首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Atherosclerosis is currently the leading factor of death in developed countries. It is now recognized as a chronic immune-inflammatory disease, whose initial stages involve the interaction of leukocytes with the endothelial monolayer. The initial stage of atherosclerosis requires the interplay of various cell adhesion molecules and immune cells to trigger leukocyte and lymphocyte migration from the circulating blood into the arterial intima. Studies have unveiled the role of inflammatory mediators in the initiation, onset and progression of the disease. During the last few years we have gained a greater understanding of the mechanism that modulates monocyte, macrophage and T cell infiltration, the role these cells play in the atherosclerotic lesion, in the formation of the fibrous plaque formation with the consequent narrowing of the arteries, and the mechanisms that lead to plaque rupture and the formation of thrombi and emboli. This review talks about the leukocyte recruitment in early atherosclerosis, the formation of the plaque and the mechanisms that lead to thrombosis in advanced atherosclerosis. Finally, we discuss the potential for novel therapies to treat this disease.  相似文献   

2.
Atherosclerosis and its complications, such as coronary heart disease, heart infarction and stroke, are the leading causes of death in the developed world. High blood pressure, diabetes, smoking and a diet high in cholesterol and lipids clearly increase the likelihood of premature atherosclerosis, albeit other factors, such as the individual genetic makeup, may play an additional role. During atherosclerosis, uncontrolled cholesterol and lipid accumulation in macrophages and smooth muscle cells leads to foam cell formation and to the progression of the atherosclerotic plaque. This review will focus on foam cell formation within the atherosclerotic lesion, the involvement of the scavenger receptor genes in this process, and the possibility to interfere with scavenger receptor function to reduce the progression of atherosclerosis. To date, the regulatory mechanisms for the expression of scavenger receptor genes and their role in atherosclerosis are not well characterized. Knowledge on this subject could lead to a better understanding of the process, prevention and therapy of this disease.  相似文献   

3.
PPARalpha in atherosclerosis and inflammation   总被引:3,自引:0,他引:3  
  相似文献   

4.
Atherosclerosis is a chronic, inflammatory disorder characterized by the deposition of excess lipids in the arterial intima. The formation of macrophage-derived foam cells in a plaque is a hallmark of the development of atherosclerosis. Lipid homeostasis, especially cholesterol homeostasis, plays a crucial role during the formation of foam cells. Recently, lipid droplet-associated proteins, including PAT and CIDE family proteins, have been shown to control the development of atherosclerosis by regulating the formation, growth, stabilization and functions of lipid droplets in macrophage-derived foam cells. This review focuses on the potential mechanisms of formation of macrophage-derived foam cells in atherosclerosis with particular emphasis on the role of lipid homeostasis and lipid droplet-associated proteins. Understanding the process of foam cell formation will aid in the future discovery of novel therapeutic interventions for atherosclerosis.  相似文献   

5.
Platelets are small, anucleate blood elements of critical importance in cardiovascular disease. The ability of platelets to activate and aggregate to form blood clots in response to endothelial injury, such as plaque rupture, is well established. These cells are therefore important contributors to ischaemia in atherothrombosis, and antiplatelet therapy is effective for this reason. However, growing evidence suggests that platelets are also important mediators of inflammation and play a central role in atherogenesis itself. Interactions between activated platelets, leukocytes and endothelial cells trigger autocrine and paracrine activation signals, resulting in leukocyte recruitment at and into the vascular wall. Direct physical interaction may contribute also, through platelet adhesion molecules assisting localization of monocytes to the site of atherogenesis and platelet granule release contributing to the chronic inflammatory milieu which leads to foam cell development and accelerated atherogenesis. Recent studies have shown that antiplatelet therapy in animal models of accelerated atherogenesis can lead to decreased plaque size and improve plaque stability. This review examines the complexity of platelet function and the nature of interactions between activated platelets, leukocytes and endothelial cells. We focus on the growing body of evidence that platelets play a critical role in atherogenesis and contribute to progression of atherosclerosis.  相似文献   

6.
The formation of advanced glycation end-products(AGEs) is an important cause of metabolic memory in diabetic patients and a key factor in the formation of atherosclerosis(AS) plaques in patients with diabetes mellitus. Related studies showed that AGEs could disrupt hemodynamic steady-state and destroy vascular wall integrity through the endothelial barrier damage, foam cell(FC) formation, apoptosis, calcium deposition and other aspects. At the same time, AGEs could initiate oxidative stress and inflammatory response cascade via receptor-depended and non-receptor-dependent pathways, promoting plaques to develop from a steady state to a vulnerable state and eventually tend to rupture and thrombosis. Numerous studies have confirmed that these pathological processes mentioned above could lead to acute coronary heart disease(CHD) and other acute cardiovascular and cerebrovascular events. However, the specific role of AGEs in the progression and regression of AS plaques has not yet been fully elucidated. In this paper, the formation, source, metabolism, physical and chemical properties of AGEs and their role in the migration of FCs and plaque calcification are briefly described, we hope to provide new ideas for the researchers that struggling in this field.  相似文献   

7.
Sound data support the concept that in atherosclerosis, inflammation and dyslipidemia intersect each other and that irrespective of the initiator, both participate from the early stages to the ultimate fate of the atheromatous plaque. The two partakers manoeuvre a vicious circle in atheroma formation: dyslipidaemia triggers an inflammatory process and inflammation elicits dyslipidaemia. Independent of the initial cause, the atherosclerotic lesions occur focally, in particular arterial-susceptible sites, by a process that, although continuous, can be arbitrarily divided into a sequence of consecutive stages that lead from fatty streak to the fibro-lipid plaque and ultimately to plaque rupture and thrombosis. In the process, the initial event is a change in endothelial cells (EC) constitutive properties. Then, the molecular alarm signals send by dysfunctional EC are decoded by specific blood immune cells (monocytes, T lymphocytes, neutrophils, mast cells) and by the resident vascular cells, that respond by initiating a robust inflammatory process, in which the cells and the factors they secrete hasten the atheroma development. Direct and indirect crosstalk between the cells housed within the nascent plaque, complemented by the increase in risk factors of atherosclerosis lead to atheroma development and outcome. The initial inflammatory response can be regarded as a defense/protective reaction mechanism, but its further amplification, speeds up atherosclerosis. In this review, we provide an overview on the role of inflammation and dyslipidaemia and their intersection in atherogenesis. The data may add to the foundation of a novel attitude in the diagnosis and treatment of atherosclerosis.  相似文献   

8.
Chronic inflammation drives the development of atherosclerosis, and details regarding the involvement of different leukocyte subpopulations in the pathology of this disease have recently emerged. This Review highlights the surprising contribution of granulocyte subsets and mast cells to early atherogenesis and subsequent plaque instability, and describes the complex, double-edged role of monocyte, macrophage and dendritic-cell subsets through crosstalk with T cells and vascular progenitor cells. Improved understanding of the selective contributions of specific cell types to atherogenesis will pave the way for new targeted approaches to therapy.  相似文献   

9.
Human T lymphocyte adhesion to human endothelial cells is the initial event in T cell migration to areas of extravascular inflammation. The molecular basis for T cell-endothelial cell adhesion was investigated using two different cell-cell adhesion assays: a) a fluorescein cell-cell adhesion assay using nonadherent endothelial cells and fluorescein-labeled T lymphocytes, and b) a radionuclide cell-cell adhesion assay using adherent endothelial cells and 51Cr-labelled T cells. Both assay systems demonstrated comparable quantitative assessment of cell-cell adhesions. The assays were performed at 22 degrees C and adhesions were maximal at 30 min. The results of these adhesion assays confirmed previous reports that T cells adhere to endothelial cells. In addition, we have shown that T cells adhere only marginally to foreskin fibroblasts or bone marrow derived fibroblasts. T cell-endothelial cell adhesions were significantly stronger than either monocytes or B lymphoblastoid cells adhesion to endothelial cells. To demonstrate the molecular mechanisms involved in regulating T cell-endothelial cell adhesions, a panel of function-associated monoclonal antibodies (MAb) were tested for their ability to inhibit T cell adhesion. MAb reactive with the leukocyte surface glycoprotein LFA-1 significantly inhibited T cell-endothelial cell adhesions in both assay systems. In contrast, MAb directed at other surface antigens did not inhibit T cell adhesion. The involvement of the LFA-1 glycoprotein in T lymphocyte adhesion to endothelial cells suggest that the LFA-1 molecule may be important in the regulation of leukocyte interactions.  相似文献   

10.
The multiple actions of angiotensin II in atherosclerosis   总被引:3,自引:0,他引:3  
Angiotensin II (Ang II), the effector peptide of the renin-angiotensin system, has been implied in the pathogenesis of atherosclerosis on various levels. There is abundant experimental evidence that pharmacological antagonism of Ang II formation by angiotensin converting enzyme inhibition or blockade of the cellular effects of Ang II by angiotensin type 1 receptor blockade inhibits formation and progression of atherosclerotic lesions. Angiotensin promotes generation of oxidative stress in the vasculature, which appears to be a key mediator of Ang II-induced endothelial dysfunction, endothelial cell apoptosis, and lipoprotein peroxidation. Ang II also induces cellular adhesion molecules, chemotactic and proinflammatory cytokines, all of which participate in the induction of an inflammatory response in the vessel wall. In addition, Ang II triggers responses in vascular smooth muscle cells that lead to proliferation, migration, and a phenotypic modulation resulting in production of growth factors and extracellular matrix. While all of these effects contribute to neointima formation and development of atherosclerotic lesions, Ang II may also be involved in acute complications of atherosclerosis by promoting plaque rupture and a hyperthrombotic state. Accordingly, Ang II appears to have a central role in the pathophysiology of atherosclerosis.  相似文献   

11.
Cardiovascular diseases (CVDs) caused by arteriosclerosis are the leading cause of death and disability worldwide. In the late stages of atherosclerosis, the atherosclerotic plaque gradually expands in the blood vessels, resulting in vascular stenosis. When the unstable plaque ruptures and falls off, it blocks the vessel causing vascular thrombosis, leading to strokes, myocardial infarctions, and a series of other serious diseases that endanger people''s lives. Therefore, regulating plaque stability is the main means used to address the high mortality associated with CVDs. The progression of the atherosclerotic plaque is a complex integration of vascular cell apoptosis, lipid metabolism disorders, inflammatory cell infiltration, vascular smooth muscle cell migration, and neovascular infiltration. More recently, emerging evidence has demonstrated that non-coding RNAs (ncRNAs) play a significant role in regulating the pathophysiological process of atherosclerotic plaque formation by affecting the biological functions of the vasculature and its associated cells. The purpose of this paper is to comprehensively review the regulatory mechanisms involved in the susceptibility of atherosclerotic plaque rupture, discuss the limitations of current approaches to treat plaque instability, and highlight the potential clinical value of ncRNAs as novel diagnostic biomarkers and potential therapeutic strategies to improve plaque stability and reduce the risk of major cardiovascular events.  相似文献   

12.
Blood levels of triglyceride-rich lipoproteins (TRL) increase postprandially, and a delay in their clearance results in postprandial hyperlipidemia, an important risk factor in atherosclerosis development. Atherosclerosis is a multifactorial inflammatory disease, and its initiation involves endothelial dysfunction, invasion of the artery wall by leukocytes and subsequent formation of foam cells. TRL are implicated in several of these inflammatory processes, including the formation of damaging free radicals, leukocyte activation, endothelial dysfunction and foam cell formation. Recent studies have provided insights into the mechanisms of uptake and the signal transduction pathways mediating the interactions of TRL with leukocytes and vascular cells, and how they are modified by dietary lipids. Multiple receptor and non-receptor mediated pathways function in macrophage uptake of TRL. TRL also induce expression of adhesion molecules, cyclooxygenase-2 and heme-oxygenase-1 in endothelial cells, and activate intracellular signaling pathways involving mitogen-activated protein kinases, NF-κB and Nrf2. Many of these effects are strongly influenced by dietary components carried in TRL. There is extensive evidence indicating that raised postprandial TRL levels are a risk factor for atherosclerosis, but the molecular mechanisms involved are only now becoming appreciated. Here, we review current understanding of the mechanisms by which TRL influence vascular cell function.  相似文献   

13.
Interactions between endothelial cells and leukocytes   总被引:3,自引:0,他引:3  
We present evidence that specific receptors are utilized by neutrophils to control their interaction with endothelial cells at sites of acute inflammation and that these receptors are related if not identical to lymphocyte "homing receptors" for lymphoid tissue high endothelium. We speculate that such receptors play a fundamental but not exclusive role in controlling the extravasation and tissue localization of all bone marrow-derived nucleated cells. In addition, we emphasize the active role of endothelial cells in the process of lymphocyte migration and leukocyte extravasation. By the expression of as yet unidentified organ-specific determinants for lymphocyte recognition, endothelial cells control the exit of particular lymphocyte subsets into mucosal versus nonmucosal sites, thus helping to determine the unique features of mucosal versus nonmucosal immune responses. Furthermore, we argue that endothelial cells are exquisitely responsive to local immune reactivity and present evidence that specific lymphokines, including gamma-interferon, play an important role in inducing postcapillary venules to express differentiated features required for the support of lymphocyte traffic into lymphoid organs and into sites of chronic inflammation. Leukocytes, endothelial cells, and probably other tissue cell classes appear to interact at multiple levels by a variety of mechanisms to regulate the local extravasation of immune effector cells.  相似文献   

14.
Mineralocorticoid receptors (MRs) contribute to the pathophysiology of hypertension and cardiovascular disease in humans. As such, MR antagonists improve cardiovascular outcomes but the molecular mechanisms remain unclear. The actions of the MR in the kidney to increase blood pressure are well known, but the recent identification of MRs in immune cells has led to novel discoveries in the pathogenesis of cardiovascular disease that are reviewed here. MR regulates macrophage activation to the pro-inflammatory M1 phenotype and this process contributes to the pathogenesis of cardiovascular fibrosis in response to hypertension and to outcomes in mouse models of stroke. T lymphocytes have recently been implicated in the development of hypertension and cardiovascular fibrosis in mouse models. MR activation in vivo promotes T lymphocyte differentiation to the pro-inflammatory Th1 and Th17 subsets while decreasing the number of anti-inflammatory T regulatory lymphocytes. The mechanism likely involves activation of MR in antigen presenting dendritic cells that subsequently regulate Th1/Th17 polarization by production of cytokines. Alteration of the balance between T helper and T regulatory lymphocytes contributes to the pathogenesis of hypertension and atherosclerosis and the associated complications. B lymphocytes also express the MR and specific B lymphocyte-derived antibodies modulate the progression of atherosclerosis. However, the role of MR in B lymphocyte function remains to be explored. Overall, recent studies of MR in immune cells have identified new mechanisms by which MR activation may contribute to the pathogenesis of organ damage in patients with cardiovascular risk factors. Conversely, inhibition of leukocyte MR may contribute to the protective effects of MR antagonist drugs in cardiovascular patients. Further understanding of the role of MR in leukocyte function could yield novel drug targets for cardiovascular disease.  相似文献   

15.
Cardiovascular diseases (CVDs) are a leading health problem worldwide. Epidemiologic studies link high salt intake and conditions predisposing to dehydration such as low water intake, diabetes and old age to increased risk of CVD. Previously, we demonstrated that elevation of extracellular sodium, which is a common consequence of these conditions, stimulates production by endothelial cells of clotting initiator, von Willebrand Factor, increases its level in blood and promotes thrombogenesis. In present study, by PCR array, using human umbilical vein endothelial cells (HUVECs), we analyzed the effect of high NaCl on 84 genes related to endothelial cell biology. The analysis showed that the affected genes regulate many aspects of endothelial cell biology including cell adhesion, proliferation, leukocyte and lymphocyte activation, coagulation, angiogenesis and inflammatory response. The genes whose expression increased the most were adhesion molecules VCAM1 and E-selectin and the chemoattractant MCP-1. These are key participants in the leukocyte adhesion and transmigration that play a major role in the inflammation and pathophysiology of CVD, including atherosclerosis. Indeed, high NaCl increased adhesion of mononuclear cells and their transmigration through HUVECs monolayers. In mice, mild water restriction that elevates serum sodium by 5 mmol/l, increased VCAM1, E-selectin and MCP-1 expression in mouse tissues, accelerated atherosclerotic plaque formation in aortic root and caused thickening or walls of coronary arteries. Multivariable linear regression analysis of clinical data from the Atherosclerosis Risk in Communities Study (n=12779) demonstrated that serum sodium is a significant predictor of 10 Years Risk of coronary heart disease. These findings indicate that elevation of extracellular sodium within the physiological range is accompanied by vascular changes that facilitate development of CVD. The findings bring attention to serum sodium as a risk factor for CVDs and give additional support to recommendations for dietary salt restriction and adequate water intake as preventives of CVD.  相似文献   

16.
动脉粥样硬化,是冠心病的病理基础,被认为是一种慢性炎症性疾病,涉及如巨噬细胞和T淋巴细胞等许多炎性细胞。肥大细胞是一种重要的免疫细胞,其功能主要是在超敏反应方面的作用。有病理学研究表明:肥大细胞在动脉粥样硬化斑块周围表达增加,这表明肥大细胞可能与疾病的进展有关。最近的研究表明,肥大细胞在动脉粥样硬化中确实起着重要的作用。本文通过总结肥大细胞在动脉粥样硬化形成中的作用,为在疾病进程中,通过调节肥大细胞功能来改善动脉粥样硬化的这种治疗方式的可能性提供依据。  相似文献   

17.
The activation of leukocyte integrins through diverse receptors results in transformation of the integrin from a bent, resting form to an extended conformation, which has at least two states of ligand-binding activity. This highly regulated activation process is essential for T cell migration and the formation of an immunological synapse. The signalling events that drive integrin activation are complex. Some key players have been well-characterized, but other aspects of the signalling mechanisms involved are still unclear. This Review focuses on the integrin lymphocyte function-associated antigen 1 (LFA1; also known as αLβ2 integrin), which is expressed by T cells, and explores how disparate signalling pathways synergize to regulate LFA1 activity.  相似文献   

18.
The gap junction proteins connexin32 (Cx32), Cx37, Cx40, and Cx43 are expressed in endothelial cells, and regulate vascular functions involving inflammation, vasculogenesis and vascular remodeling. Aberrant Cxs expression promotes the development of atherosclerosis which is modulated by angiogenesis; however the role played by endothelial Cxs in angiogenesis remains unclear. In this study, we determined the effects of endothelial Cxs, particularly Cx32, on angiogenesis. EA.hy926 cells that had been transfected to overexpress Cx32 significantly increased capillary length and the number on branches compared to Cx-transfectant cells over-expressing Cx37, Cx40, and Cx43 or mock-treated cells. Treatment via intracellular transfer of anti-Cx32 antibody suppressed tube formation of human umbilical vein endothelial cells (HUVECs) compared to controls. In vitro wound healing assays revealed that Cx32-transfectant cells significantly increased the repaired area while anti-Cx32 antibody-treated HUVECs reduced it. Ex vivo aorta ring assays and in vivo matrigel plaque assays showed that Cx32-deficient mice impaired both vascular sprouting from the aorta and cell migration into the implanted matrigel. Therefore endothelial Cx32 facilitates tube formation, wound healing, vascular sprouting, and cell migration. Our results suggest that endothelial Cx32 positively regulates angiogenesis by enhancing endothelial cell tube formation and cell migration.  相似文献   

19.

Atherosclerosis is characterised by the growth of fatty plaques in the inner artery wall. In mature plaques, vascular smooth muscle cells (SMCs) are recruited from adjacent tissue to deposit a collagenous cap over the fatty plaque core. This cap isolates the thrombogenic plaque content from the bloodstream and prevents the clotting cascade that leads to myocardial infarction or stroke. Despite the protective role of the cap, the mechanisms that regulate cap formation and maintenance are not well understood. It remains unclear why some caps become stable, while others become vulnerable to rupture. We develop a multiphase PDE model with non-standard boundary conditions to investigate collagen cap formation by SMCs in response to diffusible growth factor signals from the endothelium. Platelet-derived growth factor stimulates SMC migration, proliferation and collagen degradation, while transforming growth factor (TGF)-\(\beta \) stimulates SMC collagen synthesis and inhibits collagen degradation. The model SMCs respond haptotactically to gradients in the collagen phase and have reduced rates of migration and proliferation in dense collagenous tissue. The model, which is parameterised using in vivo and in vitro experimental data, reproduces several observations from plaque growth in mice. Numerical and analytical results demonstrate that a stable cap can be formed by a relatively small SMC population and emphasise the critical role of TGF-\(\beta \) in effective cap formation. These findings provide unique insight into the mechanisms that may lead to plaque destabilisation and rupture. This work represents an important step towards the development of a comprehensive in silico plaque model.

  相似文献   

20.
The development of atherosclerosis is a multifactorial process in which both elevated plasma cholesterol levels and proliferation of smooth muscle cells play a central role. Numerous studies have suggested the involvement of oxidative processes in the pathogenesis of atherosclerosis and especially of oxidized low density lipoprotein. Some epidemiological studies have shown an association between high dietary intake and high serum concentrations of vitamin E and lower rates of ischemic heart disease. Cell culture studies have shown that alpha-tocopherol brings about inhibition of smooth muscle cell proliferation. This takes place via inhibition of protein kinase C activity. alpha-Tocopherol also inhibits low density lipoprotein induced smooth muscle cell proliferation and protein kinase C activity. The following animal studies showed that vitamin E protects development of cholesterol induced atherosclerosis by inhibiting protein kinase C activity in smooth muscle cells in vivo. Elevated plasma levels of homocysteine have been identified as an important and independent risk factor for cerebral, coronary and peripheral atherosclerosis. However the mechanisms by which homocysteine promotes atherosclerotic plaque formation are not clearly defined. Earlier reports have been suggested that homocysteine exert its effect via H2O2 produced during its metabolism. To evaluate the contribution of homocysteine in the pathogenesis of vascular diseases, we examined whether the homocysteine effect on vascular smooth muscle cell growth is mediated by H2O2. We show that homocysteine induces DNA synthesis and proliferation of vascular smooth muscle cells in the presence of peroxide scavenging enzyme, catalase. Our data suggest that homocysteine induces smooth muscle cell growth through the activation of an H2O2 independent pathway and accelerate the progression of atherosclerosis. The results indicate a cellular mechanism for the atherogenicity of cholesterol or homocysteine and protective role of vitamin E in the development of atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号