首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhythmic movements of crayfish swimmerets are coordinated by a neural circuit that links their four abdominal ganglia. Each swimmeret is driven by its own small local circuit, or pattern-generating module. We modeled this networkas a chain of four oscillators, bidirectionally coupled to their nearest neighbors, and tested the models ability to reproduce experimentally observed changes in intersegmental phases and in period caused by differential excitation of selected abdominal ganglia. The choices needed to match the experimental data lead to the followingpredictions: coupling between ganglia is asymmetric; the ascending and descending coupling have approximately equal strengths; intersegmental coupling does not significantly affect the frequency of the system; and excitation affects the intrinsic frequencies of the oscillators and might also change properties ofintersegmental coupling.  相似文献   

2.
Plants must continually balance the influx of CO2 for photosynthesis against the loss of water vapor through stomatal pores in their leaves. This balance can be achieved by controlling the aperture of the stomatal pores in response to several environmental stimuli. Elevation in atmospheric [CO2] induces stomatal closure and further impacts leaf temperatures, plant growth and water-use efficiency, and global crop productivity. Here, we review recent advances in understanding CO2-perception mechanisms and CO2-mediated signal transduction in the regulation of stomatal movements, and we explore how these mechanisms are integrated with other signaling pathways in guard cells.  相似文献   

3.
Molecular chaperones are an essential part of the universal heat shock response that allows organisms to survive stress conditions that cause intracellular protein unfolding. During the past few years, two new mechanisms have been found to control the activity of several chaperones under stress conditions—the regulation of chaperone activity by the redox state and by the temperature of the environment. Hsp33, for example, is redox-regulated. Hsp33 is specifically activated by disulfide bond formation during oxidative stress, where it becomes a highly efficient chaperone holdase that binds tightly to unfolding proteins. Certain small heat shock proteins, such as Hsp26 and Hsp16.9, on the other hand, are temperature regulated. Exposure to heat shock temperatures causes these oligomeric proteins to disassemble, thereby changing them into highly efficient chaperones. The ATP-dependent chaperone folding system DnaK/DnaJ/GrpE also appears to be temperature regulated, switching from a folding to a holding mode during heat stress. Both of these novel post-translational regulatory strategies appear to have one ultimate goal: to significantly increase the substrate binding affinity of the affected chaperones under exactly those stress conditions that require their highest chaperone activity. This ensures that protein folding intermediates remain bound to the chaperones under stress conditions and are released only after the cells return to non-stress conditions.  相似文献   

4.
5.
Domestic violence (DV) is reported by 40% of married women in India and associated with substantial morbidity. An operational research definition is therefore needed to enhance understanding of DV epidemiology in India and inform DV interventions and measures. To arrive at a culturally-tailored definition, we aimed to better understand how definitions provided by the World Health Organization and the 2005 India Protection of Women from Domestic Violence Act match the perceptions of behaviors constituting DV among the Indian community. Between September 2012 and January 2013, 16 key informant interviews with experts in DV and family counseling and 2 gender-concordant focus groups of lay community members were conducted in Pune, India to understand community perceptions of the definition of DV, perpetrators of DV, and examples of DV encountered by married women in Pune, India. Several key themes emerged regarding behaviors and acts constituting DV including 1) the exertion of control over a woman’s reproductive decision-making, mobility, socializing with family and friends, finances, and access to food and nutrition, 2) the widespread acceptance of sexual abuse and the influences of affluence on sexual DV manifestations, 3) the shaping of physical abuse experiences by readily-available tools and the presence of witnesses, 4) psychological abuse for infertility, dowry, and girl-children, and 5) the perpetration of DV by the husband and other members of his family. Findings support the need for a culturally-tailored operational definition that expands on the WHO surveillance definition to inform the development of more effective DV intervention strategies and measures.  相似文献   

6.
Scedosporium species are increasingly encountered as fungal pathogens. Species identification is important due to species-specific differences in epidemiology, antifungal susceptibility and virulence. Histology and culture-based identification are hampered by their low sensitivity and specificity. The use of new selective media has improved the recovery rate from clinical samples. Molecular methods, including multiplex PCR, PCR-RFLP analysis, DNA sequencing, oligonucleotide arrays, real-time PCR, rolling circle amplification, are increasingly used for species identification. Most recently, Matrix-Assisted Laser Desorption-Time of Flight Mass Spectrometry has been successfully applied as a tool for rapid identification of clinically relevant Scedosporium species. This review aims to summarize the methods currently used to guide the clinical microbiology laboratory in the selection of the most appropriate identification techniques. This will aid the laboratory in making a fast and reliable diagnosis that enables the clinician to make correct treatment choices.  相似文献   

7.
Neurons, including their synapses, are generally ensheathed by fine processes of astrocytes, but this glial coverage can be altered under different physiological conditions that modify neuronal activity. Changes in synaptic connectivity accompany astrocytic transformations so that an increased number of synapses are associated with reduced astrocytic coverage of postsynaptic elements, whereas synaptic numbers are reduced on reestablishment of glial coverage. A system that exemplifies activity-dependent structural synaptic plasticity in the adult brain is the hypothalamo-neurohypophysial system, and in particular, its oxytocin component. Under strong, prolonged activation (parturition, lactation, chronic dehydration), extensive portions of somatic and dendritic surfaces of magnocellular oxytocin neurons are freed of intervening astrocytic processes and become directly juxtaposed. Concurrently, they are contacted by an increased number of inhibitory and excitatory synapses. Once stimulation is over, astrocytic processes again cover oxytocinergic surfaces and synaptic numbers return to baseline levels. Such observations indicate that glial ensheathment of neurons is of consequence to neuronal function, not only directly, for example by modifying synaptic transmission, but indirectly as well, by preparing neuronal surfaces for synapse turnover.  相似文献   

8.
This essay reflects on paradigm shifts in environmental conservation, to examine elements of the ‘fortress conservation' model that still persist in the context of more participatory approaches. Presenting a case study on Sardinia, an Italian island in the Mediterranean Sea, it considers how existing practices for the protection of natural landscapes and biodiversity are ambivalently shaped by both institutional mandates and informal collaborations. Exploring how these are further reconfigured by the implementation of new information and communication systems, it questions implications for autochthonous visions of landscape. It argues that an engaged anthropology of the environment should critically assess how emerging strategies for generating potent expert knowledge about nature also generate issues of inclusion and exclusion.  相似文献   

9.
Plastid genomes show an impressive array of sizes and compactnesses, but the forces responsible for this variation are unknown. It has been argued that species with small effective genetic population sizes are less efficient at purging excess DNA from their genomes than those with large effective population sizes. If true, one may expect the primary mode of plastid inheritance to influence plastid DNA (ptDNA) architecture. All else being equal, biparentally inherited ptDNAs should have a two-fold greater effective population size than those that are uniparentally inherited, and thus should also be more compact. Here, we explore the relationship between plastid inheritance pattern and ptDNA architecture, and consider the role of phylogeny in shaping our observations. Contrary to our expectations, we found no significant difference in plastid genome size or compactness between ptDNAs that are biparentally inherited relative to those that are uniparentally inherited. However, we also found that there was significant phylogenetic signal for the trait of mode of plastid inheritance. We also found that paternally inherited ptDNAs are significantly smaller (n = 19, p = 0.000001) than those that are maternally, uniparentally (when isogamous), or biparentally inherited. Potential explanations for this observation are discussed.  相似文献   

10.

Background

Policymakers and regulators in the United States (US) and the European Union (EU) are weighing reforms to their medical device approval and post-market surveillance systems. Data may be available that identify strengths and weakness of the approaches to medical device regulation in these settings.

Methods and Findings

We performed a systematic review to find empirical studies evaluating medical device regulation in the US or EU. We searched Medline using two nested categories that included medical devices and glossary terms attributable to the US Food and Drug Administration and the EU, following PRISMA guidelines for systematic reviews. We supplemented this search with a review of the US Government Accountability Office online database for reports on US Food and Drug Administration device regulation, consultations with local experts in the field, manual reference mining of selected articles, and Google searches using the same key terms used in the Medline search. We found studies of premarket evaluation and timing (n = 9), studies of device recalls (n = 8), and surveys of device manufacturers (n = 3). These studies provide evidence of quality problems in pre-market submissions in the US, provide conflicting views of device safety based largely on recall data, and relay perceptions of some industry leaders from self-surveys.

Conclusions

Few studies have quantitatively assessed medical device regulation in either the US or EU. Existing studies of US and EU device approval and post-market evaluation performance suggest that policy reforms are necessary for both systems, including improving classification of devices in the US and promoting transparency and post-market oversight in the EU. Assessment of regulatory performance in both settings is limited by lack of data on post-approval safety outcomes. Changes to these device approval and post-marketing systems must be accompanied by ongoing research to ensure that there is better assessment of what works in either setting. Please see later in the article for the Editors'' Summary.  相似文献   

11.

Background

In malaria endemic areas, most people are simultaneously infected with different parasite clones. Detection of individual clones is hampered when their densities fluctuate around the detection limit and, in case of P. falciparum, by sequestration during part of their life cycle. This has important implications for measures of levels of infection or for the outcome of clinical trials. This study aimed at measuring the detectability of individual P. falciparum and P. vivax parasite clones in consecutive samples of the same patient and at investigating the impact of sampling strategies on basic epidemiological measures such as multiplicity of infection (MOI).

Methods

Samples were obtained in a repeated cross-sectional field survey in 1 to 4.5 years old children from Papua New Guinea, who were followed up in 2-monthly intervals over 16 months. At each follow-up visit, two consecutive blood samples were collected from each child at intervals of 24 hours. Samples were genotyped for the polymorphic markers msp2 for P. falciparum and msp1F3 and MS16 for P. vivax. Observed prevalence and mean MOI estimated from single samples per host were compared to combined data from sampling twice within 24 h.

Findings and Conclusion

Estimated detectability was high in our data set (0.79 [95% CI 0.76–0.82] for P. falciparum and, depending on the marker, 0.61 [0.58–0.63] or 0.73 [0.71–0.75] for P. vivax). When genotyping data from sequential samples, collected 24 hours apart, were combined, the increase in measured prevalence was moderate, 6 to 9% of all infections were missed on a single day. The effect on observed MOI was more pronounced, 18 to 31% of all individual clones were not detected in a single bleed. Repeated sampling revealed little difference between detectability of P. falciparum and P. vivax.  相似文献   

12.
The interaction between calcium and the regulatory site(s) of striated muscle regulatory protein troponin switches on and off muscle contraction. In skeletal troponin binding of calcium to sites I and II of the TnC subunit results in a set of structural changes in the troponin complex, displaces tropomyosin along the actin filament and allows myosin-actin interaction to produce mechanical force. In this study, we used molecular dynamics simulations to characterize the calcium dependent dynamics of the fast skeletal troponin molecule and its TnC subunit in the calcium saturated and depleted states. We focused on the N-lobe and on describing the atomic level events that take place subsequent to removal of the calcium ion from the regulatory sites I and II. A main structural event - a closure of the A/B helix hydrophobic pocket results from the integrated effect of the following conformational changes: the breakage of H-bond interactions between the backbone nitrogen atoms of the residues at positions 2, 9 and sidechain oxygen atoms of the residue at position 12 (N2-OE12/N9-OE12) in sites I and II; expansion of sites I and II and increased site II N-terminal end-segment flexibility; strengthening of the β-sheet scaffold; and the subsequent re-packing of the N-lobe hydrophobic residues. Additionally, the calcium release allows the N-lobe to rotate relative to the rest of the Tn molecule. Based on the findings presented herein we propose a novel model of skeletal thin filament regulation.  相似文献   

13.
14.
How we age and what we can do about it have been uppermost in human thought since antiquity. The many false starts have frustrated experimentalists and theoretical arguments pronouncing the inevitability of the process have created a nihilistic climate among scientists and the public. The identification of single gene alterations that substantially extend life span in nematodes and flies however, have begun to reinvigorate the field. Drosophila's long history of contributions to aging research, rich storehouse of genetic information, and powerful molecular techniques make it an excellent system for studying the molecular mechanisms underlying the process of aging. In recent years, Drosophila has been used to test current theories on aging and explore new directions of potential importance to the biology of aging. One such example is the surprising finding that, as opposed to the commonly held assumption that adult life is a period of random passive decline in which all things are thought to fall apart, the molecular life of the adult fly appears to be a state of dynamic well-regulated change. In the fly, the level of expression of many different genes changes in an invariant, often age-dependent, manner. These as well as other molecular genetic studies and demographic analyses using the fly have begun to challenge widely held ideas about aging providing evidence that aging may be a much more dynamic and malleable process than anticipated. With the enormous success that Drosophila molecular genetics has demonstrated in helping understand complex biological phenomena such as development there is much optimism that similar approaches can be adapted to assist in understanding the process of aging.  相似文献   

15.
16.
Temperature has a strong effect on the seasonal timing of life-history stages in both mammals and birds, even though these species can regulate their body temperature under a wide range of ambient temperatures. Correlational studies showing this effect have recently been supported by experiments demonstrating a direct, causal relationship between ambient temperature and seasonal timing. Predicting how endotherms will respond to global warming requires an understanding of the physiological mechanisms by which temperature affects the seasonal timing of life histories. These mechanisms, however, remain obscure. We outline a road map for research aimed at identifying the pathways through which temperature is translated into seasonal timing.  相似文献   

17.
18.
19.
How Do Real Roots Work? (Some New Views of Root Structure)   总被引:13,自引:4,他引:13       下载免费PDF全文
  相似文献   

20.
Bypassing the photorespiratory pathway is regarded as a way to increase carbon assimilation and, correspondingly, biomass production in C3 crops. Here, the benefits of three published photorespiratory bypass strategies are systemically explored using a systems-modeling approach. Our analysis shows that full decarboxylation of glycolate during photorespiration would decrease photosynthesis, because a large amount of the released CO2 escapes back to the atmosphere. Furthermore, we show that photosynthesis can be enhanced by lowering the energy demands of photorespiration and by relocating photorespiratory CO2 release into the chloroplasts. The conductance of the chloroplast membranes to CO2 is a key feature determining the benefit of the relocation of photorespiratory CO2 release. Although our results indicate that the benefit of photorespiratory bypasses can be improved by increasing sedoheptulose bisphosphatase activity and/or increasing the flux through the bypass, the effectiveness of such approaches depends on the complex regulation between photorespiration and other metabolic pathways.In C3 plants, the first step of photosynthesis is the fixation of CO2 by ribulose bisphosphate (RuBP). For every molecule of CO2 fixed, this reaction produces two molecules of a three-carbon acid, i.e., 3-phosphoglycerate (PGA), and is catalyzed by the Rubisco enzyme. A small portion of the carbon in PGA is used for the production of Suc and starch, whereas the remainder (i.e. five-sixths) is used for the regeneration of RuBP (Fig. 1). The regeneration of the Rubisco substrate RuBP in the Calvin-Benson-Bassham (CBB) cycle ensures that ample RuBP is available for carbon fixation (Bassham, 1964; Wood, 1966; Beck and Hopf, 1982). Rubisco is a bifunctional enzyme that catalyzes not only RuBP carboxylation but also RuBP oxygenation (Spreitzer and Salvucci, 2002). RuBP oxygenation generates only one molecule of PGA and one molecule of 2-phosphoglycolate (P-Gly; Ogren, 1984). The photorespiratory pathway converts this P-Gly back to RuBP in order to maintain the CBB cycle.Open in a separate windowFigure 1.Schematic representation of the C3 photosynthesis kinetic model with three different photorespiratory bypass pathways. The bypass described by Kebeish et al. (2007) is indicated in blue, the bypass described by Maier et al. (2012) in pink, and the bypass described by Carvalho et al. (2011) in green. The original photorespiratory pathway is marked in orange, and CO2 released from photorespiration (including the original pathway and bypass pathways) is indicated in red. 2PGA, 2-Phosphoglyceric acid; ASP, Asp; CIT, citrate; ICIT, isocitrate; PGA, 3-phosphoglycerate; DPGA, glycerate-1,3-bisphosphate; GAP, glyceraldehyde 3-phosphate; DHAP, dihydroxyacetone phosphate; SBP, sedoheptulose-1,7-bisphosphate; S7P, sedoheptulose-7-phosphate; Ri5P, ribose-5-phosphate; Ru5P, ribulose-5-phosphate; FBP, fructose-1,6-bisphosphatase; F6P, fructose 6-phosphate; Xu5P, xylulose-5-phosphate; G6P, glucose-6-phosphate; G1P, glucose-1-phosphate; ADPG, ADP-glucose; F26BP, fructose-2,6-bisphosphate; UDPG, uridine diphosphate glucose; SUCP, sucrose-6F-phosphate; SUC, Suc; PEP, phosphoenolpyruvate; OAA, oxaloacetate; PGCA, phosphoglycolate; GCA, glycolate; GOA, glyoxylate; GCEA, glycerate; MAL, malate; PYR, pyruvate; GLU, glutamate; KG, alfa-ketoglutarate; GLN, Gln; HPR, hydroxypyruvate; RuBP, ribulose bisphosphate; SER, Ser; GLY, Gly; TS, tartronic semialdehyde.In higher plants, P-Gly is dephosphorylated to glycolate, which is transferred into the peroxisomes, where it is oxidized to hydrogen peroxide and glyoxylate. Then, glyoxylate is aminated to produce Gly, which is subsequently transferred to the mitochondria. There, two molecules of Gly are converted into one Ser plus one CO2 and one NH3 (Ogren, 1984; Peterhansel et al., 2010). The Ser is ultimately converted back to PGA (Tolbert, 1997). CO2 and NH3 are gasses that can escape to the atmosphere (Sharkey, 1988; Kumagai et al., 2011), and the loss of carbon and nitrogen essential for biomass accumulation will decrease the efficiency of photosynthesis and plant growth (Zhu et al., 2010). Fortunately, both substances are partially reassimilated in the chloroplast, but this results in decreased photosynthetic energy efficiency. At 25°C and current atmospheric CO2 concentrations, approximately 30% of the carbon fixed in C3 photosynthesis may be lost via photorespiration and the size of this loss increases with temperature (Sharkey, 1988; Zhu et al., 2010). As a result, photorespiration has been regarded as a pathway that could be altered to improve photosynthetic efficiency (Zelitch and Day, 1973; Oliver, 1978; Ogren, 1984; Zhu et al., 2008, 2010).There are several approaches that may be used to alter photorespiration to improve photosynthetic efficiency. First, it might be possible to increase the specificity of Rubisco to CO2 versus oxygen (Sc/o; Dhingra et al., 2004; Spreitzer et al., 2005; Whitney and Sharwood, 2007). However, previous studies have shown that there is an inverse correlation between Sc/o and the maximum carboxylation rate of Rubisco (Jordan and Ogren, 1983; Zhu et al., 2004), and there are some indications that the Sc/o of different organisms may be close to optimal for their respective environments (Tcherkez et al., 2006; Savir et al., 2010). Second, a CO2-concentrating mechanism could be engineered into C3 plants. For example, introducing cyanobacterial bicarbonate transporters (Price et al., 2011) or introducing C4 metabolism could be used to concentrate CO2 in the vicinity of Rubisco and, thereby, suppress the oxygenation reaction of Rubisco (Furbank and Hatch, 1987; Mitchell and Sheehy, 2006). Past efforts to introduce a C4 pathway into C3 plants have focused on biochemical reactions related to C4 photosynthesis without taking into account the anatomical differences between C3 and C4 plants, which may have been responsible for the limited success of such endeavors (Fukayama et al., 2003). Recently, there has been renewed interest in engineering C4 photosynthetic pathways into C3 plants, with efforts focusing on understanding and engineering the genetic regulatory network related to the control of both the anatomical and biochemical properties related to C4 photosynthesis (Mitchell and Sheehy, 2006; Langdale, 2011).Transgenic approaches have been used to knock down or knock out enzymes in the photorespiratory pathway. Unfortunately, the inhibition of photorespiration by the deletion or down-regulation of enzymes in the photorespiratory pathway resulted in a conditional lethal phenotype (i.e. such plants cannot survive under ambient oxygen and CO2 concentrations but may be rescued by growing them under low-oxygen or high-CO2 conditions; for review, see Somerville and Ogren, 1982; Somerville, 2001). Another approach to reduce photorespiration is to block (or inhibit) enzymes in this pathway using chemical inhibitors. Zelitch (1966, 1974, 1979) reported that net photosynthesis increased by inhibiting glycolate oxidase or glycolate synthesis. However, other groups showed that the inhibition of glycolate oxidase or Gly decarboxylation led to the inhibition of photosynthesis (Chollet, 1976; Kumarasinghe et al., 1977; Servaites and Ogren, 1977; Baumann et al., 1981). It turns out that plants cannot efficiently metabolize photorespiratory intermediates without a photorespiratory pathway, and suppression of this pathway inhibits the recycling of carbon back toward RuBP, which is necessary for maintaining the CBB cycle (Peterhansel et al., 2010; Peterhansel and Maurino, 2011). Moreover, the accumulation of toxic metabolic intermediates (e.g. P-Gly) can strongly inhibit photosynthesis (Anderson, 1971; Kelly and Latzko, 1976; Chastain and Ogren, 1989; Campbell and Ogren, 1990). This may explain why earlier attempts to block or reduce photorespiration have failed to improve carbon gain.Instead of reducing photorespiration directly, a promising idea is to engineer a photorespiratory bypass pathway. Such a pathway would metabolize P-Gly produced by RuBP oxygenation but minimize carbon, nitrogen, and energy losses and avoid the accumulation of photorespiratory intermediates. Kebeish et al. (2007) introduced the glycolate catabolic pathway from Escherichia coli into Arabidopsis (Arabidopsis thaliana); we will subsequently call this type of bypass the Kebeish bypass. In such transgenic plants, glycolate is converted to glycerate in the chloroplasts without ammonia release (Fig. 1). Previous studies suggested that this pathway theoretically requires less energy and shifts CO2 release from mitochondria to chloroplasts (Peterhansel and Maurino, 2011; Peterhansel et al., 2013); experimental results indicated that the bypass allowed for increased net photosynthesis and biomass production in Arabidopsis (Kebeish et al., 2007). There are reports of two other photorespiratory bypass pathways in the literature (Carvalho, 2005; Carvalho et al., 2011; Maier et al., 2012). In the Carvalho bypass (Carvalho, 2005; Carvalho et al., 2011), glyoxylate is converted to hydroxypyruvate in the peroxisome. Similar to the Kebeish bypass, the ammonia release is abolished, one-quarter of the carbon from glycolate is released as CO2 in the peroxisomes, and three-quarters of the carbon from glycolate is converted back to PGA. However, this pathway has only been partially realized in tobacco (Nicotiana tabacum); that is, the enzyme of the second reaction of this pathway was not detectable in the transgenic plants, and plants expressing this pathway showed stunted growth when grown in ambient air (Carvalho et al., 2011). The Maier bypass (Maier et al., 2012) is characterized by complete oxidation of glycolate in the chloroplasts. Initial results suggested that the photosynthesis and biomass of transgenic Arabidopsis with this pathway were enhanced (Maier et al., 2012).Recently, the design and benefits of the three bypass pathways were reviewed (Peterhansel et al., 2013), and it was suggested that a photorespiratory bypass can contribute to an enhanced photosynthetic CO2 uptake rate by lowering energy costs and minimizing carbon and nitrogen losses. However, a systematic and quantitative analysis of the potential contributions of these different factors to photosynthesis improvement has not yet been conducted. Systems modeling can help to design new metabolic pathways and improve our understanding of biochemical mechanisms (McNeil et al., 2000; Wendisch, 2005; Zhu et al., 2007; Bar-Even et al., 2010; Basler et al., 2012). Such models have been used successfully to gain insight into the photosynthetic metabolism (Laisk et al., 1989, 2006; Laisk and Edwards, 2000; Zhu et al., 2007, 2013; Wang et al., 2014). In this study, we use an extended kinetic model of C3 photosynthesis based on earlier work by Zhu et al. (2007) to systematically analyze the potential of three photorespiratory bypass pathways for improving photosynthetic efficiency (Supplemental Model S1). In addition, we determined under what conditions such bypass pathways may lead to increased photosynthesis and biomass production in C3 plants and how to further improve the photosynthesis of plants with such a bypass. Our analysis suggests that the benefit of a photorespiratory bypass varies dramatically if it is engineered into different crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号