, Wooster 44691  相似文献   

2.
Small reference populations limit the accuracy of genomic prediction in numerically small breeds, such like Danish Jersey. The objective of this study was to investigate two approaches to improve genomic prediction by increasing size of reference population in Danish Jersey. The first approach was to include North American Jersey bulls in Danish Jersey reference population. The second was to genotype cows and use them as reference animals. The validation of genomic prediction was carried out on bulls and cows, respectively. In validation on bulls, about 300 Danish bulls (depending on traits) born in 2005 and later were used as validation data, and the reference populations were: (1) about 1050 Danish bulls, (2) about 1050 Danish bulls and about 1150 US bulls. In validation on cows, about 3000 Danish cows from 87 young half-sib families were used as validation data, and the reference populations were: (1) about 1250 Danish bulls, (2) about 1250 Danish bulls and about 1150 US bulls, (3) about 1250 Danish bulls and about 4800 cows, (4) about 1250 Danish bulls, 1150 US bulls and 4800 Danish cows. Genomic best linear unbiased prediction model was used to predict breeding values. De-regressed proofs were used as response variables. In the validation on bulls for eight traits, the joint DK-US bull reference population led to higher reliability of genomic prediction than the DK bull reference population for six traits, but not for fertility and longevity. Averaged over the eight traits, the gain was 3 percentage points. In the validation on cows for six traits (fertility and longevity were not available), the gain from inclusion of US bull in reference population was 6.6 percentage points in average over the six traits, and the gain from inclusion of cows was 8.2 percentage points. However, the gains from cows and US bulls were not accumulative. The total gain of including both US bulls and Danish cows was 10.5 percentage points. The results indicate that sharing reference data and including cows in reference population are efficient approaches to increase reliability of genomic prediction. Therefore, genomic selection is promising for numerically small population.  相似文献   

3.
Nitrogen (N) leached into groundwater from urine patches of cattle grazing in situ is an environmental problem in pasture-based dairy industries. One potential mitigation is to breed cattle for lower urinary nitrogen (UN) excretion. Urinary nitrogen is difficult to measure, while milk urea nitrogen concentration (MUN) is relatively easy to measure. For animals fed diets of differing N content in confinement, MUN is moderately heritable and is positively related to UN. However, there is little information on the heritability of MUN, and its relationship with other traits such as milk yield and composition, for animals grazing fresh pasture. Milk urea nitrogen concentration data together with milk yield, fat, protein and lactose composition and somatic cell count was collected from 133 624 Holstein-Friesian (HF), Jersey (J) and HF×J (XBd) cows fed predominantly pasture over three full lactations and one part lactation. Mean MUN was 14.0; and 14.4, 13.2 and 13.9 mg/dl for HF, J and XBd cows, respectively. Estimates of heritability of MUN were 0.22 using a repeatability model that fitted year-of-lactation by month-of-lactation by cow-age with days-in-milk within month-of-lactation and cow-age, and 0.28 using a test-day model analysis with Gibbs sampling methods. Sire breeding values (BVs) ranged from −2.8 to +3.2 indicating that MUN could be changed by selection. The genetic correlation between MUN and percent true protein in milk was −0.22; −0.29 for J cows and −0.16 for HF cows. Should the relationship between MUN and UN observed in dietary manipulation studies hold similarly when MUN is manipulated by genetic selection, UN excretion could be reduced by 6.6 kg/cow per year in one generation of selection using sires with low MUN BVs. Although J cows had lower MUN than HF, total herd UN excretion may be similar for the same fixed feed supply because more J cows are required to utilise the available feed. The close relationship between blood plasma urea N concentration and MUN may enable early selection of bulls to breed progeny that excrete less UN.  相似文献   

4.
In genetic evaluations, the definition of unknown parent groups (UPG) is usually based on time periods, selection path and flows of foreign founders. The definition of UPG may be more complex for populations presenting genetic heterogeneity due to both, large national expansion and coexistence of artificial insemination (AI) and natural service (NS). A UPG definition method accounting for beef bull flows was proposed and applied to the French Charolais cattle population. It assumed that, at a given time period, unknown parents belonged to the same UPG when their progeny were bred in herds that used bulls with similar origins (birth region and reproduction way). Thus, the birth period, region and AI rate of a herd were pointed out to be the three criteria reflecting genetic disparities at the national level in a beef cattle population. To deal with regional genetic disparities, 14 regions were identified using a factorial approach combining principal component analysis and Ward clustering. The selection nucleus of the French cattle population was dispersed over three main breeding areas. Flows of NS bulls were mainly carried out within each breeding area. On the contrary, the use and the selection of AI bulls were based on a national pool of candidates. Within a time period, herds of different regions were clustered together when they used bulls coming from the same origin and with an estimated difference of genetic level lower than 20% of genetic standard deviation (σg) for calf muscle and skeleton scores (SS) at weaning. This led to the definition of 16 UPG of sires, which were validated as robust and relevant in a sire model, meaning numerically stable and corresponding to distinct genetic subpopulations. The UPG genetic levels were estimated for muscle and SS under sire and animal models. Whatever the trait, differences between bull UPG estimates within a time period could reach 0.5 σg across regions. For a given time period, bull UPG estimates for muscle and SS were generally larger by 0.30 to 0.75 σg than those of cows. Including genetic groups in the evaluation model increased the estimated genetic trends by 20% to 30%. It also provoked re-ranking in favor of bulls and cows without pedigree.  相似文献   

5.
The hybrid progeny of F1 produced by crossing of banteng and domestic cow is characterized by absolute sterility of the male line and fertility of the female line. The crossbred males become fertile in further progenies while crossing cross-females with males of initial forms. Successful use of inter-subgenetic hybrids of banteng and domestic cow in selection work is hindered by pathological deviations in their genitals structure as well as frequent deaths of the embryos and foetus in hybrid cows at the different stages of embryogenesis. It is suggested that those deviations (both in cow and in bulls) are caused mainly by genetic and immunological factors and are determined to a greater extent by combination of parental couples.  相似文献   

6.
This study evaluated the dependence of reliability and prediction bias on the prediction method, the contribution of including animals (bulls or cows), and the genetic relatedness, when including genotyped cows in the progeny-tested bull reference population. We performed genomic evaluation using a Japanese Holstein population, and assessed the accuracy of genomic enhanced breeding value (GEBV) for three production traits and 13 linear conformation traits. A total of 4564 animals for production traits and 4172 animals for conformation traits were genotyped using Illumina BovineSNP50 array. Single- and multi-step methods were compared for predicting GEBV in genotyped bull-only and genotyped bull-cow reference populations. No large differences in realized reliability and regression coefficient were found between the two reference populations; however, a slight difference was found between the two methods for production traits. The accuracy of GEBV determined by single-step method increased slightly when genotyped cows were included in the bull reference population, but decreased slightly by multi-step method. A validation study was used to evaluate the accuracy of GEBV when 800 additional genotyped bulls (POPbull) or cows (POPcow) were included in the base reference population composed of 2000 genotyped bulls. The realized reliabilities of POPbull were higher than those of POPcow for all traits. For the gain of realized reliability over the base reference population, the average ratios of POPbull gain to POPcow gain for production traits and conformation traits were 2.6 and 7.2, respectively, and the ratios depended on heritabilities of the traits. For regression coefficient, no large differences were found between the results for POPbull and POPcow. Another validation study was performed to investigate the effect of genetic relatedness between cows and bulls in the reference and test populations. The effect of genetic relationship among bulls in the reference population was also assessed. The results showed that it is important to account for relatedness among bulls in the reference population. Our studies indicate that the prediction method, the contribution ratio of including animals, and genetic relatedness could affect the prediction accuracy in genomic evaluation of Holstein cattle, when including genotyped cows in the reference population.  相似文献   

7.
Pedigree analyses in the Breeding Program for Nellore Cattle   总被引:1,自引:0,他引:1  
Parameters based on the probability of gene origin were used to describe genetic variability in three reproductive groups from the Breeding Program for Nellore Cattle (PMGRN). The three reproductive populations (cows in reproductive age, bulls from artificial insemination centers and young bulls in progeny test) generated medium to low values. The effective number of founders (Nf ), the effective number of ancestors (Na) and the remaining genomes (Ng) suggest low founder representativeness, high genetic contribution by some ancestors, considerable loss of founder alleles and lack of allelic representativeness in bulls kept in artificial insemination centers and young sires in progeny test in relation to the diversity on the farms participating in the PMGRN. The parameters based on the probability of gene origin in the three reproductive groups were: 84.3, 53 and 54.2 (Nf ); 71, 36.6 and 30 (Na) and 51.4, 19.3 and 19 (Ng) for cows, bulls from artificial insemination centers and young sires in progeny test, respectively. Future matings and the introduction of selected progeny reproduction may decrease the parameters based on the probability of gene origin in each reproductive group, thereby increasing considerably the additive relationship in the three reproductive groups and consequently increasing the probability of inbreeding in the future. Strategies to maintain genetic variability in bull populations must be implemented.  相似文献   

8.
The profitability of dual-purpose breeding farms can be increased through genetic improvement of carcass traits. To develop a genetic evaluation of carcass traits of young bulls, breed-specific genetic parameters were estimated in three French dual-purpose breeds. Genetic correlations between these traits and veal calf, type and milk production traits were also estimated. Slaughter performances of 156 226 Montbeliarde, 160 361 Normande and 8691 Simmental young bulls were analyzed with a multitrait animal model. In the three breeds, heritabilities were moderate for carcass weight (0.12 to 0.19±0.01 to 0.04) and carcass conformation (0.21 to 0.26±0.01 to 0.04) and slightly lower for age at slaughter (0.08 to 0.17±0.01 to 0.03). For all three breeds, genetic correlations between carcass weight and carcass conformation were moderate and favorable (0.30 to 0.52±0.03 to 0.13). They were strong and favorable (−0.49 to −0.71±0.05 to 0.15) between carcass weight and age at slaughter. Between age at slaughter and carcass conformation, they were low and unfavorable to moderate and favorable (−0.25 to 0.10±0.06 to 0.18). Heavier young bulls tend to be better conformed and slaughtered earlier. Genetic correlations between corresponding young bulls and veal production traits were moderate and favorable (0.32 to 0.70±0.03 to 0.09), implying that selecting sires for veal calf production leads to select sires producing better young bulls. Genetic correlations between young bull carcass weight and cow size were moderately favorable (0.22 to 0.45±0.04 to 0.10). Young bull carcass conformation had moderate and favorable genetic correlations (0.11 to 0.24±0.04 to 0.10) with cow width but moderate and unfavorable genetic correlations (−0.21 to −0.36±0.03 to 0.08) with cow height. Taller cows tended to produce heavier young bulls and thinner cows to produce less conformed ones. Genetic correlations between carcass traits of young bulls and cow muscularity traits were low to moderate and favorable. Finally, genetic correlations between carcass traits of young bulls and milk production traits were low and unfavorable to moderate and favorable. These results indicate the existence for all three breeds of genetic variability for the genetic improvement of carcass traits of young bulls as well as favorable genetic correlations for their simultaneous selection and no strong unfavorable correlation with milk production traits.  相似文献   

9.
Genetic improvement of dairy cows, which has increased the milk yield of cows in the UK by 1200 kg per lactation in 12 years, is an excellent example of the application of quantitative genetics to agriculture. The most important traits of dairy cattle are expressed only in females, but the main opportunity for selection is in males. Despite this, genetic improvement was achieved by the invention of a new statistical methodology, called 'best linear unbiased prediction' to estimate the breeding value of bulls. Intense selection of the best bulls, combined with the worldwide use of these bulls through artificial insemination and frozen semen, has created a global population and caused concern that the genetic variation available in the future will be reduced. Maintenance of genetic variation and long-term genetic gains would be aided by rational payment systems, use of crossbreeding where profitable, inclusion of all economically important traits in the breeding objective, recognition of genotype by environment interactions and the use of selection algorithms that balance estimated breeding value against the average relationship among the selected animals. Fortunately, all of these things are happening to some degree.  相似文献   

10.
The natural service fertility of yearling bulls on pasture was compared with that of 2-year-old bulls in a study (2 experiments) which involved a total of 748 composite breed cows over 3 breeding seasons. Other factors such as age of the cows, breed, year effects, and the sequence in which bulls of a particular age were assigned to cows were also evaluated. Pregnancy and calving rates and calving date were used as criteria for assessing fertility. The age of the bull, breed, year, or bull sequence did not significantly affect any of the traits studied. The age of cow was important in all the traits studied, with mature cows (5 years and older at breeding) calving earlier (P < 0.05) than the youngest group (2 years old at breeding) of cows, in both experiments. The pregnancy rate was also lower in the younger cows than in the mature cows in the first experiment. The results suggest that the age range of the cow herd is more important in determining herd fertility than the age of the bull or any of the parameters studied.  相似文献   

11.
Hohenboken WD 《Theriogenology》1999,52(8):1421-1433
Sexed semen will contribute to increased profitability of dairy and beef cattle production in a variety of ways. It could be used to produce offspring of the desired sex from a particular mating to take advantage of differences in value of males and females for specific marketing purposes. Commercial dairy farmers, those who produce and market milk, could use sexed semen to produce replacement daughters from genetically superior cows and beef crossbred sons from the remainder of their cow population. To increase the rate of response to selection, seedstock dairy cattle breeders could produce bulls for progeny testing from a smaller number of elite dams by using sexed semen to ensure that all of them produced a son. Using sexed semen could then reduce the cost of progeny testing those bulls, because fewer matings would be necessary to produce any required number of daughters. Commercial beef cattle farmers, producing animals for eventual slaughter, could use sexed semen to capitalize on the higher value of male than female offspring for meat production. They could also use sexed semen to produce specialized, genetically superior replacement heifers from as small a proportion of the herd as possible. This would allow the remainder of the herd to produce male calves from bulls or breeds with superior genetic merit for growth, feed conversion efficiency, and carcass merit. Single-sex, bred-heifer systems, in which each female is sold for slaughter soon after weaning her replacement daughter, would be possible with the use of X-chromosome-sorted semen. Use of sexed semen would make terminal crossbreeding systems more efficient and sustainable in beef cattle. Fewer females would be required to produce specialized maternal crossbred daughters, and more could be devoted to producing highly efficient, terminal crossbred sons.  相似文献   

12.

Background

Dairy cattle breeding objectives are in general similar across countries, but environment and management conditions may vary, giving rise to slightly different selection pressures applied to a given trait. This potentially leads to different selection pressures to loci across the genome that, if large enough, may give rise to differential regions with high levels of homozygosity. The objective of this study was to characterize differences and similarities in the location and frequency of homozygosity related measures of Jersey dairy cows and bulls from the United States (US), Australia (AU) and New Zealand (NZ).

Results

The populations consisted of a subset of genotyped Jersey cows born in US (n = 1047) and AU (n = 886) and Jersey bulls progeny tested from the US (n = 736), AU (n = 306) and NZ (n = 768). Differences and similarities across populations were characterized using a principal component analysis (PCA) and a run of homozygosity (ROH) statistic (ROH45), which counts the frequency of a single nucleotide polymorphism (SNP) being in a ROH of at least 45 SNP. Regions that exhibited high frequencies of ROH45 and those that had significantly different ROH45 frequencies between populations were investigated for their association with milk yield traits. Within sex, the PCA revealed slight differentiation between the populations, with the greatest occurring between the US and NZ bulls. Regions with high levels of ROH45 for all populations were detected on BTA3 and BTA7 while several other regions differed in ROH45 frequency across populations, the largest number occurring for the US and NZ bull contrast. In addition, multiple regions with different ROH45 frequencies across populations were found to be associated with milk yield traits.

Conclusion

Multiple regions exhibited differential ROH45 across AU, NZ and US cow and bull populations, an interpretation is that locations of the genome are undergoing differential directional selection. Two regions on BTA3 and BTA7 had high ROH45 frequencies across all populations and will be investigated further to determine the gene(s) undergoing directional selection.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1352-4) contains supplementary material, which is available to authorized users.  相似文献   

13.
The effect of the 1;29 Robertsonian translocation on fertility was studied using embryos resulting from matings of nine carrier cows and two carrier bulls. Embryos were collected from the following three mating groups utilizing superovulation: normal bull cross normal cow, normal bull cross translocation carrier cow, and translocation carrier bull cross normal cow. The proportion of ova which were fertilized did not vary among the groups, indicating that fertilization rates were not affected by the translocation. The translocation cows did yield fewer embryos on average than did cows with normal karyotypes, which may suggest ovulation rates are reduced (at least after superovulation attempts) in cattle carrying the 1;29 translocation. Twenty of 39 embryos successfully karyotyped had abnormal chromosome complements. All four of the theoretically predicted karyotypes and two additional abnormal combinations were found. Eight of 39 (20.5%) embryos karyotyped had unbalanced karyotypes which would have resulted in embryonic loss. The proportion of embryos with unbalanced karyotypes, was slightly higher when the cow (36%) carried the translocation than when the bull (19%) did. Results of this study indicate that fertility is impaired due to the presence of this translocation. The major loss in reproductive potential appears to be due to embryonic loss rather than fertilization failure.  相似文献   

14.
Minimum coancestry mating with a maximum of one offspring per mating pair (MC1) is compared with random mating schemes for populations with overlapping generations. Optimum contribution selection is used, whereby ΔF is restricted. For schemes with ΔF restricted to 0.25% per year, 256 animals born per year and heritability of 0.25, genetic gain increased with 18% compared with random mating. The effect of MC1 on genetic gain decreased for larger schemes and schemes with a less stringent restriction on inbreeding. Breeding schemes hardly changed when omitting the iteration on the generation interval to find an optimum distribution of parents over age-classes, which saves computer time, but inbreeding and genetic merit fluctuated more before the schemes had reached a steady-state. When bulls were progeny tested, these progeny tested bulls were selected instead of the young bulls, which led to increased generation intervals, increased selection intensity of bulls and increased genetic gain (35% compared to a scheme without progeny testing for random mating). The effect of MC1 decreased for schemes with progeny testing. MC1 mating increased genetic gain from 11–18% for overlapping and 1–4% for discrete generations, when comparing schemes with similar genetic gain and size.  相似文献   

15.
The population structure and social organization of the Southern Elephant Seal, Mirounga leonina , were studied at South Georgia principally by extensive field census work and determination of age and reproductive history from sections of teeth taken from samples of bulls and cows.
The adult males of the South Georgia population were exploited from 1910 to 1964, mainly at the maximum sustainable yield for this population.
The present data are compared with similar information obtained from studies at South Georgia in 1951 during the exploitation phase and at Macquarie Island in the 1950's where sealing ended in 1919 and the population had stabilized.
Changes have been noted in the time of bull haul out, number of bulls ashore, cow: bull ratio, harem size and the age of harem bulls. These changes can all be attributed to the ending of exploitation. In contrast, the structure of the cow herd has not changed appreciably in the same period.
In addition, differences in growth, body size and population structure still persist between the South Georgia and Macquarie Island populations and it is likely that most of them may reflect differences in food availability at the two locations.  相似文献   

16.
Performance of dairy cattle clones and evaluation of their milk composition   总被引:2,自引:0,他引:2  
Genetic and phenotypic performance of U.S. Holstein embryo-split and nuclear-transfer clones was documented for yield and fitness traits. For cows, mean genetic superiority based on pedigree was 186 kg of milk, 9 kg of fat, and 7 kg of protein for embryo-split clones and 165, 10, and 8 kg, respectively, for nuclear-transfer clones compared with the population for the same birth year; pedigree advantage for male clones generally was slightly greater. Estimates of genetic merit that considered a clone's own performance as well as pedigree merit were slightly lower for embryo-split cows than for their full siblings for yield but not for milk composition (fat and protein percentages), mastitis resistance (somatic cell score), longevity (productive life), or cow fertility (daughter pregnancy rate); no corresponding genetic differences were found for nuclear-transfer cows or for cloned bulls regardless of clone type. For bulls, estimated genetic merit based on daughter yield was more similar for clone pairs with apparent identical genotype than for pairs from the same biotechnology but nonidentical as confirmed by blood typing. Yield deviations were lower for clones than for their full siblings. Milk composition (total solids, fat, fatty acid profile, lactose, and protein) also was compared for nuclear-transfer clones (Brown Swiss, Holstein, and Holstein-Jersey cross) with non-cloned cows and literature values; no differences were found for gross chemical composition of milk. No obvious differences were evident between cloned and non-cloned animals or for the milk that they produced.  相似文献   

17.

Background

At the current price, the use of high-density single nucleotide polymorphisms (SNP) genotyping assays in genomic selection of dairy cattle is limited to applications involving elite sires and dams. The objective of this study was to evaluate the use of low-density assays to predict direct genomic value (DGV) on five milk production traits, an overall conformation trait, a survival index, and two profit index traits (APR, ASI).

Methods

Dense SNP genotypes were available for 42,576 SNP for 2,114 Holstein bulls and 510 cows. A subset of 1,847 bulls born between 1955 and 2004 was used as a training set to fit models with various sets of pre-selected SNP. A group of 297 bulls born between 2001 and 2004 and all cows born between 1992 and 2004 were used to evaluate the accuracy of DGV prediction. Ridge regression (RR) and partial least squares regression (PLSR) were used to derive prediction equations and to rank SNP based on the absolute value of the regression coefficients. Four alternative strategies were applied to select subset of SNP, namely: subsets of the highest ranked SNP for each individual trait, or a single subset of evenly spaced SNP, where SNP were selected based on their rank for ASI, APR or minor allele frequency within intervals of approximately equal length.

Results

RR and PLSR performed very similarly to predict DGV, with PLSR performing better for low-density assays and RR for higher-density SNP sets. When using all SNP, DGV predictions for production traits, which have a higher heritability, were more accurate (0.52-0.64) than for survival (0.19-0.20), which has a low heritability. The gain in accuracy using subsets that included the highest ranked SNP for each trait was marginal (5-6%) over a common set of evenly spaced SNP when at least 3,000 SNP were used. Subsets containing 3,000 SNP provided more than 90% of the accuracy that could be achieved with a high-density assay for cows, and 80% of the high-density assay for young bulls.

Conclusions

Accurate genomic evaluation of the broader bull and cow population can be achieved with a single genotyping assays containing ~ 3,000 to 5,000 evenly spaced SNP.  相似文献   

18.
The present review describes the behavioral characteristics of bulls raised under tropical and subtropical conditions and emphasizes the difficulties associated with adequately monitoring their performance in the field to predict reproductive potential. Most of the information generated for improving our understanding of bull behavior under range conditions has been generated in Bos taurus bulls. The limited information available in Bos indicus indicates that males searching for cows in estrus display different sexual patterns when compared to B. taurus bulls and a poor selection of a sire utilized in range conditions can have an important impact in cattle production. Screening and selecting [cg1] bulls for desirable reproductive traits and high libido is known to improve the reproductive performance of the herd. The reproductive and genetic potential of a bull is influenced by factors such as management, age, nutrition and problems related to the female such as embryonic death and anestrus. However, behavioral characteristics of bulls when detecting and serving cows in estrus is poorly understood.  相似文献   

19.
Taking into account functional traits in the breeding practice should lead to a longer productive life of cows. However, despite the increased contribution of these traits in bull selection indices, their daughters are frequently culled as early as the 2nd or 3rd lactation. The problem is whether and to what extent the genetic potential of animals is realized in the production practice. Therefore, the purpose of this study was to determine the associations between the breeding value (BV) of bulls and their daughters for cow longevity and culling reasons in the Holstein-Friesian cattle population in Poland. Data for 532 062 cows culled in 2012, 2015, and 2018 were analyzed. A majority of 5 045 cow sires originated from Poland, Germany, France, the Netherlands, and the United States. The highest variation in the contribution of culling reasons was for the cows culled at the age of 2–4 years. The contribution of the culling reasons, analyzed in relation to the cow culling age, remained similar and the only exception was culling because of old age, for which a significant increase was observed only for the culling age of at least 9 years (13.8%), which was reached by only 7.3% of the cows. The sires were characterized by generally high BV for conformation and reproductive traits. However, they had, at most, the average genetic potential for functional longevity. There were a number of beneficial associations found between the BV of bulls and the distribution of culling reasons in their daughters. For example, it concerns relations between the somatic cell score in milk and culling due to udder diseases and low milk yield, between the interval from calving to first insemination and low milk yield, between the protein yield and old age, or between the BV for certain conformation traits (size, udder) and cow culling due to age. In these cases, as the BV increased for a given trait, the contribution of the corresponding cow culling reason tended to decrease. Our study showed that it seems reasonable to consider Holstein-Friesian cows aged at least 9 years at culling to be long-living animals. This is primarily evidenced by the rapid increase in the culling due to old age in relation to younger cows. Nowadays the above age limit can be suggested as a criterion of longevity for Holstein-Friesian cows but the criterion should be updated to the relation genotype-environment-economy that tends to change over time.  相似文献   

20.
Advantages of breeding schemes using genetic marker information and/or multiple ovulation and embryo transfer (MOET) technology over the traditional approach were extensively evaluated through simulation. Milk yield was the trait of interest and QTL was the genetic marker utilized. Eight dairy cattle breeding scenarios were considered, i.e., traditional progeny testing breeding scheme (denoted as STANPT), GASPT scheme including a pre-selection of young bulls entering progeny testing based on their own QTL information, MOETPT scheme using MOET technology to generate young bulls and a selection of young bulls limited within the full-sib family, GAMOPT scheme adopting both QTL pre-selection and MOET technology, COMBPT scheme using a mixed linear model which considered QTL genotype instead of the BLUP model in GAMOPT, and three non-progeny testing schemes, i.e. the MOET, GAMO and COMB schemes, corresponding to MOETPT, GAMOPT and COMBPT with progeny testing being part of the system. Animals were selected based on their breeding value which was estimated under an animal model framework. Sequential selection over 17 years was performed in the simulations and 30 replicates were designed for each scenario. The influences of using QTL information and MOET technology on favorable QTL allele frequency, true breeding values, polygenetic breeding values and the accumulated genetic superiority were extensively evaluated, for five different populations including active sires, lactating cows, bull dams, bull sires, and young bulls. The results showed that the combined schemes significantly outperformed other approaches wherein accumulated true breeding value progressed. The difference between schemes exclusively using QTL information or MOET technology was not significant. The STANPT scheme was the least efficient among the 8 schemes. The schemes using MOET technology had a higher polygenetic response than others in the 17th year. The increases of frequency of the favorable QTL allele varied more greatly across the 3 male groups than in the lactating cows group. The accumulated genetic superiorities of the GASPT scheme, MOETPT scheme, GAMOPT scheme, COMBPT scheme, MOET scheme, GAMO scheme and COMB scheme over the STANPT scheme were 8.42%, 3.59%, 14.58%, 18.54%, 4.12%, 14.12%, 16.50% in active sires and 2.70%, 5.00%, 11.05%, 12.78%, 7.51%, 17.12%, 25.38% in lactating cows. Supported by Key Project for Introducing Advanced International Agriculture Science & Technologies (Grant No. 2006-G48), the National Key Basic Research and Development Program of China (Grant No. 2006CB102107) and National Key Technology Research and Development Program of China (Grant No. 2006BAD04A01).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号