首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The disaccharide beta-D-GlcA-(1-->4)-alpha-D-GlcNAc-1-->OMe and other small nonsulfated oligosaccharides related to heparin/heparan sulfate have been shown to bind to FGF and activated the fibroblast growth factor (FGF) signalling pathway in (F32) cells expressing the FGF receptor. Synthetic routes to beta-D-GlcA-(1-->4)-alpha-D-GlcNAc-1-->OMe and a glucose analogue beta-D-Glc-(1-->4)-alpha-D-GlcNAc-1-->OMe are described. The effects of these disaccharides on endothelial cell growth, which is relevant to angiogenesis, were evaluated and it was found they did not mimic the inhibitory effects that were observed for heparin albumin (HA) and that have also been observed by monosaccharide conjugates. They did not alter bovine aortic endothelial cell (BAEC) proliferation, in the presence of FGF-2 in serum free medium or in absence of FGF-2 in serum free and complete medium. Disaccharides (10 microg/mL) reduced by 25-31% the inhibition caused by HA (10 microg/mL) on BAEC growth in serum-free medium but had no effect in complete medium. There was no evidence obtained for the binding of these oligosaccharides to FGF-2 in competition with HA by ELISA.  相似文献   

2.
The binding of low-molecular-weight heparin to an amino-terminal-truncated, 132-amino-acid, human acidic fibroblast growth factor form has been studied by isothermal titration calorimetry. This technique yields values for the enthalpy change and equilibrium constant, from which the Gibbs energy and entropy change are also calculated. Experiments in different buffers and pH values show that the protonic balance during the reaction is negligible. Experiments made at pH 7.0 with NaCl concentrations ranging from 0.20 to 0.60 M revealed changes in enthalpy and Gibbs energy in the range of -30- -17 and -27- -24 kJ x mol(-1), respectively. Isothermal titration calorimetry was also performed at different temperatures to obtain a value for the heat-capacity change at pH 7.0 and 0.4 M NaCl concentration of -96 J K- x mol(-1). A change in the length of heparin brought about no change in the thermodynamic parameters at 25 degrees C under the same experimental conditions. Changes upon ligand binding in the range of -50- -200 A2 in both polar and non-polar solvent-accessible surface areas were calculated from thermodynamic data by using different parametric equations taken from the literature. These values suggest a negligible overall conformational change in the protein when it binds to heparin and no formation of any protein-protein interface.  相似文献   

3.
Although fibroblast growth factor 2 (FGF2) and fibroblast growth factor receptor 3 (FGFR3) both inhibit longitudinal bone growth, little is known about the relationship between FGF2 and FGFR3. Accordingly, the current study examined the expression of FGFR3 mRNA after the administration of FGF2 using cultured chondrocytes from day 17 chick embryos to evaluate the relationship between FGF2 and FGFR3. The chondrocytes were isolated from the caudal one-third portion (LS) of sterna, peripheral regions (USP) and central core regions (USC) of the cephalic portion of the sterna, and lower portion of the proximal tibial growth plate (Ti) of day 17 chick embryo. The expression of FGFR1, FGFR3, and type II and X collagen mRNA in the chondrocytes from the LS, USP, USC, and Ti was determined. FGFR1 was not expressed in the LS and USP chondrocytes, yet strongly expressed in the USC and Ti chondrocytes. With a treatment of FGF2, the expression of FGFR1 slightly increased in the USC chondrocytes and was not related with the concentration of FGF2 in the Ti chondrocytes. FGFR3 was expressed in all the chondrocyte types, yet strongly increased in the LS, USC, USP, and Ti in that order according to the concentration of FGF2. For the LS and USP chondrocytes, the expression of FGFR3 with FGF2 increased in a 4-day culture, yet decreased in a 6-day culture, whereas for the USC chondrocytes, the expression of FGFR3 mRNA with FGF2 increased in a 2-day culture, yet decreased in a 4-day culture, suggesting that the hypertrophic chondrocytes were more numerous and sensitive compared to the proliferative chondrocytes. For all the chondrocyte types, FGF2 appeared to be up-regulated to FGFR3, as the expression of FGFR3 mRNA increased with a higher concentration of FGF2 until a peak level. In conclusion, FGF2 was found to up-regulate to FGFR3 until the peak level of FGFR3 mRNA expression, while in hypertrophic chondrocytes, FGFR3 appeared to cause the differentiaton of chondrocytes, resulting in the inhibition of longitudinal bone growth after the peak level of FGFR3 mRNA expression.  相似文献   

4.
Fibroblast growth factors (FGFs) bind to extracellular matrices, especially heparin-like carbohydrates of heparansulfate proteoglycans which stabilize FGFs to protect against inactivation by heat, acid, proteolysis and oxidation. Moreover, binding of FGFs to cell surface proteoglycans promotes to form oligomers, which is essential for receptor oligomerization and activation. In the present study, we determined the solution structure of acidic FGF using a series of triple resonance multi-dimensional NMR experiments and simulated annealing calculations. Furthermore, we prepared the sample complexed with a heparin-derived hexasaccharide which is a minimum unit for aFGF binding. From the chemical shift differences between free aFGF and aFGF-heparin complex, we concluded that the major heparin binding site was located on the regions 110–131 and 17–21. The binding sites are quite similar to those observed for bFGF-heparin hexasaccharide complex, showing that both FGFs recognize heparin- oligosaccharides in a similar manner.  相似文献   

5.
Heparin (HP) inhibits the proliferation of bovine pulmonary artery smooth muscle cells (BPASMC’s), among other cell types in vitro. In order to develop a potential therapeutic agent to reverse vascular remodeling, we are involved in deciphering the relationship between the native HP structure and its antiproliferative potency. We have previously reported the influence of the molecular size and the effects of various O-sulfo and N-acetyl groups of HP on growth-inhibitory activity. In this study, to understand the influence of carboxyl groups in the HP structure required for endogenous activity, a chemically modified derivative of native HP was prepared by converting the carboxyl groups of hexuronic acid residues in HP to primary hydroxyl groups. This modification procedure involves the treatment of HP with N-(3-dimethylaminopropyl)-N-ethylcarbodiimide followed by reduction with NaBH4 to yield carboxyl-reduced heparin (CR-HP). When compared to the antiproliferative potency of native HP on cultured BPASMC’s at three dose levels (1, 10, and 100 μg/mL), the CR-HP showed significantly less potency at all the doses. These results suggest that hexuronic acid residues in both major and variable sequences in HP are essential for the antiproliferative properties of native HP.  相似文献   

6.
Summary BC3H1 myoblast cells seeded at low density on gelatin-coated dishes and exposed to a 1∶1 (vol/vol) mixture of Dulbecco’s modified Eagle’s medium and Ham’s F12 medium, proliferate actively when exposed to high density lipoproteins (HDL), transferrin, insulin, and basic or acidic fibroblast growth factor (FGF). This serum-free medium combination supported cell multiplication at a rate equal to that of serum-supplemented medium, and at low cell input (103 cells/35-mm dish). It also allowed serial transfer of the cultures under serum-free conditions. HDL seems to promote cell survival and to act as progression factor allowing cells to divide when exposed to either basic or acidic FGF. When the potency of basic and acidic FGF were compared, acidic FGF was 20-fold less potent than basic FGF.  相似文献   

7.
Oligomerization of fibroblast growth factors (FGFs) induced on binding to heparin or heparan sulfate proteoglycan is considered to be crucial for receptor activation and initiation of biological responses. To gain insight into the mechanism of activation of the receptor by FGFs, in the present study we investigate the effect(s) of interaction of a heparin analog, sucrose octasulfate (SOS), on the structure, stability, and biological activities of a recombinant acidic FGF from Notophthalmus viridescens (nFGF-1). SOS is found to bind to nFGF-1 and significantly increase the thermodynamic stability of the protein. Using a variety of techniques such as size-exclusion chromatography, sedimentation velocity, and multidimensional nuclear magnetic resonance (NMR) spectroscopy, it is shown that binding of SOS to nFGF-1 retains the protein in its monomeric state. In its monomeric state (complexed to SOS), n-FGF-1 shows significant cell proliferation activity. (15)N and (1)H chemical shift perturbation and the intermolecular nuclear Overhauser effects (NOEs) between SOS and nFGF-1 reveal that the ligand binds to the dense, positively charged cluster located in the groove enclosed by beta-strands 10 and 11. In addition, molecular modeling based on the NOEs observed for the SOS-nFGF-1 complex, indicates that SOS and heparin share a common binding site on the protein. In conclusion, the results of the present study clearly show that heparin-induced oligomerization of nFGF-1 is not mandatory for its cell proliferation activity.  相似文献   

8.
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Basic fibroblast growth factor (bFGF), which is highly expressed in developing tissues and malignant cells, regulates cell growth, differentiation, and migration. Its expression is essential for the progression and metastasis of HCC. This study aims to investigate the effects of bFGF on the expression of angiogenin, another growth factor, which plays an important role in tumor angiogenesis, and on cell proliferation in H7402 human hepatoma cells. The bFGF sense cDNA or antisense cDNA was stably transfected into H7402 cells. Genomic DNA PCR analysis demonstrated that human bFGF sense cDNA or antisense cDNA was inserted into the genome. Furthermore, the expression of bFGF and angiogenin was examined by RT-PCR and Western blot assays. MTT and colony formation assays were employed to determine cell proliferation. Stable bFGF over-expressing and under-expressing transfectants were successfully established. Expression of angiogenin was decreased in the over-expressing bFGF cells (sense transfectants) and was increased in the under-expressing bFGF cells (antisense transfectants). Cell proliferation increased in the bFGF sense transfectants and decreased in the bFGF antisense transfectants. These results demonstrated that the endogenous bFGF may not only negatively regulate the angiogenin expression but also contribute to the overall cell proliferation in H7402 human hepatoma cells. This study may be helpful in finding a potential therapeutic approach to HCC.  相似文献   

9.
Here we describe, for the first time, the design and characterization of a bona fide fluorescently labeled mutant of the human acidic fibroblast growth factor (aFGF). The aFGF–Cys2 mutant was recombinantly synthesized by substituting the second amino acid with a reactive cysteine whose sulfhydryl group’s side chain reactivity facilitated the covalent binding of a fluorescent probe as a thiolyte monobromobimane. Using a combination of biophysical and functional assays, we found that the fluorescently labeled mutant aFGF is characterized by essentially the same global folding, mitogenic activity, and association behavior with heparin, its physiological activator, as the unlabeled wild-type protein. We used this new tracer protein mutant to determine the association behavior of aFGF with heparin in the presence of high concentrations of albumin that mimicked more closely the plasma medium in which aFGF is naturally located and in which it has evolved to function. By exposing the aFGF–Cys2–heparin complex to increasing concentrations of albumin up to physiological plasma levels, we were able to demonstrate that macromolecular crowding does not affect the stoichiometry of the interaction. In summary, the dimeric aFGF–Cys2–heparin complex might represent a biologically relevant complex in physiological media.  相似文献   

10.
Abstract The pathogenic bacterium Helicobacter pylori , which causes active, chronic type B gastritis and peptic ulcer disease, and increases the risk for development of gastric cancer, could tentatively interfere with growth factors and growth factor receptors of importance for the gastroduodenal mucosa, e.g. heparin-binding FGFs (fibroblast growth factors). H. pylori binds FGF with an extremely strong affinity (3.8 × 10−12 M), and also heparan sulfate and heparin with higher affinity ( K d 9 × 10−9 M) than FGFs bind to heparin (10−8–10−9 M). FGF receptors are also dependent on heparin for their activation. Heparan sulfate binding proteins (HSBP) are exposed on and shed from the surface of H. pylori , which often are localised close to the epithelial stem cells in the gastroduodenal glands. H. pylori could thus efficiently interfere with growth factors and growth factor receptors, tentatively resulting in disturbance of the delicate balance that control the renewal, maintenance and repair of the gastroduodenal mucosa. This mode of action has previously not been considered, but may constitute part of its pathogenic mechanism. Such a dynamic mode of action of H. pylori may explain the reason for that infected victims may either suffer from gastrointestinal symptoms or lack clinical evidence of disease or discomfort.  相似文献   

11.
The mitogenic activity of acidic fibroblast growth factor (aFGF) is potentiated by the highly sulfated hexasaccharide [IdoUA,2S-GlcNS,6S]2-[GlcUA-GlcNS,6S] the structural repetitive unit of lung heparin chains. On a mass basis, the effect of both heparin and oligosaccharide are equivalent whereas on a molar basis, heparin, which contains about seven hexasaccharide repeats, is more efficient. On the other hand, a pentasulfated tetrasaccharide or di- and trisulfated disaccharides are much less effective in potentiating aFGF activity than the hexasaccharide. If the growth factor is pre-incubated with the hexasaccharide at pH 7.2 and then exposed to pH 3.5 the 306/345 nm fluoresence ratio is similar to that of native aFGF indicating that the oligosaccharide stabilizes a native conformation of the protein. Heparan sulfates extracted from various mammalian tissues were also able to potentiate aFGF mitogenic activity. On a mass basis they were in general less efficient than heparin; however, heparan sulfate prepared from medium conditioned by 3T3 fibroblasts is more efficient than heparin both on a mass and molar basis. A highly sulfated oligosaccharide isolated after digestion of pancreas heparan sulfate with heparitinase I is more active than the intact molecule, reaching a potentiating effect equivalent to that of lung heparin, whereas an N-acetylated oligosaccharide isolated after nitrous acid degradation is inactive. These data suggest that the mitogenic activity of aFGF is primarily potentiated by interacting with highly sulfated regions of heparan sulfates chains.Abbreviations aFGF,bFGF acidic and basic fibroblast growth factor - DMEM Dulbecco's modified Eagle's medium - FCS fetal calf serum - U,2S-(14)-GlcNS,6S O--L-ido(ene-pyranosyluronic acid 2-O-sulfate)-(14)-2-sulfoamino-2-deoxy-D-glucose-6-O-sulfate - U-(14)-GlcNS,6S O-(ene-pyranosyluronic acid)-(14)-2-sulfoamino-2-deoxy-D-glucose-6-O-sulfate - IdoUA iduronic acid - GlcUA glucuronic acid - GlyUA uronic acid; GlcNAcN-acetylglycosamine - GlcNS N-sulfated glucosamine - GlcNS,6S N,6-disulfated glucosamine - Gal galactose - Xyl xylose - Ser serine - HS heparan Sulfate  相似文献   

12.
Keratinocyte growth factor (KGF/FGF7) and fibroblast growth factor 10 (FGF10/KGF2) regulate keratinocyte proliferation and differentiation by binding to the tyrosine kinase KGF receptor (KGFR). KGF induces keratinocyte motility and cytoskeletal rearrangement, whereas a direct role of FGF10 on keratinocyte migration is not clearly established. Here we analyzed the motogenic activity of FGF10 and KGF on human keratinocytes. Migration assays and immunofluorescence of actin cytoskeleton revealed that FGF10 is less efficient than KGF in promoting migration and exerts a delayed effect in inducing lamellipodia and ruffles formation. Both growth factors promoted phosphorylation and subsequent membrane translocation of cortactin, an F-actin binding protein involved in cell migration; however, FGF10-induced cortactin phosphorylation was reduced, more transient and delayed with respect to that promoted by KGF. Cortactin phosphorylation induced by both growth factors was Src-dependent, while its membrane translocation and cell migration were blocked by either Src and PI3K inhibitors, suggesting that both pathways are involved in KGF- and FGF10-dependent motility. Furthermore, siRNA-mediated downregulation of cortactin inhibited KGF- and FGF10-induced migration. These results indicate that cortactin is involved in keratinocyte migration promoted by both KGF and FGF10.  相似文献   

13.
The secondary and tertiary structure of recombinant human acidic fibroblast growth factor (aFGF) has been characterized by a variety of spectroscopic methods. Native aFGF consists of ca. 55% beta-sheet, 20% turn, 10% alpha-helix, and 15% disordered polypeptide as determined by laser Raman, circular dichroism, and Fourier transform infrared spectroscopy; the experimentally determined secondary structure content is in agreement with that calculated by the semi-empirical methods of Chou and Fasman (Chou, P. Y., and Fasman, G. C., 1974, Biochemistry 13, 222-244) and Garnier et al. (Garnier, J. O., et al., 1978, J. Mol. Biol. 120, 97-120). Using the Garnier et al. algorithm, the major secondary structure components of aFGF have been assigned to specific regions of the polypeptide chain. The fluorescence spectrum of native aFGF is unusual in that it is dominated by tyrosine fluorescence despite the presence of a tryptophan residue in the protein. However, tryptophan fluorescence is resolved upon excitation above 295 nm. The degree of tyrosine and tryptophan solvent exposure has been assessed by a combination of ultraviolet absorption, laser Raman, and fluorescence spectroscopy; the results suggest that seven of the eight tyrosine residues are solvent exposed while the single tryptophan is partially inaccessible to solvent in native aFGF, consistent with recent crystallographic data. Denaturation of aFGF by extremes of temperature or pH leads to spectroscopically distinct conformational states in which contributions of tyrosine and tryptophan to the fluorescence spectrum of the protein vary. The protein is unstable at physiological temperatures. Addition of heparin or other sulfated polysaccharides does not affect the spectroscopic characteristics of native aFGF. These polymers do, however, dramatically stabilize the native protein against thermal and acid denaturation as determined by differential scanning calorimetry, circular dichroism, and fluorescence spectroscopy. The interaction of aFGF with such polyanions may play a role in controlling the activity of this growth factor in vivo.  相似文献   

14.
The morbidity and mortality rates of nonsmall-cell lung cancer (NSCLC) have increased in recent years. We aimed to explore the biological role of fibroblast growth factor 5 (FGF5) in NSCLC. We first established that the expression of FGF5 was increased in NSCLC tissues compared with the normal adjacent tissues. The expression of FGF5 was also increased in NSCLC cell lines. The effect of FGF5 silencing on cell proliferation, cell cycle, apoptosis, migration, and invasion of H661 and CALU1 cells was then examined. Downregulation of FGF5 significantly inhibited cell proliferation and induced G1 phase cell cycle arrest compared with the negative control small interfering (siNC) groups. Cell apoptosis was promoted by siFGF5 treatment. Cell migration and invasion of H661 and CALU1 cells with siFGF5 transfection were markedly diminished compared with the siNC groups. In addition, migration and invasion-associated proteins (E-cadherin, matrix metalloproteinase-2 [MMP-2], and MMP-9) and epithelial mesenchymal transition markers (N-cadherin, vimentin, snail, and slug) were also regulated by FGF5 siRNA treatment. Gene set enrichment analysis on The Cancer Genome Atlas dataset showed that the Kyoto Encyclopedia of Genes and Genomes (KEGG) cell cycle and vascular endothelial growth factor (VEGF) pathways were correlated with FGF5 expression, which was further confirmed in NSCLC cells by Western blot analysis. Our results indicated that FGF5 silencing suppressed cell growth and invasion via regulation of the cell cycle and VEGF pathways. Therefore, FGF5 may serve as a promising therapeutic strategy for NSCLC.  相似文献   

15.
Summary The ex vivo establishment, expansion, transduction, and reintroduction of autologous bone marrow stromal cells offers a potential efficacious system for somatic cell gene therapy. It is likely that any ex vivo system will require the use of large numbers of cells which express high levels of transgene products. We present a method for routine expansion of canine bone marrow stromal cells, established from initial 10–20 ml marrow aspirates, to greater than 109 cells. This high level expansion of cell cultures uses the stimulatory effect of acidic fibroblast growth factor (aFGF) and heparin. In the absence of these factors, stromal cell cultures grow actively for only 1 to 2 passages, become flattened in morphology, and expand to only 108 cells. In the presence of heparin (5 U/ml), aFGF exerts its effect over a wide range of concentrations (0.1–10 ng/ml) in a dose-dependent manner. The stimulatory effect is dependent on the presence of both aFGF and heparin. Immunocytochemical and cytochemical analyses phenotypically characterize these stromal cells as bone marrow stromal myofibroblasts. Stromal cells grown in the presence of aFGF and heparin grow actively and maintain a fibroblast-like morphology for a number of passages, transduce efficiently with a human growth hormone (hGH) expression vector, and express and secrete high levels of hGH. Human marrow stromal cells were also established and expanded by the same culture method. This culture method should be of great value in somatic cell gene therapy for the delivery of secreted gene products to the plasma of large mammals.  相似文献   

16.
The recombinant basic fibroblast growth factor (bFGF) containing collagen‐binding domain (CBD) has been found to be a potential therapeutic factor in tissue regeneration. However, its binding efficiency and quantification remain uncertain. In this research, massive recombinant bFGFs with good bioactivity for enhancing the proliferation of NIH‐3T3 cells were achieved. An ELISA‐based quantitative method was set up to investigate the binding efficiency of CBD‐bFGFs on collagen films. It indicated that the CBDs significantly increased the collagen‐binding ability of bFGF (< .05), with the optimum binding condition first determined to be in the pH range of 7.5‐9.5 (< .05). Then, the relevant equations to calculate the binding density of bFGF, C‐bFGF, and V‐bFGF were acquired. Analysis confirmed that the bioactivity of immobilized bFGFs was well correlated with the density of growth factor on collagen films. Based on this research, the density of growth factor is a logical and applicable dosage unit for quantification of binding efficiency of growth factors, rather than traditional concentration of soluble growth factors in tissue engineering applications.  相似文献   

17.
Summary Effects of fibroblast growth factor (FGF) and of bromocriptine, a dopaminergic receptor agonist, on the mitotic index in the organ-cultured anterior pituitary gland of the rat were investigated, using the colchicine metaphase-arrest technique. It has been found that FGF increases the mitotic index in the anterior pituitary explants. By contrast bromocriptine inhibits the mitogenic effect of FGF.  相似文献   

18.
Because of specificity for both heparin/heparan sulfate and the receptor complex on epithelial cells relative to other fibroblast growth factor (FGF) homologues, there is considerable interest in clinical and commercial applications of FGF7 (also called keratinocyte growth factor or KGF) that require large quantities at reasonable cost. Production of recombinant FGF7 from bacteria suffers from lower yields and recovery relative to FGF1 and FGF2. Fusion of FGF7 at the N-terminus with glutathione-S-transferase (GST) followed by removal of GST by proteolysis while bound to natural ligand heparin improved the intrinsically low yields from Escherichia coli hosts to 3.2 mg per liter per OD(600), which was still only 10% of that for FGF1. Yield of the GST-FGF7 fusion product was improved to about 17 mg per liter per OD(600) in strain BL21(DE3)pLysS by inclusion of 10-100mM magnesium chloride (MgCl(2)) in the culture medium. This improved by about five times the yields of fully active 54ser-FGF7 after proteolytic excision of the GST portion from GST-FGF7 immobilized on heparin-Sepharose. This simple enhancement improves the cost-effectiveness of production of recombinant FGF7 in bacteria for clinical and commercial applications.  相似文献   

19.
Heparin was immobilized on a polystyrene plate in a specificpattern by photolithography. Heparin was coupled with azidoaniline. Thederivatized heparin was cast on the polystyrene plate from aqueoussolution. After drying, the plate was photo-irradiated in the presence of aphotomask. The micropatterning was confirmed by staining with a dye,ethydium bromide. Since heparin has negative charges, the cationic dyewas adsorbed on the regions where heparin was immobilized. In thepresence fibroblast growth factor (FGF), the growth of mouse fibroblastSTO cells was enhanced only on the heparin-immobilized regions. Thisresult indicated that micropattern-immobilized heparin activated FGF forcell growth activity.  相似文献   

20.
To establish peroxynitrite (ONOO(-)) as a mediator of acidic fibroblast growth factor (FGF-1) function, preparations of recombinant human FGF-1 were treated with the pro-oxidant in vitro and identified amino acid modifications were correlated with biologic activity. The sequence of FGF-1 amino acid modifications induced by increasing concentrations of ONOO(-) was from cysteine oxidation to dityrosine formation, and to tyrosine/tryptophan nitration. Low steady-state ONOO(-) concentrations (10-50 microM) induced formation of dityrosine, which involved less than 0.1% of the total tyrosines. Treatment of FGF-1 with ONOO(-) induced a dose-dependent (10-50 microM) loss of sulfhydryl groups that correlated with formation of reducible (dithiothreitol, arsenite) FGF-1 aggregates containing 50% latent biologic activity. Treatment with 0.1-0.5mM ONOO(-) induced increasing formation of non-reducible, inactivated FGF-1 structures. Combination of real-time spectral analysis and electrospray mass spectroscopy revealed that six residues (Y29, Y69, Y108, Y111, Y139, and W121) were nitrated by ONOO(-). ONOO(-) treatment (0.1mM) of an active FGF-1 mutant (cysteines converted to serines) induced dose-dependent, non-reversible inhibition of biologic activity that correlated with nitration of Y108 and Y111, both of which reside within a conserved domain encompassing the putative FGF-1 receptor binding site. Collectively, these observations predict a role for low levels of ONOO(-) during secretion of FGF-1 as an extracellular complex containing latent biologic activity. High steady-state levels of ONOO(-) may induce extensive cysteine oxidation, critical tyrosine nitration, and non-reversible inactivation of FGF-1, a potential inhibitory feedback mechanism restoring cellular homeostatis during the resolution of inflammation and repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号