首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
丛枝菌根(AM)与植物的抗逆性   总被引:25,自引:1,他引:25  
菌根是土壤中的菌根真菌与高等植物的根系形成的一种联合体 ,是自然界中一种普遍的植物共生现象。除十字花科、莎草科、藜科等少数几个科不能或不易形成菌根外 ,大多数植物包括苔藓、蕨类、裸子植物、被子植物都能形成菌根。 AM是其中的一类 ,也是目前研究较多的一类。AM的内外生菌丝不仅增加了根系的吸收面积 ,还能分泌多种有益物质。所以 ,AM对植物养分、水分的吸收与运输 ,对植物抵抗各种胁迫是十分有益的。1 AM与植物的抗旱性随着全球干旱面积的不断增加 ,淡水资源的日益减少 ,干旱研究已受到人们极大的关注。由于菌根的特殊作用和…  相似文献   

3.
4.
Phosphorus is one of the most important macronutrients required for plant growth. Plants have evolved many strategies for inorganic phosphorus (Pi) acquisition, including the symbiotic pathways, involving the formation of mycorrhiza. With regard to arbuscular mycorrhiza (AM), high Pi availability has long been known to negatively affect this association, although the underlying mechanism is unknown. In the present study, the interactive role played by ethylene and Pi in AM regulation was investigated in the tomato-Rhizophagus irregularis symbiosis. AM fungal colonization was analysed in epi, rin and NRO ethylene-responsive mutants under different Pi availability conditions, with a focus on the late stages of the interaction. Although Pi inhibited mycorrhizal parameters in the ethylene-insensitive rin mutant and wild-type cultivars, it did not alter the mycorrhization of the epi tomato mutant, which exhibits a constitutive ethylene-induced response. As with the colonization parameters, root ethylene content and the expression of AM-related and ethylene receptor 6 genes were inhibited by Pi in wild-type cultivars and rin mutants, but were unaffected or slightly activated in epi plants. The application of ethephon offsets the negative impact on the mycorrhizal development caused by the application of Pi. This compensation effect is dose dependent and was ineffective in the NRO mutant, which is more insensitive to the action of ethylene. Our results provide evidence that ethylene signalling negatively affects the suppressive effect of Pi on AM formation and suggests an overlap between this suppressive effect and the regulatory mechanism of Pi-starvation response pathway in plants mediated by ethylene.  相似文献   

5.
丛枝菌根在退化土壤恢复中的生态学作用   总被引:9,自引:0,他引:9  
土壤退化(包括土壤侵蚀、贫瘠化、盐碱化、沙化、酸化)不仅为全球所关注,而且是关系到我国农业可持续发展的重大问题.全球1.3×108km2的总土地面积中,因人为原因引起的退化面积为2.0×107km2,这些退化土壤中,耕地近5×108ha,约占总耕地面积的1/3.  相似文献   

6.
通过对云南热带、亚热带生长的256种蕨类植物VA菌根的调查,发现蕨类植物VA菌根营养者所占的比例低于被子植物;在真蕨类植物中,植物具有由VA菌根营养经兼性VA菌根营养向自养方向进化的趋势。  相似文献   

7.
A sub-cellular proteomic approach was carried out to monitor membrane-associated protein modifications in response to the arbuscular mycorrhizal (AM) symbiosis. Membrane proteins were extracted from Medicago truncatula roots either inoculated or not with the AM fungus Glomus intraradices. Comparative two-dimensional electrophoresis revealed that 36 spots were differentially displayed in response to the fungal colonization including 15 proteins induced, 3 up-regulated and 18 down-regulated. Among them, seven proteins were found to be commonly down-regulated in AM-colonized and phosphate-fertilized roots. Twenty-five spots out of the 36 of interest could be identified by matrix assisted laser desorption/ionisation-time of flight and/or tandem mass spectrometry analyses. Excepting an acid phosphatase and a lectin, none of them was previously reported as being regulated during AM symbiosis. In addition, this proteomic approach allowed us for the first time to identify AM fungal proteins in planta.  相似文献   

8.
The arbuscular mycorrhiza (AM) brings together the roots of over 80% of land plant species and fungi of the phylum Glomeromycota and greatly benefits plants through improved uptake of mineral nutrients. AM fungi can take up both nitrate and ammonium from the soil and transfer nitrogen (N) to host roots in nutritionally substantial quantities. The current model of N handling in the AM symbiosis includes the synthesis of arginine in the extraradical mycelium and the transfer of arginine to the intraradical mycelium, where it is broken down to release N for transfer to the host plant. To understand the mechanisms and regulation of N transfer from the fungus to the plant, 11 fungal genes putatively involved in the pathway were identified from Glomus intraradices, and for six of them the full-length coding sequence was functionally characterized by yeast complementation. Two glutamine synthetase isoforms were found to have different substrate affinities and expression patterns, suggesting different roles in N assimilation. The spatial and temporal expression of plant and fungal N metabolism genes were followed after nitrate was added to the extraradical mycelium under N-limited growth conditions using hairy root cultures. In parallel experiments with 15N, the levels and labeling of free amino acids were measured to follow transport and metabolism. The gene expression pattern and profiling of metabolites involved in the N pathway support the idea that the rapid uptake, translocation, and transfer of N by the fungus successively trigger metabolic gene expression responses in the extraradical mycelium, intraradical mycelium, and host plant.The arbuscular mycorrhizal (AM) symbiosis brings together the roots of the majority of land plant species and fungi of the phylum Glomeromycota to great mutual advantage (Smith and Read, 2008). AM fungi improve the acquisition of phosphate, nitrogen (N), sulfur, and trace elements such as copper and zinc (Clark and Zeto, 2000; Allen and Shachar-Hill, 2008) and increase the biotic and abiotic stress resistance of their host (Smith et al., 2010). In return, the host transfers up to 20% of its photosynthetically fixed carbon to the AM fungus (Jakobsen and Rosendahl, 1990), which depends on its host plant for its carbon supply (Bago et al., 2000).N is the nutrient whose availability most commonly limits plant growth in natural ecosystems. AM fungi can take up NO3NH4+ and can also increase access to organic N sources from the soil (Ames et al., 1983; Johansen et al., 1993; Bago et al., 1996; Hodge et al., 2001). The translocation by the fungus can represent a significant route for N uptake by the plant (Johansen and Jensen, 1996). For example, Toussaint et al. (2004) showed that in an in vitro mycorrhiza at least 21% of the total N uptake in the roots came from the fungal extraradical mycelium (ERM); for other mycorrhizal systems, even larger proportions have been described (more than 30% and 50%; Govindarajulu et al., 2005; Jin et al., 2005). Tanaka and Yano (2005) reported that 75% of the N in leaves of mycorrhizal maize (Zea mays) was taken up by the ERM of Glomus aggregatum.A mechanism of N transfer from the fungus to the plant has been proposed (Bago et al., 2001) that involves the operation of a novel metabolic route in which N was translocated from the ERM to the intraradical mycelium (IRM) as Arg but transferred to the plant without carbon as inorganic N. This mechanism has been supported by labeling experiments (Johansen et al., 1996; Govindarajulu et al., 2005; Jin et al., 2005), enzyme activity analysis (Cruz et al., 2007), and limited gene expression data (Govindarajulu et al., 2005; Gomez et al., 2009; Guether et al., 2009). Nevertheless, our molecular knowledge of the metabolic and transport pathways involved and how they are regulated is still rudimentary. A better understanding of the mechanism and regulation of N uptake assimilation, translocation, and transfer to the host is important for potential applications of AM fungi as biofertilizers, bioprotectors, and bioregulators in sustainable agriculture and restoration as well as for understanding the role of AM fungi in natural ecosystems (Bruns et al., 2008).In this study, we postulate that the uptake, translocation, and transfer of N by the fungus triggers the metabolic gene expression responses successively in the ERM, IRM, and host plant, which will result in the synthesis and accumulation of Arg in the ERM, the turnover of Arg to release ammonium in the IRM, and the assimilation of ammonium by the host plant via the glutamine synthetase (GS)/glutamate synthase (GOGAT) pathway inside the root (Fig. 1). To test these predictions, 11 genes involved in the N primary assimilation and metabolism were cloned and verified from Glomus intraradices; six enzymes with full-length coding sequences (CDSs) were functionally characterized by yeast knockout mutant complementation. Two GS proteins were found to have different substrate affinities and expression patterns, suggesting that they have different roles in N assimilation. The time courses of gene expression and N movement in fungal and host tissues were analyzed following nitrate supply to the ERM of a mycorrhiza grown under N-limited conditions. The results substantially increase our knowledge of the identity and regulation of most of the metabolic and transport genes involved in N movement through the AM symbiosis.Open in a separate windowFigure 1.Working model of N transport and metabolism in the symbiosis between plant roots and arbuscular mycorrhizal fungi. N moves (black arrows) from the soil into the fungal ERM, through a series of metabolic conversion reactions into Arg, which is transported into the IRM within the root (host) and there is broken down; N is transferred to and assimilated by the host as ammonia. Red circles refer to the sites of action of the genes identified and analyzed in this study. Blue arrows indicate mechanisms hypothesized to regulate gene expression by N metabolites involved in the pathway.  相似文献   

9.
Both the plant and the fungus benefit nutritionally in the arbuscular mycorrhizal symbiosis: The host plant enjoys enhanced mineral uptake and the fungus receives fixed carbon. In this exchange the uptake, metabolism, and translocation of carbon by the fungal partner are poorly understood. We therefore analyzed the fate of isotopically labeled substrates in an arbuscular mycorrhiza (in vitro cultures of Ri T-DNA-transformed carrot [Daucus carota] roots colonized by Glomus intraradices) using nuclear magnetic resonance spectroscopy. Labeling patterns observed in lipids and carbohydrates after substrates were supplied to the mycorrhizal roots or the extraradical mycelium indicated that: (a) 13C-labeled glucose and fructose (but not mannitol or succinate) are effectively taken up by the fungus within the root and are metabolized to yield labeled carbohydrates and lipids; (b) the extraradical mycelium does not use exogenous sugars for catabolism, storage, or transfer to the host; (c) the fungus converts sugars taken up in the root compartment into lipids that are then translocated to the extraradical mycelium (there being little or no lipid synthesis in the external mycelium); and (d) hexose in fungal tissue undergoes substantially higher fluxes through an oxidative pentose phosphate pathway than does hexose in the host plant.  相似文献   

10.
11.
Soybean (Glycine max [L.] Merr.) plants were nodulated (Bradyrhizobium japonicum) and either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or left uncolonized. All plants were grown unstressed for 21 days initially. After this period, some VAM and non-VAM plants were exposed to four 8-day drought cycles while others were kept well watered. Drought cycles were terminated by rewatering when soil moisture potentials reached −1.2 megapascal. Nodule development and activity, transpiration, leaf conductance, leaf and root parameters including fresh and dry weight, and N and P nutrition of VAM plants and of non-VAM, P-fed plants grown under the same controlled conditions were compared. All parameters, except N content, were greater in VAM plants than in P-fed, non-VAM plants when under stress. The opposite was generally true in the unstressed comparisons. Transpiration and leaf conductance were significantly greater in stressed VAM than in non-VAM plants during the first half of the final stress cycle. Values for both VAM and non-VAM plants decreased linearly with time during the cycle and converged at a high level of stress (−1.2 megapascal). Effects of VAM fungi on the consequences of drought stress relative to P nutrition and leaf gas exchange are discussed in the light of these findings and those reported in the literature.  相似文献   

12.
The arbuscular mycorrhizal (AM) symbiosis is responsible for huge fluxes of photosynthetically fixed carbon from plants to the soil. Carbon is transferred from the plant to the fungus as hexose, but the main form of carbon stored by the mycobiont at all stages of its life cycle is triacylglycerol. Previous isotopic labeling experiments showed that the fungus exports this storage lipid from the intraradical mycelium (IRM) to the extraradical mycelium (ERM). Here, in vivo multiphoton microscopy was used to observe the movement of lipid bodies through the fungal colony and to determine their sizes, distribution, and velocities. The distribution of lipid bodies along fungal hyphae suggests that they are progressively consumed as they move toward growing tips. We report the isolation and measurements of expression of an AM fungal expressed sequence tag that encodes a putative acyl-coenzyme A dehydrogenase; its deduced amino acid sequence suggests that it may function in the anabolic flux of carbon from lipid to carbohydrate. Time-lapse image sequences show lipid bodies moving in both directions along hyphae and nuclear magnetic resonance analysis of labeling patterns after supplying 13C-labeled glycerol to either extraradical hyphae or colonized roots shows that there is indeed significant bidirectional translocation between IRM and ERM. We conclude that large amounts of lipid are translocated within the AM fungal colony and that, whereas net movement is from the IRM to the ERM, there is also substantial recirculation throughout the fungus.  相似文献   

13.
During the course of studies on the oxidative metabolism of d-sorbitol by acetic acid bacteria, it was found that d-sorbitol was almost quantitatively converted to 5-keto-d-fructose via l-sorbose by a certain strain of Gluconobacter suboxydans. In addition to 5-keto-d-fructose, three γ-pyrone compounds, kojic acid, 5-oxymaltol, and 3-oxykojic acid, 2-keto-l-gulonate, and several organic acids such as succinic, glycolic, and glyceric acids were confirmed in the culture filtrate of this bacterium.
  • The most suitable carbon source for 5-ketofructose fermentation by Gluconobacter suboxydans Strain 1 was confirmed to be d-sorbitol or l-sorbose using growing and resting cells. d-Fructose had little effect on the formation of this dicarbonylhexose.

  • The optimal pH for the formation from l-sorbose by intact cells was found to be at 4.2.

  • The activity of the pentose phosphate cycle in the resting cells was calculated as 13~17 μatoms/hr/mg of dry cells by the use of the manometric techniques.

  • There was no strain tested so far which could accumulate a large amount of 5- keto-d-fructose from d-sorbitol except this bacterium.

  • The experimental results shown in this paper makes the prediction that a certain dehydrogenating system of l-sorbose is functional in the organism, and the metabolic pathways of d-sorbitol via l-sorbose and 5-keto-d-fructose is proposed.

  相似文献   

14.
Two experiments with soil cores were carried out to investigate the effects of arbuscular mycorrhizal (AM) fungal colonization on mobility of phosphorus (P) during leaching of repacked columns of a soil with a loamy sand texture. Trifolium subterraneum plants inoculated with an AM fungus or not inoculated were grown in cores with low or high P concentrations for 8 or 10 weeks in the glasshouse. Cores were then irrigated with 2500 mL water and the leachate collected. Plant growth and the amounts of P removed by plants, remaining in soil as available P and removed dissolved in leachate were measured. Mycorrhizal fungal colonization and development of external hyphae were also determined. Inoculation and/or P application significantly increased plant growth and plant P removal and decreased P leaching. In low P soils AM fungal colonization significantly increased plant P uptake and decreased soil available P and total dissolved P in leachates. Lower P leaching from cores with AM plants under low P conditions was related to enhancement of plant growth and to scavenging and removal of P from the soil by roots and/or external hyphae. When P was applied AM effects were not observed and available P remaining in the soil after leaching was much higher, regardless of AM fungal colonization.  相似文献   

15.
The zygomycete Geosiphon pyriforme is the only known endocyanosis of a fungus. The Nostoc spp. filaments are included in photosynthetically active and nitrogen fixing, multinucleated bladders, which grow on the soil surface. The spores of the fungus are white or slightly brownish. They are about 250 μm in diameter and develop singly on hyphal ends or, less frequently, intercalarly. The wall of the spores consists of a thin innermost layer, a laminated inner layer with a thickness of about 10–13 μm, and an evanescent outer layer. The laminated layer is composed of helicoidally arranged microfibrils, and is separated from the evanescent outer layer by a thin electron-dense sublayer. Polarisation microscopy indicates the occurrence of chitin. Shape and wall ultrastructure of the Geosiphon spores and their cytoplasm resemble that of Glomus spores, but are different from that of other genera of the Glomales and Endogonales. Germination occurs by a single thick hyphal outgrowth directly through the spore wall. Like various AM forming fungi, Geosiphon pyriforme contains endocytic bacteria-like organisms, which are not surrounded by a host membrane. Our observations indicate that Geosiphon is a potential AM fungus.  相似文献   

16.
A greenhouse pot experiment with different phosphorus supply was conducted to study growth, photosynthesis and free polyamine (PA) content in Plantago lanceolata L. plants in relation to arbuscular mycorrhizal (AM) colonization. Inoculum of Glomus fasciculatum (BEG 53) was used. Inoculated plants had high colonization intensities which were related to the P supply. Non-mycorrhizal (NM) plants showed a typical yield response curve for P availability. Dry masses of mycorrhizal (M) plants were higher at the lowest soil P content than those of NM plants, but the opposite was found at the highest P supply. P contents in M plants were always higher. There were no differences in chlorophyll (Chl) concentrations (except the lowest soil P content) and ratios of variable to maximum Chl fluorescence (Fv/Fm) values between M and NM plants, whereas M plants had higher ratios of leaf area to fresh mass (A/f.m.) at low soil P contents and they had significantly higher CO2 fixation capacities per unit leaf area. Free putrescine (Put), spermidine (Spd) and spermine (Spm) contents in NM plants were usually highest at the lowest P supply. The ratios of Put/(Spd+Spm) were identical in M and NM leaves. They were significantly higher, however, in NM roots at the two low P doses. It is concluded, that a P nutritional status might exist, below which PA concentrations and ratio are increased drastically, possibly indicating P deficiency or a certain state of plant development with a higher demand for AM symbiosis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
18.
ABC转运蛋白研究的新进展   总被引:1,自引:0,他引:1  
ABC转运蛋白主要包括P-糖蛋白、多药耐药相关蛋白和乳腺癌耐药蛋白,它们属于同一家族,具有保守的功能结构域和多样化的生物学功能。ABC转运蛋白部分成员的过表达与肿瘤细胞的多药耐药性(MDR)密切相关,是导致化疗失败的主要原因。随着对MDR机制认识的深入,针对多药耐药蛋白的特异结构域已设计出多种形式的MDR逆转药物。近年来发现,ABC转运蛋白广泛存在于多种正常的组织和器官,参与药物和内、外源毒素的吸收、分布和排泄,行使解毒和防御保护的作用。因此,通过转植ABC转运蛋白基因有可能降低经济鱼类、虾等水产品中有毒污染物的积累。  相似文献   

19.
The arbuscular mycorrhizal symbiosis, a key component of agroecosystems, was assayed as a rhizosphere biosensor for evaluation of the impact of certain antifungal Pseudomonas inoculants used to control soil-borne plant pathogens. The following three Pseudomonas strains were tested: wild-type strain F113, which produces the antifungal compound 2,4-diacetylphloroglucinol (DAPG); strain F113G22, a DAPG-negative mutant of F113; and strain F113(pCU203), a DAPG overproducer. Wild-type strain F113 and mutant strain F113G22 stimulated both mycelial development from Glomus mosseae spores germinating in soil and tomato root colonization. Strain F113(pCU203) did not adversely affect G. mosseae performance. Mycelial development, but not spore germination, is sensitive to 10 μM DAPG, a concentration that might be present in the rhizosphere. The results of scanning electron and confocal microscopy demonstrated that strain F113 and its derivatives adhered to G. mosseae spores independent of the ability to produce DAPG.  相似文献   

20.
王华  张正线 《遗传学报》1995,22(6):413-423
葡萄糖转运蛋白是一个在结构上相似功能上不同的多基因家族(GLUT1-GLUT5)。由于这一组蛋白和体内的葡萄糖利用有关,因此被认为是糖尿病胰岛素抵抗(抗性)的一个候选基因。本文比较了不同种生物这一基因家族的氨基酸和核苷酸顺序;推测了亲水性和疏水性分布;计算了蛋白质和核苷酸的进化距离,并在此基础上构建了分子进化树。研究表明:这一基因家族具有高度的同源性、极为相似的亲水性和疏水性分布以及结构的对称性。提示这一基因家族起源于一个共同的祖先并可能通过基因的重复而形成。这一进化机制可能有利于氨基酸结构的稳定及抵抗突变的作用。由于邻元法构建的进化树其分支长度存在差异,提示在这一基因家族的进化过程中,各分支上的进化速率并不相同。蛋白质进化距离和核苷酸进化距离所构建进化树的差异提示了在基因组中可能存在隐匿替换。两种方法构建的进化树都提示了GLUT1、3、4在结构和功能上要更为保守。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号