首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Exposure to microgravity results in post-flight cardiovascular deconditioning and orthostatic intolerance in astronauts. Vascular oxidative stress injury and mitochondrial dysfunction have been indicated in this process. To elucidate the mechanism for this condition, we investigated whether mitochondria regulated NADPH oxidase in hindlimb unweighting (HU) rat cerebral and mesenteric arteries. Four-week HU was used to simulate microgravity in rats. Vascular superoxide generation, protein and mRNA levels of Nox2/Nox4, and the activity of NADPH oxidase were examined in the present study. Compared with control rats, the levels of superoxide increased in cerebral (P<0.001) but not in mesenteric vascular smooth muscle cells. The protein and mRNA levels of Nox2 and Nox4 were upregulated significantly (P<0.001 and P<0.001 for Nox2, respectively; P<0.001 and P<0.001 for Nox4, respectively) in HU rat cerebral arteries but not in mesenteric arteries. NADPH oxidases were activated significantly by HU (P<0.001) in cerebral arteries but not in mesenteric arteries. Chronic treatment with mitochondria-targeted antioxidant mitoTEMPO attenuated superoxide levels (P<0.001), decreased the protein and mRNA expression levels of Nox2/Nox4 (P<0.01 and P<0.05 for Nox2, respectively; P<0.001 and P<0.001 for Nox4, respectively) and the activity of NADPH oxidase (P<0.001) in HU rat cerebral arteries, but exerted no effects on HU rat mesenteric arteries. Therefore, mitochondria regulated the expression and activity of NADPH oxidases during simulated microgravity. Both mitochondria and NADPH oxidase participated in vascular redox status regulation.  相似文献   

2.
The production of reactive oxygen species (ROS) within immune cell phagosomes is critical for antimicrobial activity and for correct antigen processing, and influences signaling pathways that direct host responses to infection and inflammation. Because excess oxidants can cause tissue damage and oxidative stress, phagocytes must precisely control both the location and timing of NADPH oxidase activity. How differential regulation is achieved at phagosomes is not well understood. Recent studies have revealed that the PI(3)P phosphoinositide plays an important role in locally boosting phagosomal NADPH oxidase activity through its binding to the p40phox NADPH oxidase subunit. Furthermore, phox subunit dynamics at phagosomes may regulate the timing of the oxidative burst. Novel elements regulating catalytic core trafficking include Rab27 and SNAP‐23. In addition to trafficking events, the activity of the electrogenic oxidase is also governed by ionic fluxes, which are constrained at phagosomes owing to low intraphagosomal volume and dynamic display of channels, transporters, and pumps. New insights on the interdependence of phagosomal pH and ROS have been recently elucidated, and chloride channels important for microbicidal functions, including CFTR, and CLIC family channels, have been identified. Finally, periphagosomal calcium microdomains and calcium‐dependent S100A8/9 protein recruitment may help fine‐tune spatiotemporal regulation of NADPH oxidase activation for an effective immune response .   相似文献   

3.
4. Inhibition of NADPH Oxidase  相似文献   

4.
6. Pathology of NADPH Oxidase  相似文献   

5.
3. Activation of NADPH Oxidase  相似文献   

6.
The X+-linked chronic granulomatous disease (X+-CGD) variants are natural mutants characterized by defective NADPH oxidase activity but with normal Nox2 expression. According to the three-dimensional model of the cytosolic Nox2 domain, most of the X+-CGD mutations are located in/or close to the FAD/NADPH binding regions. A structure/function study of this domain was conducted in X+-CGD PLB-985 cells exactly mimicking 10 human variants: T341K, C369R, G408E, G408R, P415H, P415L, Δ507QKT509-HIWAinsert, C537R, L546P, and E568K. Diaphorase activity is defective in all these mutants. NADPH oxidase assembly is normal for P415H/P415L and T341K mutants where mutation occurs in the consensus sequences of NADPH- and FAD-binding sites, respectively. This is in accordance with their buried position in the three-dimensional model of the cytosolic Nox2 domain. FAD incorporation is abolished only in the T341K mutant explaining its absence of diaphorase activity. This demonstrates that NADPH oxidase assembly can occur without FAD incorporation. In addition, a defect of NADPH binding is a plausible explanation for the diaphorase activity inhibition in the P415H, P415L, and C537R mutants. In contrast, Cys-369, Gly-408, Leu-546, and Glu-568 are essential for NADPH oxidase complex assembly. However, according to their position in the three-dimensional model of the cytosolic domain of Nox2, only Cys-369 could be in direct contact with cytosolic factors during oxidase assembly. In addition, the defect in oxidase assembly observed in the C369R, G408E, G408R, and E568K mutants correlates with the lack of FAD incorporation. Thus, the NADPH oxidase assembly process and FAD incorporation are closely related events essential for the diaphorase activity of Nox2.  相似文献   

7.
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase catalyzes the transfer of electrons from NADPH to O2, which is the main source of reactive oxygen species (ROS) in nonphagocytic cells. Excess ROS are toxic; therefore, keeping ROS in homeostasis in cells can protect cells from oxidative damage. It is meaningful to further understand the molecular mechanism by which ROS homeostasis is mediated. Human protein HSCARG is a newly identified oxidative sensor and a negative regulator of NF-κB. Here, we find that HSCARG represses the cellular ROS generation through inhibiting mRNA and protein expression of p47phox, a subunit of NADPH oxidase. In contrast, shRNA-mediated HSCARG knockdown increases endogenous p47phox expression level. And HSCARG has no obvious effect on ROS production in p47phox-depleted cells. Furthermore, HSCARG regulates p47phox through inhibition of NF-κB activity. Our findings identify HSCARG as a novel regulator in regulation of the activity of NADPH oxidase and ROS homeostasis.  相似文献   

8.
最近有关活性氧物质 (ROS)的研究取得了突飞猛进的进展,尤其是其作为第二信使介导了许多生理性与病理性细胞事件,包括细胞分化、过度生长、增殖及凋亡.为了避免ROS的毒性产生特异性的信号转导,ROS的产生与代谢必须被严格调控;其具体的调控机制一直是人们关注的焦点. 最近有关ROS区域化观点的提出解决了这一问题. NADPH是生成ROS的主要来源. 研究发现,NADPH氧化酶及其衍生的ROS存在于机体的多种组织内,且在细胞中呈区域化分布,对细胞内信号的精确调控具有至关重要的作用. NADPH一方面通过小窝/脂筏组装成功能型复合物,从而产生ROS区域化;另一方面,NADPH通过其不同亚细胞定位亚基与各种靶蛋白之间的相互作用,产生ROS特异性. 本文系统综述了NADPH衍生的ROS信号区域化,为进一步理解ROS信号在各种生理或病理过程的分子调控机制提供理论依据.  相似文献   

9.
10.
Plant NADPH oxidases (Rboh, for respiratory burst oxidase homolog) produce reactive oxygen species that are key regulators of various cellular events including plant innate immunity. Rbohs possess a highly conserved cytoplasmic N-terminal region containing two EF-hand motifs that regulate Rboh activity. Rice (Oryza sativa) RbohB (OsRbohB) is regulated by the direct binding of a small GTPase (Rac1) to this regulatory region as well as by Ca2+ binding to the EF-hands. Here, we present the atomic structure of the N-terminal region of OsRbohB. The structure reveals that OsRbohB forms a unique dimer stabilized by swapping the EF-hand motifs. We identified two additional EF-hand-like motifs that were not predicted from sequence data so far. These EF-hand-like motifs together with the swapped EF-hands form a structure similar to that found in calcineurin B. We observed conformational changes mediated by Ca2+ binding to only one EF-hand. Structure-based in vitro pulldown assays and NMR titration experiments defined the OsRac1 binding interface within the coiled-coil region created by swapping the EF-hands. In addition, we demonstrate a direct intramolecular interaction between the N and C terminus, and that the complete N-terminal cytoplasmic region is required for this interaction. The structural features and intramolecular interactions characterized here might be common elements shared by Rbohs that contribute to the regulation of reactive oxygen species production.  相似文献   

11.
12.
13.
Phagocyte superoxide production by a multicomponent NADPH oxidase is important in host defense against microbial invasion. However inappropriate NADPH oxidase activation causes inflammation. Endothelial cells express NADPH oxidase and endothelial oxidative stress due to prolonged NADPH oxidase activation predisposes many diseases. Discovering the mechanism of NADPH oxidase activation is essential for developing novel treatment of these diseases. The p47phox is a key regulatory subunit of NADPH oxidase; however, due to the lack of full protein structural information, the mechanistic insight of p47phox phosphorylation in NADPH oxidase activation remains incomplete. Based on crystal structures of three functional domains, we generated a computational structural model of the full p47phox protein. Using a combination of in silico phosphorylation, molecular dynamics simulation and protein/protein docking, we discovered that the C-terminal tail of p47phox is critical for stabilizing its autoinhibited structure. Ser-379 phosphorylation disrupts H-bonds that link the C-terminal tail to the autoinhibitory region (AIR) and the tandem Src homology 3 (SH3) domains, allowing the AIR to undergo phosphorylation to expose the SH3 pocket for p22phox binding. These findings were confirmed by site-directed mutagenesis and gene transfection of p47phox−/− coronary microvascular cells. Compared with wild-type p47phox cDNA transfected cells, the single mutation of S379A completely blocked p47phox membrane translocation, binding to p22phox and endothelial O2 production in response to acute stimulation of PKC. p47phox C-terminal tail plays a key role in stabilizing intramolecular interactions at rest. Ser-379 phosphorylation is a molecular switch which initiates p47phox conformational changes and NADPH oxidase-dependent superoxide production by cells.  相似文献   

14.
《Cell host & microbe》2014,15(3):329-338
  1. Download : Download high-res image (164KB)
  2. Download : Download full-size image
  相似文献   

15.
Stimulation of neutrophils with a variety of stimuli can result in the activation of phospholipases A2, C, or D with the resultant hydrolysis of plasma membrane phospholipids and the formation of important second messenger molecules. In the neutrophil, the activities of these phospholipases have been implicated in the processes of both stimulating and maintaining oxidase activation. In this review, some of the methods currently used to measure the products of phospholipase activation in the neutrophil are described, along with the possible role of their products in reactive oxidant production by the neutrophil NADPH oxidase.  相似文献   

16.
Oxidative stress has been implicated in cardiac arrhythmia, although a causal relationship remains undefined. We have recently demonstrated a marked up-regulation of NADPH oxidase isoform 4 (NOX4) in patients with atrial fibrillation, which is accompanied by overproduction of reactive oxygen species (ROS). In this study, we investigated the impact on the cardiac phenotype of NOX4 overexpression in zebrafish. One-cell stage embryos were injected with NOX4 RNA prior to video recording of a GFP-labeled (myl7:GFP zebrafish line) beating heart in real time at 24–31 h post-fertilization. Intriguingly, NOX4 embryos developed cardiac arrhythmia that is characterized by irregular heartbeats. When quantitatively analyzed by an established LQ-1 program, the NOX4 embryos displayed much more variable beat-to-beat intervals (mean S.D. of beat-to-beat intervals was 0.027 s/beat in control embryos versus 0.038 s/beat in NOX4 embryos). Both the phenotype and the increased ROS in NOX4 embryos were attenuated by NOX4 morpholino co-injection, treatments of the embryos with polyethylene glycol-conjugated superoxide dismutase, or NOX4 inhibitors fulvene-5, 6-dimethylamino-fulvene, and proton sponge blue. Injection of NOX4-P437H mutant RNA had no effect on the cardiac phenotype or ROS production. In addition, phosphorylation of calcium/calmodulin-dependent protein kinase II was increased in NOX4 embryos but diminished by polyethylene glycol-conjugated superoxide dismutase, whereas its inhibitor KN93 or AIP abolished the arrhythmic phenotype. Taken together, our data for the first time uncover a novel pathway that underlies the development of cardiac arrhythmia, namely NOX4 activation, subsequent NOX4-specific NADPH-driven ROS production, and redox-sensitive CaMKII activation. These findings may ultimately lead to novel therapeutics targeting cardiac arrhythmia.  相似文献   

17.
Beyond intracellular killing, a novel neutrophil-based antimicrobial mechanism has been recently discovered: entrapment and killing by neutrophil extracellular traps (NETs). NETs consist of extruded nuclear DNA webs decorated with granule proteins. Although NET formation is an important innate immune mechanism, uncontrolled NET release damages host tissues and has been linked to several diseases including cystic fibrosis (CF). The major CF airway pathogen Pseudomonas aeruginosa establishes chronic infection. Pseudomonas imbedded within biofilms is protected against the immune system, but maintains chronic inflammation that worsens disease symptoms. Aberrant NET release from recruited neutrophils was found in CF, but the underlying mechanisms remain unclear. One of the most important Pseudomonas virulence factors is pyocyanin, a redox-active pigment that has been associated with diminished lung function in CF. Here we show that pyocyanin promotes NET formation in a time- and dose-dependent manner. Most CF Pseudomonas clinical isolates tested produce pyocyanin in vitro. Pyocyanin-derived reactive oxygen species are required for its NET release. Inhibitor experiments demonstrated involvement of Jun N-terminal Kinase (JNK) and phosphatidylinositol 3-Kinase (PI3K) in pyocyanin-induced NET formation. Pyocyanin-induced NETs also require the NADPH oxidase because NET release in chronic granulomatous disease neutrophils was greatly reduced. Comparison of neutrophils from gp91phox- and p47phox-deficient patients revealed that pyocyanin-triggered NET formation is proportional to their residual superoxide production. Our studies identify pyocyanin as the first secreted bacterial toxin that enhances NET formation. The involvement of NADPH oxidase in pyocyanin-induced NET formation represents a novel mechanism of pyocyanin toxicity.  相似文献   

18.
19.
电磁辐射是一种复合电磁波,而人体生命活动包含一系列的生物电活动,这些生物电对环境的电磁波敏感,因此,电磁辐射可对人体造成危害.关于电磁辐射诱导的生物效应研究虽多,然而其具体机制尚不清楚.近年来,发现烟酰胺腺嘌呤二核苷酸磷酸氧化酶(NADPH氧化酶),又称呼吸爆发氧化酶(respiratory burst oxidase homologue,Rboh)在电磁辐射产生的生物学效应中扮演重要角色,电磁辐射可直接或间接活化NADPH氧化酶复合体,然后NADPH氧化酶可以将细胞内NADPH的电子转移而形成活性氧,或者通过一系列炎症因子和相关基质金属蛋白酶等参与炎症、防御以及组织修复等生命过程.本文对NADPH氧化酶在电磁生物学效应中的作用进行了综述.  相似文献   

20.
NaCl对小麦根质膜NADPH氧化酶活性的影响   总被引:2,自引:0,他引:2  
以小麦‘陇春20’为实验材料,用两相法分离根质膜微囊,研究NaCl处理对质膜NADPH氧化酶活性的影响。结果显示:(1)温和胶中酶活性条带的出现依赖于NADPH和Ca2 ,DPI(NADPH氧化酶抑制剂)完全抑制酶活性条带的出现;与0.2%的浓度相比,0.5%和1%的去垢剂TritonX-100或Chapso增溶质膜微囊明显减弱酶活性条带,表明高浓度的去垢剂抑制小麦根质膜NADPH氧化酶活性;(2)与对照相比,NaCl处理明显增强NADPH氧化酶活性温和胶染色出现的酶带;进一步研究发现,未处理质膜微囊超氧阴离子(O2.-)的产生只有7.55 nmol.mg-1protein.min-1,而100 mmol/L NaCl处理的质膜微囊O2.-的产生为13.63 nmol.mg-1protein.min-1。结果表明:质膜蛋白温和胶活性染色出现的酶带可能是小麦根质膜NADPH氧化酶,NaCl处理增强小麦根质膜NADPH氧化酶的活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号