首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The contribution of oxidative stress to the pathophysiology of depression has been described in numerous studies. Particularly, an increased production of reactive oxygen species (ROS) caused by mitochondrial dysfunction can lead to neuronal cell death. Human neuroblastoma SH-SY5Y cells were used to investigate the neuroprotective effect of the antidepressant duloxetine against rotenone-induced oxidative stress. SH-SY5Y cells were pretreated with duloxetine (1–5 µM) for 24 h followed by a 24-h rotenone exposure (10 µM). The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) inhibitor LY294002 (10 µM) and the heme oxygenase 1 (HO-1) inhibitor zinc protoporphyrin IX-ZnPP (5 µM) were added to cultures 1 h prior duloxetine treatments. After treatments cell viability and ROS generation were assessed. NF-E2-related factor-2 (Nrf2) nuclear translocation was assessed by immunofluorescent staining after 4 and 8 h of duloxetine incubation. Furthermore, the Nrf2 and HO-1 mRNA expression was carried out after 4–48 h of duloxetine treatment by qRT-PCR. Duloxetine pretreatment antagonized rotenone-induced overproduction of ROS and cell death in SH-SY5Y cells. In addition, a 1-h pretreatment with LY294002 abolished duloxetine’s protective effect. Duloxetine also induced nuclear translocation of the Nrf2 and the expression of its target gene, HO-1. Finally, the HO-1 inhibitor, ZnPP, suppressed the duloxetine protective effect. Overall, these results indicate that the mechanism of duloxetine neuroprotective action against oxidative stress and cell death might rely on the Akt/Nrf2/HO-1 pathways.  相似文献   

4.
Amyloid-β (Aβ) has been reported to cause oxidative damage of neurons leading to neurotoxicity in a variety of diseases and cancers. As an anticancer drug, brusatol (BR) has been shown to have potent cytotoxic effects on various cancer cell lines. In this study, the effect and mechanism of BR on Aβ-induced neurotoxicity was investigated in U-251 glioma cells. Using the MTT assay, the results suggest that BR ameliorated cell injury induced by Aβ in U-251 cells. After running Hoechst and Western blot assays, BR prevented cell apoptosis induced by Aβ in U-251 cells. In addition, BR inhibited the increased reactive oxygen species and mitochondrial membrane potential levels induced by Aβ in U-251 cells using the DCFH-DA and Rh123 method. Furthermore, BR induced the Nrf2/HO-1 pathway by inhibiting the PI3K/AKT/mTOR pathway to inhibit neurotoxicity elicited by Aβ. These results suggest that brustasol is a valuable potential antitumor drug available for chemotherapy.  相似文献   

5.
6.
Deoxynivalenol (DON) is Fusarium mycotoxin that is frequently found in many cereal-based foods, and its ingestion has a deleterious impact on human health. In this investigation, we studied the mechanism of DON-induced neurotoxicity and followed by cytoprotective efficacy of quercetin (QUE) in contradiction of DON-induced neurotoxicity through assessing the oxidative stress and apoptotic demise in the human neuronal model, i.e. SH-SY5Y cells. DON diminished the proliferation of cells in the manner of dose and time-dependent as revealed by cell viability investigations, i.e. MTT and lactate dehydrogenase assays. Additional studies, such as intracellular reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial membrane potential (MMP), DNA damage, cell cycle, and neuronal biomarkers (amino acid decarboxylase, tyrosine hydroxylase, and brain-derived neurotrophic factor) demonstrated that DON induces apoptotic demise in neuronal cells through oxidative stress intermediaries. On another hand, pre-treatment of neuronal cells with 1 mM of quercetin (QUE) showed decent viability upon exposure to 100 µM of DON. In detailed studies demonstrated that QUE (1 mM) pre-treated cells show strong attenuation efficiency against DON-induced ROS generation, LPO, MMP loss, DNA impairment, cell cycle arrest, and down-regulation of neuronal biomarkers. The consequences of the investigation concluded that QUE mitigates the DON-induced stress viz., decreased ROS production and LPO generation, upholding MMP and DNA integrity and regulation of neuronal biomarker gene expression in SH-SY5Y cells.  相似文献   

7.
8.
Gallic acid is one of the most important polyphenolic compounds, which is considered an excellent free radical scavenger. 6-Hydroxydopamine (6-OHDA) is a neurotoxin, which has been implicated in mainly Parkinson’s disease (PD). In this study, we investigated the molecular mechanism of the neuroprotective effects of gallic acid on 6-OHDA induced apoptosis in human dopaminergic cells, SH-SY5Y. Our results showed that 6-OHDA induced cytotoxicity in SH-SY5Y cells was suppressed by pre-treatment with gallic acid. The percentage of live cells (90%) was high in the pre-treatment of gallic acid when compared with 6-OHDA alone treated cell line. Moreover, gallic acid was very effective in attenuating the disruption of mitochondrial membrane potential, elevated levels of intracellular ROS and apoptotic cell death induced by 6-OHDA. Gallic acid also lowered the ratio of the pro-apoptotic Bax protein and the anti-apoptotic Bcl-2 protein in SH-SY5Y cells. 6-OHDA exposure was up-regulated caspase-3 and Keap-1 and, down-regulated Nrf2, BDNF and p-CREB, which were sufficiently reverted by gallic acid pre-treatment. These findings indicate that gallic acid is able to protect the neuronal cells against 6-OHDA induced injury and proved that gallic acid might potentially serve as an agent for prevention of several human neurodegenerative diseases caused by oxidative stress and apoptosis.  相似文献   

9.
BackgroundWhen redox balance is lost in the brain, oxidative stress can cause serious damage that leads to neuronal loss, in congruence with neurodegenerative diseases. Aucubin (AU) is an iridoid glycoside and that is one of the active constituents of Eucommia ulmoides, has many pharmacological effects such as anti-inflammation, anti-liver fibrosis, and anti-atherosclerosis.PurposeThe present study aimed to evaluate the inhibitory effects of AU on cell oxidative stress against hydrogen peroxide (H2O2)-induced injury in SH-SY5Y cells in vitro.MethodsSH-SY5Y cells were simultaneously treated with AU and H2O2 for 24 h. Cell viability was measured by CCK-8. Additionally, mitochondrial membrane depolarization, reactive oxygen species (ROS) generation, and cell apoptosis were measured by flow cytometry.ResultsThe results showed that AU can significantly increase the H2O2-induced cell viability and the mitochondrial membrane potential, decrease the ROS generation, malondialdehyde (MDA), and increase glutathione (GSH) contents and the superoxide dismutase (SOD) activity. We also found that H2O2 stimulated the production of nitric oxide (NO), which could be reduced by treatment with AU through inhibiting the inducible nitric oxide synthase (iNOS) protein expression. In H2O2-induced SH-SY5Y cells, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) content and cell apoptosis were significantly reduced by AU treatment through nuclear factor E2-related factor 2/hemo oxygenase-1 (Nrf2/HO-1) activation, inhibiting the expression of p-NF-κB/NF-κB and down-regulating MAPK and Bcl-2/Bax pathways.ConclusionThese results indicate that AU can reduce inflammation and oxidative stress through the NF-κB, Nrf2/HO-1, and MAPK pathways.  相似文献   

10.
Deregulated iron homeostasis is generally believed to be implicated in neurodegenerative diseases, including Parkinson’s disease. Nevertheless, it is not fully understood how iron overload can elicit neuronal cell damage. Here we examined mitochondrial reactive oxygen species (ROS) levels in human dopaminergic neuroblastoma SH-SY5Y cells upon iron exposure. A relatively high concentration of iron could significantly increase mitochondrial ROS levels in SH-SY5Y cells. Pharmacological activation of AMP-activated protein kinase (AMPK) almost completely inhibited the effect of iron on mitochondrial ROS. By contrast, AMPK inhibition aggravated the neurotoxicity of iron and enhanced the production of mitochondrial ROS. Collectively, these findings suggested that excess iron may be able to perturb mitochondrial function, and AMPK activity is important for the association of iron and mitochondria.  相似文献   

11.
Although the underlying cause of Parkinson's disease (PD) is not well characterized, epidemiological studies suggest that exposure to agricultural chemicals is a risk factor for PD. Fluazinam (FZN) is a new active ingredient for the control of grey mould, belonging to the novel broad spectrum phenylpyridinamine fungicides. We used human neuroblastoma SH-SY5Y cells to investigate mechanisms of dopaminergic cell death in response to FZN. FZN treatment produced dose-dependent cytotoxicity, and decreased the tyrosine hydroxylase (TH) expression in SH-SY5Y cells. We provided evidence for the occurrence of oxidative stress and oxidative damage during FZN exposure on dopaminergic cells through the measurement of reactive oxygen species (ROS) in cells with DCFH-DA. The cytotoxic effects of FZN appear to involve an increase in ROS generation since pretreatment with N-acetyl cysteine (NAC), an anti-oxidant, reduced cell death. After FZN treatment, dopamine (DA) levels decreased in both cell and culture media, and oxidative effects of FZN were blocked by NAC pretreatment. We show that cell death in response to FZN was due to apoptosis since FZN exposure results in an increased in cytochrome c release into the cytosol and activated caspase-3 through p38 and JNK signaling. Furthermore, the blocking of p38 or JNK signaling inhibits FZN-induced cell death. Phosphorylation of mitogen-activated protein kinases precedes cytochrome c release and caspase-3 activation. This cellular response is characteristic of mitochondrial dysfunction. Therefore, we also investigated the effect of FZN on mitochondrial complex I activity in FZN-treated cell. Interestingly, we show that FZN inhibited the complex I activity. Thus in this study, we report a new mode of action by which the fungicide FZN could triggers apoptosis.  相似文献   

12.
Ma  Yan  Zhu  Mingkun  Miao  Liping  Zhang  Xiaoyun  Dong  Xinyang  Zou  Xiaoting 《Biological trace element research》2018,186(1):185-198
Over the last decade, there has been an increased concern about the health risks from exposure to arsenic at low doses, because of their neurotoxic effects on the developing brain. The exact mechanism underlying arsenic-induced neurotoxicity during sensitive periods of brain development remains unclear, although enhanced oxidative stresses, leading to mitochondrial dysfunctions might be involved. Here, we highlight the generation of reactive oxygen species (ROS) and oxidative stress which leads to mitochondrial dysfunctions and apoptosis in arsenic-induced developmental neurotoxicity. Here, the administration of sodium arsenite at doses of 2 or 4 mg/kg body weight in female rats from gestational to lactational (GD6-PD21) resulted to increased ROS, led to oxidative stress, and increased the apoptosis in the frontal cortex, hippocampus, and corpus striatum of developing rats on PD22, compared to controls. Enhanced levels of ROS were associated with decreased mitochondrial membrane potential and the activity of mitochondrial complexes, and hampered antioxidant levels. Further, neuronal apoptosis, as measured by changes in the expression of pro-apoptotic (Bax, Caspase-3), anti-apoptotic (Bcl2), and stress marker proteins (p-p38, pJNK) in arsenic-exposed rats, was discussed. The severities of changes were found to more persist in the corpus striatum than in other brain regions of arsenic-exposed rats even after the withdrawal of exposure on PD45 as compared to controls. Therefore, our results indicate that perinatal arsenic exposure leads to abrupt changes in ROS, oxidative stress, and mitochondrial functions and that apoptotic factor in different brain regions of rats might contribute to this arsenic-induced developmental neurotoxicity.  相似文献   

13.
This study was designed to investigate the protective effects of extracellular superoxide dismutase (SOD3) against amyloid beta (Aβ25–35)-induced damage in human neuroblastoma SH-SY5Y cells and to elucidate the mechanisms responsible for this beneficial effect. SH-SY5Y cells overexpressing SOD3 were generated by adenoviral vector-mediated infection and Aβ25–35 was then added to the cell culture system to establish an in vitro model of oxidative stress. Cell viability, the generation of intracellular reactive oxygen species (ROS), the expression and activity of antioxidant enzymes, the levels of lipid peroxidation malondialdehyde (MDA), the expression of mitochondrial apoptosis-related genes and calcium images were examined. Following Aβ25–35 exposure, SOD3 overexpression promoted the survival of SH-SY5Y cells, decreased the production of ROS, decreased MDA and calcium levels, and decreased cytochrome c, caspase-3, caspase-9 and Bax gene expression. Furthermore, SOD3 overexpression increased the expression and activity of antioxidant enzyme genes and Bcl-2 expression. Together, our data demonstrate that SOD3 ameliorates Aβ25–35-induced oxidative damage in neuroblastoma SH-SY5Y cells by inhibiting the mitochondrial pathway. These data provide new insights into the functional actions of SOD3 on oxidative stress-induced cell damage.  相似文献   

14.
15.
Fan  You-Ling  Li  Heng-Chang  Zhao  Wei  Peng  Hui-Hua  Huang  Fang  Jiang  Wei-Hang  Xu  Shi-Yuan 《Neurochemical research》2016,41(9):2425-2432

Bupivacaine is widely used for regional anesthesia, spinal anesthesia, and pain management. However, bupivacaine could cause neuronal injury. Curcumin, a low molecular weight polyphenol, has a variety of bioactivities and may exert neuroprotective effects against damage induced by some stimuli. In the present study, we tested whether curcumin could attenuate bupivacaine-induced neurotoxicity in SH-SY5Y cells. Cell injury was evaluated by examining cell viability, mitochondrial damage and apoptosis. We also investigated the levels of activation of the Akt signaling pathway and the effect of Akt inhibition by triciribine on cell injury following bupivacaine and curcumin treatment. Our findings showed that the bupivacaine treatment could induce neurotoxicity. Pretreatment of the SH-SY5Y cells with curcumin significantly attenuated bupivacaine-induced neurotoxicity. Interestingly, the curcumin treatment increased the levels of Akt phosphorylation. More significantly, the pharmacological inhibition of Akt abolished the cytoprotective effect of curcumin against bupivacaine-induced cell injury. Our data suggest that pretreating SH-SY5Y cells with curcumin provides a protective effect on bupivacaine-induced neuronal injury via activation of the Akt signaling pathway.

  相似文献   

16.
Olfactory ensheathing cells (OECs) are a type of glia from the mammalian olfactory system, with neuroprotective and regenerative properties. β-Amyloid peptides are a major component of the senile plaques characteristic of the Alzheimer brain. The amyloid beta (Aβ) precursor protein is cleaved to amyloid peptides, and Aβ25–35 is regarded to be the functional domain of Aβ, responsible for its neurotoxic properties. It has been reported that Aβ25–35 triggers reactive oxygen species (ROS)-mediated oxidative damage, altering the structure and function of mitochondria, leading to the activation of the mitochondrial intrinsic apoptotic pathway. Our goal is to investigate the effects of OECs on the toxicity of aggregated Aβ25–35, in human neuroblastoma SH-SY5Y cells. For such purpose, SH-SY5Y cells were incubated with Aβ25–35 and OEC-conditioned medium (OECCM). OECCM promoted the cell viability and reduced the apoptosis, and decreased the intracellular ROS and the lipid peroxidation. In the presence of OECCM, mRNA and protein levels of antioxidant enzymes (SOD1 and SOD2) were upregulated. Concomitantly, OECCM decreased mRNA and the protein expression levels of cytochrome c, caspase-9, caspase-3, and Bax in SH-SY5Y cells, and increased mRNA and the protein expression level of Bcl-2. However, OECCM did not alter intracellular Ca2+ concentration in SH-SY5Y cells. Taken together, our data suggest that OECCM ameliorates Aβ25–35-induced oxidative damage in neuroblastoma SH-SY5Y cells by inhibiting the mitochondrial intrinsic pathway. These data provide new insights into the functional actions of OECCM on oxidative stress-induced cell damage.  相似文献   

17.
Qu M  Zhou Z  Chen C  Li M  Pei L  Chu F  Yang J  Wang Y  Li L  Liu C  Zhang L  Zhang G  Yu Z  Wang D 《Neurochemistry international》2011,59(8):1095-1103
Lycopene is a potent free radicals scavenger with demonstrated protective efficacy in several experimental models of oxidative damage. Trimethyltin (TMT) is an organotin compound with neurotoxic effects on the hippocampus and other limbic structures and is used to model neurodegenerative diseases targeting these brain areas. Oxidative stress is widely accepted as a central pathogenic mechanism of TMT-mediated neurotoxicity. The present study investigated whether the plant carotene lycopene protects against TMT-induced neurotoxicity in primary cultured rat hippocampal neurons. Lycopene pretreatment improved cell viability in TMT-treated hippocampal neurons and inhibited neuronal apoptosis. Microfluorometric imaging revealed that lycopene inhibited the accumulation of mitochondria-derived reactive oxygen species (ROS) during TMT exposure. Moreover, lycopene ameliorated TMT-induced activation of the mitochondrial permeability transition pore (mPTP) and the concomitant depolarization of the mitochondrial membrane potential (ΔΨm). Consequently, cytochrome c release from the mitochondria and ensuing caspase-3 activation were markedly reduced. These findings reveal that lycopene protects against TMT-induced neurotoxicity by inhibiting the mitochondrial apoptotic pathway. The anti-apoptotic effect of lycopene on hippocampal neurons highlights the therapeutic potential of plant-derived antioxidants against neurodegenerative diseases.  相似文献   

18.
Hwang YP  Jeong HG 《FEBS letters》2008,582(17):2655-2662
In this study, we investigated the mechanisms of kahweol protection of neuronal cells from cell death induced by the Parkinson's disease-related neurotoxin 6-hydroxydopamine (6-OHDA). Pretreatment of SH-SY5Y cells with kahweol significantly reduced 6-OHDA-induced generation of ROS, caspase-3 activation, and subsequent cell death. Kahweol also up-regulated heme oxygenase-1 (HO-1) expression, which conferred neuroprotection against 6-OHDA-induced oxidative injury. Moreover, kahweol induced PI3K and p38 activation, which are involved in the induction of Nrf2, HO-1 expression, and neuroprotection. These results suggest that regulation of the anti-oxidant enzyme HO-1 via the PI3K and p38/Nrf2 signaling pathways controls the intracellular levels of ROS.  相似文献   

19.
20.
Ethanol is a neuroteratogen and neurodegeneration is the most devastating consequence of developmental exposure to ethanol. The mechanisms underlying ethanol-induced neurodegeneration are complex. Ethanol exposure produces reactive oxygen species (ROS) which cause oxidative stress in the brain. We hypothesized that ethanol would activate autophagy to alleviate oxidative stress and neurotoxicity. Our results indicated that ethanol increased the level of the autophagic marker Map1lc3-II (LC3-II) and upregulated LC3 puncta in SH-SY5Y neuroblastoma cells. It also enhanced the levels of LC3-II and BECN1 in the developing brain; meanwhile, ethanol reduced SQSTM1 (p62) levels. Bafilomycin A1, an inhibitor of autophagosome and lysosome fusion, increased p62 levels in the presence of ethanol. Bafilomycin A1 and rapamycin potentiated ethanol-increased LC3 lipidation, whereas wortmannin and a BECN1-specific shRNA inhibited ethanol-promoted LC3 lipidation. Ethanol increased mitophagy, which was also modulated by BECN1 shRNA and rapamycin. The evidence suggested that ethanol promoted autophagic flux. Activation of autophagy by rapamycin reduced ethanol-induced ROS generation and ameliorated ethanol-induced neuronal death in vitro and in the developing brain, whereas inhibition of autophagy by wortmannin and BECN1-specific shRNA potentiated ethanol-induced ROS production and exacerbated ethanol neurotoxicity. Furthermore, ethanol inhibited the MTOR pathway and downregulation of MTOR offered neuroprotection. Taken together, the results suggest that autophagy activation is a neuroprotective response to alleviate ethanol toxicity. Ethanol modulation of autophagic activity may be mediated by the MTOR pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号