首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prenylated Rab acceptor domain family member 1 (PRAF1), a transmembrane protein whose precise function is unknown, localizes to the Golgi complex, post-Golgi vesicles, lipid rafts, endosomes, and the plasma membrane. VAMP2 and Rab3A are SNARE proteins that interact with PRAF1, and, as part of a SNARE complex, PRAF1 may function in the regulation of docking and fusion of transport vesicles both in the Golgi complex and at the plasma membrane. Alternately, PRAF1 may function as a sorting protein in the Golgi complex. In addition to interacting with SNARE proteins, PRAF1 interacts with rotaviral, retroviral, and herpes viral proteins. The function of viral protein interaction is unknown, but PRAF1 may enhance rotaviral and retroviral assembly. In contrast, PRAF1 may inhibit the herpes virus life cycle.  相似文献   

2.
Dexamethasone (Dex) inhibits stimulated adrenocorticotrophic hormone (ACTH) secretion in AtT-20 cells, a mouse corticotroph tumor cell line. Dexras1 protein expression is induced in corticotrophs by Dex. The function of Dexras1 is unknown; however, it may be involved in corticotrophic negative feedback. Here we report the identification of a Dexras1 interactor, prenylated Rab acceptor domain family member 1 (PRAF1), a protein that localizes to the Golgi complex, post-Golgi vesicles, and endosomes. We determined that amino acids 54–175 of PRAF1 are essential for interaction with Dexras1 and that specific point mutations located within this region enhance PRAF1–Dexras1 interactions. AtT-20 cells stably transfected with truncated or mutated PRAF1 constructs had altered responses to corticotrophin-releasing hormone and Dex, upregulated expression of the ACTH prohormone pro-opiomelanocortin (POMC), altered POMC processing, and altered Golgi complex morphology with decreased intra-Golgi and intracellular co-localization of PRAF1 and ACTH proteins. Our findings indicate that PRAF1 plays a novel role in ACTH stimulated secretion. We propose a model whereby Dexras1 interaction with PRAF1 may lock the sites necessary for PRAF1–Rab3A–VAMP2 interaction resulting in Dex-mediated inhibition of ACTH secretion.  相似文献   

3.
The Endoplasmic Reticulum (ER) is a membranous organelle with diverse structural and functional domains. Peripheral ER includes interconnected tubules, and dense tubular arrays called “ER matrices” together with bona fide flat cisternae. Transitions between these states are regulated by membrane-associated proteins and cytosolic factors. Recently, the small GTPases Rab10 and Rab18 were reported to control ER shape by regulating ER dynamics and fusion. Here, we present evidence that another Rab protein, Rab7a, modulates the ER morphology by controlling the ER homeostasis and ER stress. Indeed, inhibition of Rab7a expression by siRNA or expression of the dominant negative mutant Rab7aT22?N, leads to enlargement of sheet-like ER structures and spreading towards the cell periphery. Notably, such alterations are ascribable neither to a direct modulation of the ER shaping proteins Reticulon-4b and CLIMP63, nor to interactions with Protrudin, a Rab7a-binding protein known to affect the ER organization. Conversely, depletion of Rab7a leads to basal ER stress, in turn causing ER membrane expansion. Both ER enlargement and basal ER stress are reverted in rescue experiments by Rab7a re-expression, as well as by the ER chemical chaperone tauroursodeoxycholic acid (TUDCA). Collectively, these findings reveal a new role of Rab7a in ER homeostasis, and indicate that genetic and pharmacological ER stress manipulation may restore ER morphology in Rab7a silenced cells.  相似文献   

4.
Liddle's syndrome (excessive absorption of sodium ions) and PHA-1 (pseudohypoaldosteronism type 1) with decreased sodium absorption are caused by the mutations in the amiloride-sensitive epithelial sodium channel ENaC. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. Earlier, we reported that Rab27a inhibits ENaC-mediated currents through protein-protein interaction in HT-29 cells. We hereby report that Rab27a-dependent inhibition is associated with the GTP/GDP status as constitutively active or GTPase-deficient mutant Q78L inhibits amiloride-sensitive currents whereas GDP-locked inactive mutant T23N showed no effect. In order to further explore the molecular mechanism of this regulation, we performed competitive assays with two Rab27a-binding proteins: synaptotagmin-like protein (SLP-5) and Munc13-4 (a putative priming factor for exocytosis). Both proteins eliminate negative modulation of Rab27a on ENaC function. The SLP-5 reversal of Rab27a effect was restricted to C-terminal C2A/C2B domains assigned for putative phospholipids-binding function while the Rab27a-binding SHD motif imparted higher inhibition. The ENaC-mediated currents remain unaffected by Rab27a though SLP-5 appears to strongly bind it. The immunoprecipitation experiments suggest that in the presence of excessive Munc13-4 and SLP-5 proteins, Rab27a interaction with ENaC is diminished. Munc13-4 and SLP-5 limit the Rab27a availability to ENaC, thus minimizing its effect on channel function. These observations decisively prove that Rab27a inhibits ENaC function through a complex mechanism that involves GTP/GDP status, and protein-protein interactions involving Munc13-4 and SLP-5 effector proteins.  相似文献   

5.
Synapsins, a family of neuron-specific phosphoproteins that play an important role in the regulation of synaptic vesicle trafficking and neurotransmitter release, were recently demonstrated to interact with the synaptic vesicle-associated small G protein Rab3A within nerve terminals (Giovedi, S., Vaccaro, P., Valtorta, F., Darchen, F., Greengard, P., Cesareni, G., and Benfenati, F. (2004) J. Biol. Chem. 279, 43760-43768). We have analyzed the functional consequences of this interaction on the biological activities of both proteins and on their subcellular distribution within nerve terminals. The presence of synapsin I stimulated GTP binding and GTPase activity of both purified and endogenous synaptic vesicle-associated Rab3A. Conversely, Rab3A inhibited synapsin I binding to F-actin, as well as synapsin-induced actin bundling and vesicle clustering. Moreover, the amount of Rab3A associated with synaptic vesicles was decreased in synapsin knockout mice, and the presence of synapsin I prevented RabGDI-induced Rab3A dissociation from synaptic vesicles. The results indicate that an interaction between synapsin I and Rab3A exists on synaptic vesicles that modulates the functional properties of both proteins. Given the well recognized importance of both synapsins and Rab3A in synaptic vesicles exocytosis, this interaction is likely to play a major role in the modulation of neurotransmitter release.  相似文献   

6.
7.
ENaC, the sodium-selective amiloride-sensitive epithelial channel, mediates electrogenic sodium re-absorption in tight epithelia and is deeply associated with human hypertension. The ENaC expression at plasma membrane requires the regulated transport, processing, and macromolecular assembly in a defined and highly compartmentalized manner. Ras-related Rab GTPases regulate intracellular trafficking during endocytosis, regulated exocytosis, and secretion. To evaluate the role of these proteins in regulating amiloride-sensitive sodium channel activity, multiple Rab isoforms 3, 5, 6, and Rab27a were expressed in HT-29 cells. Rab3 and Rab27a inhibited ENaC currents, while the expression of other Rab isoforms failed to elicit any statistically significant effect on amiloride-sensitive currents. The immunoprecipitation experiments suggest protein-protein interaction of Rab3 and Rab27a with epithelial sodium channel. Biotinylation studies revealed that modulation of ENaC function is due to the reduced apical expression of channel proteins. Study also indicates that Rabs do not appear to affect the steady-state level of total cellular ENaC. Alternatively, introduction of isoform-specific small inhibitory RNA (SiRNA) reversed the Rab-dependent inhibition of amiloride-sensitive currents. These observations point to the involvement of multiple Rab proteins in ENaC transport through intracellular routes like exocytosis, recycling from ER to plasma membrane or degradation and thus serve as potential target for human hypertension.  相似文献   

8.
The Mss4 (mammalian suppressor of yeast Sec4) is an evolutionarily highly conserved protein and is expressed in all mammalian tissues. Although its precise biological function is still elusive, it has been shown to associate with a subset of secretory Rab proteins (Rab1b, Rab3a, Rab8a, Rab10) and to possess a rather low guanine nucleotide exchange factor (GEF) activity towards them in vitro (Rab1, Rab3a and Rab8a). By screening a human placenta cDNA library with Mss4 as bait, we identified several Rab GTPases (Rab12, Rab13 and Rab18) as novel Mss4-binding Rab proteins. Only exocytic but no endocytic Rab GTPases were found in our search. The binding of Mss4 to Rab proteins was confirmed by direct yeast two-hybrid interaction, by co-immunoprecipitation from lysates of mammalian cells, by immunofluorescence colocalisation as well as by direct in vitro binding studies. Analysis of Mss4 catalytic activity towards different Rab substrates confirmed that it is a somewhat inefficient GEF. These data, together with our mutational analysis of Mss4-Rab binding capacity, support the already proposed idea that Mss4 functions rather as a chaperone for exocytic Rab GTPases than as a GEF.  相似文献   

9.
The Legionella pneumophila protein AnkX that is injected into infected cells by a Type IV secretion system transfers a phosphocholine group from CDP-choline to a serine in the Rab1 and Rab35 GTPase Switch II regions. We show here that the consequences of phosphocholination on the interaction of Rab1/Rab35 with various partner proteins are quite distinct. Activation of phosphocholinated Rabs by GTP/GDP exchange factors (GEFs) and binding to the GDP dissociation inhibitor (GDI) are strongly inhibited, whereas deactivation by GTPase activating proteins (GAPs) and interactions with Rab-effector proteins (such as LidA and MICAL-3) are only slightly inhibited. We show that the Legionella protein lpg0696 has the ability to remove the phosphocholine group from Rab1. We present a model in which the action of AnkX occurs as an alternative to GTP/GDP exchange, stabilizing phosphocholinated Rabs in membranes in the GDP form because of loss of GDI binding ability, preventing interactions with cellular GTPase effectors, which require the GTP-bound form. Generation of the GTP form of phosphocholinated Rab proteins cannot occur due to loss of interaction with cellular GEFs.  相似文献   

10.
The regulation of membrane traffic involves the Rab family of Ras-related GTPases, of which there are a total of 11 members in the yeast Saccharomyces cerevisiae. Previous work has identified PRA1 as a dual prenylated Rab GTPase and VAMP2 interacting protein [Martinic et al. (1999) J. Biol. Chem. 272, 26991-26998]. In this study we demonstrate that the yeast counterpart of PRA1 interacts with Rab proteins and with Yip1p, a membrane protein of unknown function that has been reported to interact specifically with the Rab proteins Ypt1p and Ypt31p. Yeast Pra1p/Yip3p is a factor capable of biochemical interaction with a panel of different Rab proteins and does not show in vitro specificity for any particular Rab. The interactions between Pra1p/Yip3p and Rab proteins are dependent on the presence of the Rab protein C-terminal cysteines and require C-terminal prenylation.  相似文献   

11.
Small G proteins of the Rab family are regulators of intracellular vesicle traffic. Their intrinsic rate of GTP hydrolysis is very low but is enhanced by specific GTPase-activating proteins (GAPs) that switch G proteins to their inactive form. We have characterized the activity of recombinant Rab3-GAP on Rab3A in solution. The K(m) and K(d) values (75 microm) indicate a low affinity of Rab3-GAP for its substrate. The affinity is higher for the transition state analog Rab3A:GDP:AlF(x) (15 microm). The k(cat) (1 s(-)(1)) is within the range of values reported for other GAPs. A mutation in the switch I region of Rab3A disrupted the interaction with Rab3-GAP. Furthermore, Rabphilin, a putative target of Rab3, inhibited the activity of Rab3-GAP on Rab3. Therefore, the Rab3-GAP-binding site involves the switch I region of Rab3 and overlaps with the Rabphilin-binding domain. Substitution of a single arginine residue (Arg-728) of Rab3-GAP disrupted its catalytic activity but not its interaction with Rab3A. We propose that Rab3-GAP, like Ras- and Rho-GAPs, stabilizes the transition state of Rab3 and provides a critical arginine residue to accelerate the GTPase reaction.  相似文献   

12.
We have previously demonstrated that Kir3.1 channels and Gβ1γ2 subunits initially interact in the endoplasmic reticulum (ER). To elucidate the role that anterograde protein trafficking pathways may play in the formation of these complexes, we used dominant negative (DN) mutants of the small G proteins Sar 1 and various compartment-specific Rabs which impede anterograde protein trafficking at different steps. Sar 1 H79G and Rab 1 S25N mutants efficiently blocked the plasma membrane trafficking of the Kir3.1/Kir3.4 complex however they did not block the Gβ1γ2/Kir3.1 interaction as measured using bioluminescence resonance energy transfer (BRET). This interaction was also insensitive to the presence of DN Rabs 2, 6, 8, and 11. These results confirm that Gβγ/Kir3 complexes form early during channel biosynthesis and trafficking. Using a combination of BRET, protein complementation assays and co-immunoprecipitation, we demonstrate that Gβ1-4 can interact with Kir3.1 in the absence of Kir3.4. Gβ5 does not directly interact with the channel but can still be co-immunoprecipated as part of a larger complex. The interaction between Gβ and Kir3.1 was selectively fostered by co-expression with different Gγ subunits. When Gγ1 or Gγ11 was co-expressed with eGFP-Gβ3 or eGFP-Gβ4, the interaction with the effector was lost. Kir3.2 was capable of interacting with Gβ1-3 and not Gβ4 or Gβ5. These interactions were again fostered by co-expression with Gγ and were also insensitive to DN Sar 1 or Rab 1. Taken together, our data show that these “precocious” channel/G protein interactions are specific and may have implications beyond their basic function in signalling events.  相似文献   

13.
Synaptic proteins are synthesized in the cell body and transported down the axon by microtubule-dependent motors. We previously reported that KIF1Bbeta and KIF1A motors are essential for transporting synaptic vesicle precursors; however the mechanisms that regulate transport, as well as cargo recognition and control of cargo loading and unloading remain largely unknown. Here, we show that DENN/MADD (Rab3-GEP) is an essential part of the regulation mechanism through direct interaction with the stalk domain of KIF1Bbeta and KIF1A. We also show that DENN/MADD binds preferentially to GTP-Rab3 and acts as a Rab3 effector. These molecular interactions are fundamental as sequential genetic perturbations revealed that KIF1Bbeta and KIF1A are essential for the transport of DENN/MADD and Rab3, whereas DENN/MADD is essential for the transport of Rab3. GTP-Rab3 was more effectively transported than GDP-Rab3, suggesting that the nucleotide state of Rab3 regulates axonal transport of Rab3-carrying vesicles through preferential interaction with DENN/MADD.  相似文献   

14.
Small GTPase Rab is generally thought to control intracellular membrane trafficking through interaction with specific effector molecules. Because of the large number of Rab isoforms in mammals, however, the effectors of most of the mammalian Rabs have never been identified, and the Rab binding specificity of the Rab effectors previously reported has never been thoroughly investigated. In this study we systematically screened for novel Rab effectors by a yeast two-hybrid assay with 28 different mouse or human Rabs (Rab1-30) as bait and identified 27 Rab-binding proteins, including 19 novel ones. We further investigated their Rab binding specificity by a yeast two-hybrid assay with a panel of 60 different GTP-locked mouse or human Rabs. Unexpectedly most (17 of 27) of the Rab-binding proteins we identified exhibited broad Rab binding specificity and bound multiple Rab isoforms. As an example, inositol-polyphosphate 5-phosphatase OCRL (oculocerebrorenal syndrome of Lowe) bound the greatest number of Rabs (i.e. 16 distinct Rabs). Others, however, specifically recognized only a single Rab isoform or only two closely related Rab isoforms. The interaction of eight of the novel Rab-binding proteins identified (e.g. INPP5E and Cog4) with a specific Rab isoform was confirmed by co-immunoprecipitation assay and/or colocalization analysis in mammalian cell cultures, and the novel Rab2B-binding domain of Golgi-associated Rab2B interactor (GARI) and GARI-like proteins was identified by deletion and homology search analyses. The findings suggest that most Rab effectors (or Rab-binding proteins) regulate intracellular membrane trafficking through interaction with several Rab isoforms rather than through a single Rab isoform.  相似文献   

15.
Connecdenn 1/2 are DENN (differentially expressed in normal and neoplastic cells) domain-bearing proteins that function as GEFs (guanine nucleotide exchange factors) for the small GTPase Rab35. Disruption of connecdenn/Rab35 function leads to defects in the recycling of multiple cargo proteins from endosomes with altered cell function, yet the regulation of connecdenn GEF activity is unexplored. We now demonstrate that connecdenn 1/2 are autoinhibited such that the purified, full-length proteins have significantly less Rab35 binding and GEF activity than the isolated DENN domain. Both proteins are phosphorylated with prominent phosphorylation sites between residues 500 and 600 of connecdenn 1. A large scale proteomics screen revealed that connecdenn 1 is phosphorylated at residues Ser-536 and Ser-538 in an Akt-dependent manner in response to insulin stimulation of adipocytes. Interestingly, we find that an Akt inhibitor reduces connecdenn 1 interaction with Rab35 after insulin treatment of adipocytes. Remarkably, a peptide flanking Ser-536/Ser-538 binds the DENN domain of connecdenn 1, whereas a phosphomimetic peptide does not. Moreover, connecdenn 1 interacts with 14-3-3 proteins, and this interaction is also disrupted by Akt inhibition and by mutation of Ser-536/Ser-538. We propose that Akt phosphorylation of connecdenn 1 downstream of insulin activation regulates connecdenn 1 function through an intramolecular interaction.  相似文献   

16.
In the present study, we examined the possible interaction between Rab4 and syntaxin 4, both having been implicated in insulin-induced GLUT4 translocation. Rab4 and syntaxin 4 were coimmunoprecipitated from the lysates of electrically permeabilized rat adipocytes. The interaction between the two proteins was reduced by insulin treatment and increased by the addition of guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS). An in vitro binding assay revealed that the bacterially expressed Rab4 was bound to a glutathione S-transferase fusion protein containing the cytoplasmic domain of syntaxin 4 (GST-syntaxin 4-(1-273)) but not to syntaxin 1A or vesicle-associated membrane protein-2. The interaction between Rab4 and syntaxin 4 seemed to be regulated by the guanine nucleotide status of Rab4, because 1) GTPgammaS treatment of the cells significantly increased, but guanosine 5'-O-(2-thiodiphosphate) (GDPbetaS) treatment decreased the amount of Rab4 pulled down with GST-syntaxin 4-(1-273) from the cell lysates; 2) GTPgammaS loading on Rab4 caused a marked increase in the affinity of Rab4 to syntaxin 4 whereas GDPbetaS loading had little effect; and 3) a GTPase-deficient mutant of Rab4 (Rab4(Q67L)), but not a GTP-binding-defective mutant (Rab4(S22N)), was bound to GST-syntaxin 4-(1-273). Although insulin stimulated [gamma-(32)P]GTP binding to Rab4 in a time-dependent fashion, its effect on the Rab4 interaction with syntaxin 4 was apparently biphasic; an initial increase in Rab4 associated with syntaxin 4 was followed by a gradual dissociation of the GTPase from syntaxin 4. Finally, the binding of Rab4(Q67L) to GST-syntaxin 4-(1-273) was inhibited by munc-18c in a dose-dependent manner, indicating that GTP-loaded Rab4 binds to syntaxin 4 in the open conformation. These results suggest that 1) Rab4 interacts with syntaxin 4 in a direct and specific manner, and 2) the interaction is regulated by the guanine nucleotide status of Rab4 as well as by the conformational status of syntaxin 4.  相似文献   

17.
Eps15 homology domain (EHD) 1 enables membrane recycling by controlling the exit of internalized molecules from the endocytic recycling compartment (ERC) en route to the plasma membrane, similar to the role described for Rab11. However, no physical or functional connection between Rab11 and EHD-family proteins has been demonstrated yet, and the mode by which they coordinate their regulatory activity remains unknown. Here, we demonstrate that EHD1 and EHD3 (the closest EHD1 paralog), bind to the Rab11-effector Rab11-FIP2 via EH-NPF interactions. The EHD/Rab11-FIP2 associations are affected by the ability of the EHD proteins to bind nucleotides, and Rab11-FIP2 is recruited to EHD-containing membranes. These results are consistent with a coordinated role for EHD1 and Rab11-FIP2 in regulating exit from the ERC. However, because no function has been attributed to EHD3, the significance of its interaction with Rab11-FIP2 remained unclear. Surprisingly, loss of EHD3 expression prevented the delivery of internalized transferrin and early endosomal proteins to the ERC, an effect differing from that described upon EHD1 knockdown. Moreover, the subcellular localization of Rab11-FIP2 and endogenous Rab11 were altered upon EHD3 knockdown, with both proteins absent from the ERC and retained in the cell periphery. The results presented herein promote a coordinated role for EHD proteins and Rab11-FIP2 in mediating endocytic recycling and provide evidence for the function of EHD3 in early endosome to ERC transport.  相似文献   

18.
Fo CS  Coleman CS  Wallick CJ  Vine AL  Bachmann AS 《Gene》2006,371(1):154-165
PRA1 domain family, member 2 (PRAF2) is a new 19 kDa protein with four putative transmembrane (TM) domains. PRAF2 (formerly designated JM4) belongs to a new protein family, which plays a role in the regulation of intracellular protein transport. Recently, PRAF2 was found to interact with the chemokine receptor CCR5. In order to further study the function and regulation of PRAF2, we determined its genomic structure and its protein expression pattern in normal and cancerous human tissues. PRAF2 encodes a 178-residue protein, whose sequence is related to PRAF1 (PRA1/prenylin) and PRAF3 (JWA/GTRAP3-18). The human PRAF2 gene contains three exons separated by two introns and is located on human chromosome Xp11.23. The recombinant PRAF2 protein was readily expressed in Schneider 2 (S2) insect cells, and the native protein was detected in human tissues with strong expression in the brain, small intestine, lung, spleen, and pancreas. The protein was undetectable in tissue of the testes. Strong PRAF2 protein expression was also found in human tumor tissues of the breast, colon, lung, and ovary, with a weaker staining pattern in normal tissues of the same patient. Our studies show for the first time that the CCR5-interacting PRAF2 protein is expressed in several human tissues with a possible function in ER/Golgi transport and vesicular traffic.  相似文献   

19.
Rab proteins are a large family of monomeric GTPases with 60 members identified in the human genome. Rab GTPases require an isoprenyl modification to their C-terminus for membrane association and function in the regulation of vesicular trafficking pathways. This reaction is catalysed by Rab geranylgeranyl transferase, which recognises as protein substrate any given Rab in a 1:1 complex with Rab Escort Protein (REP). REP is therefore able to bind many distinct Rab proteins but the molecular basis for this activity is still unclear. We recently identified conserved motifs in Rabs termed RabF motifs, which we proposed to mediate a conserved mode of interaction between Rabs and REPs. Here, we tested this hypothesis. We first used REP1 as a bait in the yeast two-hybrid system and isolated strictly full-length Rabs, suggesting that REP recognises multiple regions within and properly folded Rabs. We introduced point mutations in Rab3a as a model Rab and assessed the ability of the mutants to interact with REP using the yeast two-hybrid system and an in vitro prenylation assay. We identified several residues that affect REP:Rab binding in the RabF1, RabF3, and RabF4 regions (which include parts of the switch I and II regions), but not other RabF regions. These results support the hypothesis that Rabs bind REP via conserved RabF motifs and provide a molecular explanation for the preferential recognition of the GDP-bound conformation of Rab by REP.  相似文献   

20.
The Rab27a GTPase regulates diverse processes involving lysosome-related organelles, including melanosome motility in melanocytes, and lytic granule release in cytotoxic T lymphocytes. Toward an understanding of Rab27a function, we searched for proteins that interact with Rab27a(GTP) using the yeast two-hybrid system and identified JFC1/Slp1, a protein of unknown function. JFC1/Slp1 and related proteins, including melanophilin, contain a conserved amino-terminal domain similar to the Rab3a-binding domain of Rabphilin-3. We used several methods to demonstrate that this conserved amino-terminal domain is a Rab27-binding domain. We show that this domain interacts directly, and in a GTP-dependent manner with Rab27a. Furthermore, overexpression of this domain in melanocytes results in perinuclear clustering of melanosomes, suggesting that this region is sufficient for interaction with, and perturbation of function of, Rab27a in a physiological context. Thus, we identified a novel family of Rab27-binding proteins. We also show that melanophilin associates with Rab27a and myosin Va on melanosomes in melanocytes, and present evidence that a domain within the carboxyl-terminal region of melanophilin interacts with the carboxyl-terminal tail of the melanocyte-specific splice isoform of myosin Va. Thus, melanophilin can associate simultaneously with activated Rab27a and myosin Va via distinct regions, and serve as a linker between these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号