共查询到20条相似文献,搜索用时 15 毫秒
1.
- Download : Download full-size image
2.
Xiaoming Yang Hongchang Li Zinan Zhou Wen-Horng Wang Anping Deng Ourania Andrisani Xiaoqi Liu 《The Journal of biological chemistry》2009,284(28):18588-18592
Polo-like kinase 1 (Plk1) overexpression is associated with tumorigenesis by an unknown mechanism. Likewise, Plk1 was suggested to act as a negative regulator of tumor suppressor p53, but the mechanism remains to be determined. Herein, we have identified topoisomerase I-binding protein (Topors), a p53-binding protein, as a Plk1 target. We show that Plk1 phosphorylates Topors on Ser718 in vivo. Significantly, expression of a Plk1-unphosphorylatable Topors mutant (S718A) leads to a dramatic accumulation of p53 through inhibition of p53 degradation. Topors is an ubiquitin and small ubiquitin-like modifier ubiquitin-protein isopeptide ligase (SUMO E3) ligase. Plk1-mediated phosphorylation of Topors inhibits Topors-mediated sumoylation of p53, whereas p53 ubiquitination is enhanced, leading to p53 degradation. These results demonstrate that Plk1 modulates Topors activity in suppressing p53 function and identify a likely mechanism for the tumorigenic potential of Plk1.Polo-like kinase-1 (Plk1)3 has multiple functions required for cell cycle progression, and overexpression of Plk1 is observed in various types of human tumors (1, 2). Thus, Plk1 has been proposed as a novel diagnostic marker for cancers. Accumulating evidence suggests that Plk1 negatively regulates the function of the tumor suppressor p53, whose loss-of-function mutations have been observed in nearly 50% of human tumors (1). In our earlier studies, we were the first to demonstrate that Plk1 depletion results in increased p53 level in HeLa cells (3) and that human cells with different levels of p53 respond to Plk1 depletion differently (4). Subsequently, it was shown that Plk1 directly binds to the DNA-binding domain of p53 through its N-terminal kinase domain and inhibits the transactivation as well as the proapoptotic function of p53 (5). Although it has been suggested that Plk1 might regulate p53 through direct phosphorylation (5), our repeated efforts to prove p53 as a direct target of Plk1 have been unsuccessful.Topors was discovered in a screen searching for proteins that bind to DNA topoisomerase I (6) and was also identified as a p53-binding protein (7). Although Topors is widely expressed in normal human tissues, its expression is decreased or undetectable in colon, lung, and brain adenocarcinomas, indicating that it might function as a tumor suppressor (8). Topors contains an N-terminal C3HC4-type RING domain that is closely related in sequence to the RING domains of known E3 ligases (see Fig. 1A) and is the first example of a protein that has both ubiquitin and SUMO-1 E3 ligase activity. Topors functions as an E3 ubiquitin ligase for p53 and NKX3.1, and Topors-mediated ubiquitination leads to the degradation of these proteins (9, 10). Substrates of the SUMO-1 E3 ligase activity of Topors include DNA topoisomerase I and p53 (11, 12). In contrast to ubiquitination-induced protein degradation, Topors-induced p53 sumoylation is accompanied by an increase in the level of p53 protein (11). Taken together, these studies indicate that Topors functions both as an ubiquitin and as a SUMO-1 E3 ligase for p53. Therefore, it is likely that the effects of Topors on p53 depend on cellular context (10).Open in a separate windowFIGURE 1.Plk1 phosphorylates Topors at Ser718in vitro and in vivo. A, schematic representation of the domain structure of Topors. Two separate regions encoding putative p53-binding domains are aa 456–731 and 854–916. Amino acid residues in the putative Ring finger motif are shown in a black box. PEST, sequences rich in Pro, Glu, Ser, and Thr; RS domain, Arg- and Ser-rich domain; NLS, nuclear localization sequence; NB, nuclear bodies. B, purified Plk1 was incubated with purified GST-Topors (aa 1–510) or GST-Topors (aa 511–1045) for 30 min at 30 °C in the presence of [γ-32P]ATP (32P). Reaction mixtures were resolved by SDS-PAGE followed by autoradiography. Coom., Coomassie Blue. C and D, Plk1 phosphorylates Topors (aa 679–760). Purified Plk1 was incubated with purified GST-Topors fragments (aa 1–250, 251–510, 511–760, 756–1045, 511–596, 597–678, and 679–760). Kinase assays were performed as described in B. E, Ser718 of Topors is a Plk1 phosphorylation site in vitro. Purified Plk1 was incubated with the indicated serine to alanine Topors (aa 679–760) mutants and analyzed as in B. F, Topors is phosphorylated in vivo at Ser718 by Plk1. HEK293T cells were transfected with WT-Topors-Myc (lanes 1 and 3) or S718A-Topors-Myc (lane 2) and depleted of Plk1 by using double-stranded RNA targeting Plk1 (lane 3). After overnight incubation, cells were treated with nocodazole for 10 h and metabolically labeled with [32P]orthophosphate. Phosphoproteins were immunoprecipitated with anti-Myc antibodies, resolved by SDS-PAGE, and subjected to autoradiography. Relative 32P (Rel. 32P) incorporations of Topors are indicated on the bottom.In this study, we provide evidence that Plk1 phosphorylates Topors on Ser718. Significantly, we demonstrate that the Plk1-mediated phosphorylation of Topors results in reduced sumoylation of p53, whereas the ubiquitination activity toward p53 is increased, thereby facilitating p53 degradation. 相似文献
3.
4.
Yuji Morishita Koji Tsutsumi Yasutaka Ohta 《The Journal of biological chemistry》2015,290(43):26328-26338
FilGAP is a Rho GTPase-activating protein (GAP) that specifically regulates Rac. FilGAP is phosphorylated by ROCK, and this phosphorylation stimulates its RacGAP activity. However, it is unclear how phosphorylation regulates cellular functions and localization of FilGAP. We found that non-phosphorylatable FilGAP (ST/A) mutant is predominantly localized to the cytoskeleton along actin filaments and partially co-localized with vinculin around cell periphery, whereas phosphomimetic FilGAP (ST/D) mutant is diffusely cytoplasmic. Moreover, phosphorylated FilGAP detected by Phos-tag is also mainly localized in the cytoplasm. Of the six potential phosphorylation sites in FilGAP tested, only mutation of serine 402 to alanine (S402A) resulted in decreased cell spreading on fibronectin. FilGAP phosphorylated at Ser-402 is localized to the cytoplasm but not at the cytoskeleton. Although Ser-402 is highly phosphorylated in serum-starved quiescent cells, dephosphorylation of Ser-402 is accompanied with the cell spreading on fibronectin. Treatment of the cells expressing wild-type FilGAP with calyculin A, a Ser/Thr phosphatase inhibitor, suppressed cell spreading on fibronectin, whereas cells transfected with FilGAP S402A mutant were not affected by calyculin A. Expression of constitutively activate Arf6 Q67L mutant stimulated membrane blebbing activity of both non-phosphorylatable (ST/A) and phosphomimetic (ST/D) FilGAP mutants. Conversely, depletion of endogenous Arf6 suppressed membrane blebbing induced by FilGAP (ST/A) and (ST/D) mutants. Our study suggests that Arf6 and phosphorylation of FilGAP may regulate FilGAP, and phosphorylation of Ser-402 may play a role in the regulation of cell spreading on fibronectin. 相似文献
5.
Ingvild Aukrust Lise Bj?rkhaug Maria Negahdar Janne Molnes Bente B. Johansson Yvonne Müller Wilhelm Haas Steven P. Gygi Oddmund S?vik Torgeir Flatmark Rohit N. Kulkarni P?l R. Nj?lstad 《The Journal of biological chemistry》2013,288(8):5951-5962
Glucokinase is the predominant hexokinase expressed in hepatocytes and pancreatic β-cells, with a pivotal role in regulating glucose-stimulated insulin secretion, illustrated by glucokinase gene mutations causing monogenic diabetes and congenital hyperinsulinemic hypoglycemia. A complex tissue-specific network of mechanisms regulates this enzyme, and a major unanswered question in glucokinase biology is how post-translational modifications control the function of the enzyme. Here, we show that the pancreatic isoform of human glucokinase is SUMOylated in vitro, using recombinant enzymes, and in insulin-secreting model cells. Three N-terminal lysines unique for the pancreatic isoform (Lys-12/Lys-13 and/or Lys-15) may represent one SUMOylation site, with an additional site (Lys-346) common for the pancreatic and the liver isoform. SUMO-1 and E2 overexpression stabilized preferentially the wild-type human pancreatic enzyme in MIN6 β-cells, and SUMOylation increased the catalytic activity of recombinant human glucokinase in vitro and also of glucokinase in target cells. Small ubiquitin-like modifier conjugation represents a novel form of post-translational modification of the enzyme, and it may have an important regulatory function in pancreatic β-cells. 相似文献
6.
Xin Guo Michael D. Ward Jessica B. Tiedebohl Yvonne M. Oden Julius O. Nyalwidhe O. John Semmes 《The Journal of biological chemistry》2010,285(43):33348-33357
Chk2 is a critical regulator of the cellular DNA damage repair response. Activation of Chk2 in response to IR-induced damage is initiated by phosphorylation of the Chk2 SQ/TQ cluster domain at Ser19, Ser33, Ser35, and Thr68. This precedes autophosphorylation of Thr383/Thr387 in the T-loop region of the kinase domain an event that is a prerequisite for efficient kinase activity. We conducted an in-depth analysis of phosphorylation within the T-loop region (residues 366–406). We report four novel phosphorylation sites at Ser372, Thr378, Thr389, and Tyr390. Substitution mutation Y390F was defective for kinase function. The substitution mutation T378A ablated the IR induction of kinase activity. Interestingly, the substitution mutation T389A demonstrated a 6-fold increase in kinase activity when compared with wild-type Chk2. In addition, phosphorylation at Thr389 was a prerequisite to phosphorylation at Thr387 but not at Thr383. Quantitative mass spectrometry analysis revealed IR-induced phosphorylation and subcellular distribution of Chk2 phosphorylated species. We observed IR-induced increase in phosphorylation at Ser379, Thr389, and Thr383/Thr389. Phosphorylation at Tyr390 was dramatically reduced following IR. Exposure to IR was also associated with changes in the ratio of chromatin/nuclear localization. IR-induced increase in chromatin localization was associated with phosphorylation at Thr372, Thr379, Thr383, Thr389, Thr383/Thr387, and Thr383/Thr389. Chk2 hyper-phosphorylated species at Thr383/Thr387/Thr389 and Thr383/Thr387/Thr389/Tyr390 relocalized from almost exclusively chromatin to predominately nuclear expression, suggesting a role for phosphorylation in regulation of chromatin targeting and egress. The differential impact of T-loop phosphorylation on Chk2 ubiquitylation suggests a co-dependence of these modifications. The results demonstrate that a complex interdependent network of phosphorylation events within the T-loop exchange region regulates dimerization/autophosphorylation, kinase activation, and chromatin targeting/egress of Chk2. 相似文献
7.
Lisa Yu Satbir Thakur Rebecca YY. Leong-Quong Keiko Suzuki Andy Pang Jeffrey D. Bjorge Karl Riabowol Donald J. Fujita 《PloS one》2013,8(4)
The INhibitor of Growth 1 (ING1) is stoichiometric member of histone deacetylase (HDAC) complexes and functions as an epigenetic regulator and a type II tumor suppressor. It impacts cell growth, aging, apoptosis, and DNA repair, by affecting chromatin conformation and gene expression. Down regulation and mislocalization of ING1 have been reported in diverse tumor types and Ser/Thr phosphorylation has been implicated in both of these processes. Here we demonstrate that both in vitro and in vivo, the tyrosine kinase Src is able to physically associate with, and phosphorylate ING1, which results in a nuclear to cytoplasmic relocalization of ING1 in cells and a decrease of ING1 stability. Functionally, Src antagonizes the ability of ING1 to induce apoptosis, most likely through relocalization of ING1 and down regulation of ING1 levels. These effects were due to both kinase-dependent and kinase-independent properties of Src, and were most apparent at elevated levels of Src expression. These findings suggest that Src may play a major role in regulating ING1 levels during tumorigenesis in those cancers in which high levels of Src expression or activity are present. These data represent the first report of tyrosine kinase-mediated regulation of ING1 levels and suggest that kinase activation can impact chromatin structure through the ING1 epigenetic regulator. 相似文献
8.
Hiroki Takeshita Atsushi Shiozaki Xiao-Hui Bai Daisuke Iitaka Hyunhee Kim Burton B. Yang Shaf Keshavjee Mingyao Liu 《PloS one》2013,8(3)
XB130, a novel adaptor protein, promotes cell growth by controlling expression of many related genes. MicroRNAs (miRNAs), which are frequently mis-expressed in cancer cells, regulate expression of targeted genes. In this present study, we aimed to explore the oncogenic mechanism of XB130 through miRNAs regulation. We analyzed miRNA expression in XB130 short hairpin RNA (shRNA) stably transfected WRO thyroid cancer cells by a miRNA array assay, and 16 miRNAs were up-regulated and 22 miRNAs were down-regulated significantly in these cells, in comparison with non-transfected or negative control shRNA transfected cells. We chose three of the up-regulated miRNAs (miR-33a, miR-149 and miR-193a-3p) and validated them by real-time qRT-PCR. Ectopic overexpression of XB130 suppressed these 3 miRNAs in MRO cells, a cell line with very low expression of XB130. Furthermore, we transfected miR mimics of these 3 miRNAs into WRO cells. They negatively regulated expression of oncogenes (miR-33a: MYC, miR-149: FOSL1, miR-193a-3p: SLC7A5), by targeting their 3′ untranslated region, and reduced cell growth. Our results suggest that XB130 could promote growth of cancer cells by regulating expression of tumor suppressive miRNAs and their targeted genes. 相似文献
9.
10.
Tracy L. Callender Raphaelle Laureau Lihong Wan Xiangyu Chen Rima Sandhu Saif Laljee Sai Zhou Ray T. Suhandynata Evelyn Prugar William A. Gaines YoungHo Kwon G. Valentin B?rner Alain Nicolas Aaron M. Neiman Nancy M. Hollingsworth 《PLoS genetics》2016,12(8)
During meiosis, programmed double strand breaks (DSBs) are repaired preferentially between homologs to generate crossovers that promote proper chromosome segregation at Meiosis I. In many organisms, there are two strand exchange proteins, Rad51 and the meiosis-specific Dmc1, required for interhomolog (IH) bias. This bias requires the presence, but not the strand exchange activity of Rad51, while Dmc1 is responsible for the bulk of meiotic recombination. How these activities are regulated is less well established. In dmc1Δ mutants, Rad51 is actively inhibited, thereby resulting in prophase arrest due to unrepaired DSBs triggering the meiotic recombination checkpoint. This inhibition is dependent upon the meiosis-specific kinase Mek1 and occurs through two different mechanisms that prevent complex formation with the Rad51 accessory factor Rad54: (i) phosphorylation of Rad54 by Mek1 and (ii) binding of Rad51 by the meiosis-specific protein Hed1. An open question has been why inhibition of Mek1 affects Hed1 repression of Rad51. This work shows that Hed1 is a direct substrate of Mek1. Phosphorylation of Hed1 at threonine 40 helps suppress Rad51 activity in dmc1Δ mutants by promoting Hed1 protein stability. Rad51-mediated recombination occurring in the absence of Hed1 phosphorylation results in a significant increase in non-exchange chromosomes despite wild-type levels of crossovers, confirming previous results indicating a defect in crossover assurance. We propose that Rad51 function in meiosis is regulated in part by the coordinated phosphorylation of Rad54 and Hed1 by Mek1. 相似文献
11.
Meghana Gupta Xiaojun Qi Varsha Thakur Danny Manor 《The Journal of biological chemistry》2014,289(24):17195-17202
Rho GTPases are molecular “switches” that cycle between “on” (GTP-bound) and “off” (GDP-bound) states and regulate numerous cellular activities such as gene expression, protein synthesis, cytoskeletal rearrangements, and metabolic responses. Dysregulation of GTPases is a key feature of many diseases, especially cancers. Guanine nucleotide exchange factors (GEFs) of the Dbl family are activated by mitogenic cell surface receptors and activate the Rho family GTPases Cdc42, Rac1, and RhoA. The molecular mechanisms that regulate GEFs from the Dbl family are poorly understood. Our studies reveal that Dbl is phosphorylated on tyrosine residues upon stimulation by growth factors and that this event is critical for the regulated activation of the GEF. These findings uncover a novel layer of complexity in the physiological regulation of this protein. 相似文献
12.
Dominika Staniec Miroslaw Ksiazek Ida B. Th?gersen Jan J. Enghild Aneta Sroka Danuta Bryzek Matthew Bogyo Magnus Abrahamson Jan Potempa 《The Journal of biological chemistry》2015,290(45):27248-27260
Porphyromonas gingivalis is a peptide-fermenting asaccharolytic periodontal pathogen. Its genome contains several genes encoding cysteine peptidases other than gingipains. One of these genes (PG1055) encodes a protein called Tpr (thiol protease) that has sequence similarity to cysteine peptidases of the papain and calpain families. In this study we biochemically characterize Tpr. We found that the 55-kDa Tpr inactive zymogen proteolytically processes itself into active forms of 48, 37, and 33 kDa via sequential truncations at the N terminus. These processed molecular forms of Tpr are associated with the bacterial outer membrane where they are likely responsible for the generation of metabolic peptides required for survival of the pathogen. Both autoprocessing and activity were dependent on calcium concentrations >1 mm, consistent with the protein''s activity within the intestinal and inflammatory milieus. Calcium also stabilized the Tpr structure and rendered the protein fully resistant to proteolytic degradation by gingipains. Together, our findings suggest that Tpr is an example of a bacterial calpain, a calcium-responsive peptidase that may generate substrates required for the peptide-fermenting metabolism of P. gingivalis. Aside from nutrient generation, Tpr may also be involved in evasion of host immune response through degradation of the antimicrobial peptide LL-37 and complement proteins C3, C4, and C5. Taken together, these results indicate that Tpr likely represents an important pathogenesis factor for P. gingivalis. 相似文献
13.
J. Pedro Fernández-Murray Michael H. Ngo Christopher R. McMaster 《The Journal of biological chemistry》2013,288(50):36106-36115
Choline is a precursor for the synthesis of phosphatidylcholine through the CDP-choline pathway. Saccharomyces cerevisiae expresses a single high affinity choline transporter at the plasma membrane, encoded by the HNM1 gene. We show that exposing cells to increasing levels of choline results in two different regulatory mechanisms impacting Hnm1 activity. Initial exposure to choline results in a rapid decrease in Hnm1-mediated transport at the level of transporter activity, whereas chronic exposure results in Hnm1 degradation through an endocytic mechanism that depends on the ubiquitin ligase Rsp5 and the casein kinase 1 redundant pair Yck1/Yck2. We present details of how the choline transporter is a major regulator of phosphatidylcholine synthesis. 相似文献
14.
15.
Ilanchezhian Shanmugam Mohammad Abbas Farhan Ayoub Susan Mirabal Manal Bsaili Erin K. Caulder David M. Weinstock Alan E. Tomkinson Robert Hromas Monte Shaheen 《The Journal of biological chemistry》2014,289(33):22739-22748
Rad17 is a subunit of the Rad9-Hus1-Rad1 clamp loader complex, which is required for Chk1 activation after DNA damage. Rad17 has been shown to be regulated by the ubiquitin-proteasome system. We have identified a deubiquitylase, USP20 that is required for Rad17 protein stability in the steady-state and post DNA damage. We demonstrate that USP20 and Rad17 interact, and that this interaction is enhanced by UV exposure. We show that USP20 regulation of Rad17 is at the protein level in a proteasome-dependent manner. USP20 depletion results in poor activation of Chk1 protein by phosphorylation, consistent with Rad17 role in ATR-mediated phosphorylation of Chk1. Similar to other DNA repair proteins, USP20 is phosphorylated post DNA damage, and its depletion sensitizes cancer cells to damaging agents that form blocks ahead of the replication forks. Similar to Chk1 and Rad17, which enhance recombinational repair of collapsed replication forks, we demonstrate that USP20 depletion impairs DNA double strand break repair by homologous recombination. Together, our data establish a new function of USP20 in genome maintenance and DNA repair. 相似文献
16.
Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor irreversibly activated by extracellular proteases. Activated PAR2 couples to multiple heterotrimeric G-protein subtypes including Gαq, Gαi, and Gα12/13. Most activated G protein-coupled receptors are rapidly desensitized and internalized following phosphorylation and β-arrestin binding. However, the role of phosphorylation in regulation of PAR2 signaling and trafficking is not known. To investigate the function of phosphorylation, we generated a PAR2 mutant in which all serines and threonines in the C-tail were converted to alanines and designated it PAR2 0P. In mammalian cells, the addition of agonist induced a rapid and robust increase in phosphorylation of wild-type PAR2 but not the 0P mutant, suggesting that the major sites of phosphorylation occur within the C-tail domain. Moreover, desensitization of PAR2 0P signaling was markedly impaired compared with the wild-type receptor. Wild-type phosphorylated PAR2 internalized through a canonical dynamin, clathrin- and β-arrestin-dependent pathway. Strikingly, PAR2 0P mutant internalization proceeded through a dynamin-dependent but clathrin- and β-arrestin-independent pathway in both a constitutive and agonist-dependent manner. Collectively, our studies show that PAR2 phosphorylation is essential for β-arrestin binding and uncoupling from heterotrimeric G-protein signaling and that the presence of serine and threonine residues in the PAR2 C-tail hinder constitutive internalization through a non-canonical pathway. Thus, our studies reveal a novel function for phosphorylation that differentially regulates PAR2 desensitization and endocytic trafficking. 相似文献
17.
Viviana Moresi Gisela Garcia-Alvarez Alessandro Pristerà Emanuele Rizzuto Maria C. Albertini Marco Rocchi Giovanna Marazzi David Sassoon Sergio Adamo Dario Coletti 《PloS one》2009,4(5)
Muscle homeostasis involves de novo myogenesis, as observed in conditions of acute or chronic muscle damage. Tumor Necrosis Factor (TNF) triggers skeletal muscle wasting in several pathological conditions and inhibits muscle regeneration. We show that intramuscular treatment with the myogenic factor Arg8-vasopressin (AVP) enhanced skeletal muscle regeneration and rescued the inhibitory effects of TNF on muscle regeneration. The functional analysis of regenerating muscle performance following TNF or AVP treatments revealed that these factors exerted opposite effects on muscle function. Principal component analysis showed that TNF and AVP mainly affect muscle tetanic force and fatigue. Importantly, AVP counteracted the effects of TNF on muscle function when delivered in combination with the latter. Muscle regeneration is, at least in part, regulated by caspase activation, and AVP abrogated TNF-dependent caspase activation. The contrasting effects of AVP and TNF in vivo are recapitulated in myogenic cell cultures, which express both PW1, a caspase activator, and Hsp70, a caspase inhibitor. We identified PW1 as a potential Hsp70 partner by screening for proteins interacting with PW1. Hsp70 and PW1 co-immunoprecipitated and co-localized in muscle cells. In vivo Hsp70 protein level was upregulated by AVP, and Hsp70 overexpression counteracted the TNF block of muscle regeneration. Our results show that AVP counteracts the effects of TNF through cross-talk at the Hsp70 level. Therefore, muscle regeneration, both in the absence and in the presence of cytokines may be enhanced by increasing Hsp70 expression. 相似文献
18.
Rodrigo Alzamora Ramon F. Thali Fan Gong Christy Smolak Hui Li Catherine J. Baty Carol A. Bertrand Yolanda Auchli René A. Brunisholz Dietbert Neumann Kenneth R. Hallows Núria M. Pastor-Soler 《The Journal of biological chemistry》2010,285(32):24676-24685
The vacuolar H+-ATPase (V-ATPase) is a major contributor to luminal acidification in epithelia of Wolffian duct origin. In both kidney-intercalated cells and epididymal clear cells, cAMP induces V-ATPase apical membrane accumulation, which is linked to proton secretion. We have shown previously that the A subunit in the cytoplasmic V1 sector of the V-ATPase is phosphorylated by protein kinase A (PKA). Here we have identified by mass spectrometry and mutagenesis that Ser-175 is the major PKA phosphorylation site in the A subunit. Overexpression in HEK-293T cells of either a wild-type (WT) or phosphomimic Ser-175 to Asp (S175D) A subunit mutant caused increased acidification of HCO3−-containing culture medium compared with cells expressing vector alone or a PKA phosphorylation-deficient Ser-175 to Ala (S175A) mutant. Moreover, localization of the S175A A subunit mutant expressed in HEK-293T cells was more diffusely cytosolic than that of WT or S175D A subunit. Acute V-ATPase-mediated, bafilomycin-sensitive H+ secretion was up-regulated by a specific PKA activator in HEK-293T cells expressing WT A subunit in HCO3−-free buffer. In cells expressing the S175D mutant, V-ATPase activity at the membrane was constitutively up-regulated and unresponsive to PKA activators, whereas cells expressing the S175A mutant had decreased V-ATPase activity that was unresponsive to PKA activation. Finally, Ser-175 was necessary for PKA-stimulated apical accumulation of the V-ATPase in a polarized rabbit cell line of collecting duct A-type intercalated cell characteristics (Clone C). In summary, these results indicate a novel mechanism for the regulation of V-ATPase localization and activity in kidney cells via direct PKA-dependent phosphorylation of the A subunit at Ser-175. 相似文献
19.
Alexandra Cribier Benjamin Descours Ana Luiza Chaves Valadão Nadine Laguette Monsef Benkirane 《Cell reports》2013,3(4):1036-1043
- Download : Download full-size image
20.
Paula Fernández-García Rafael Peláez Pilar Herrero Fernando Moreno 《The Journal of biological chemistry》2012,287(50):42151-42164
Nucleocytoplasmic shuttling of Hxk2 induced by glucose levels has been reported recently. Here we present evidence that indicates that Hxk2 nucleocytoplasmic traffic is regulated by phosphorylation and dephosphorylation at serine 14. Moreover, we identified the protein kinase Snf1 and the protein phosphatase Glc7-Reg1 as novel regulatory partners for the nucleocytoplasmic shuttling of Hxk2. Functional studies revealed that, in contrast to the wild-type protein, the dephosphorylation-mimicking mutant of Hxk2 retains its nuclear localization in low glucose conditions, and the phosphomimetic mutant of Hxk2 retains its cytoplasmic localization in high glucose conditions. Interaction experiments of Hxk2 with Kap60 and Xpo1 indicated that nuclear import of the S14D mutant of Hxk2 is severely decreased but that the export is significantly enhanced. Conversely, nuclear import of the S14A mutant of Hxk2 was significantly enhanced, although the export was severely decreased. The interaction of Hxk2 with Kap60 and Xpo1 was found to occur in the dephosphorylated and phosphorylated states of the protein, respectively. In addition, we found that Hxk2 is a substrate for Snf1. Mutational analysis indicated that serine 14 is a major in vitro and in vivo phosphorylation site for Snf1. We also provide evidence that dephosphorylation of Hxk2 at serine 14 is a protein phosphatase Glc7-Reg1-dependent process. Taken together, this study establishes a functional link between Hxk2, Reg1, and Snf1 signaling, which involves the regulation of Hxk2 nucleocytoplasmic shuttling by phosphorylation-dephosphorylation of serine 14. 相似文献