首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A probabilistic approach to the kinetics of the polymerase chain reaction (PCR) is developed. The approach treats the primer extension step of PCR as a microscopic Markov process in which the molecules of deoxy-nucleoside triphosphate (dNTP) are bound to the 3' end of the primer strand one at a time. The binding probability rates are prescribed by combinatorial rules in accord with the microscopic chemical kinetics. As an example, a simple model based on this approach is proposed and analysed, and an exact solution for the probability distribution of lengths of synthesized DNA strands is found by analytical means. Using this solution, it is demonstrated that the model is able to reproduce the main features of PCR, such as extreme sensitivity to the variation of control parameters and the existence of an amplification plateau. A multidimensional optimization technique is used to find numerically the optimum values of control parameters which maximize the yield of the target sequence for a given PCR run while minimizing the overall run time.  相似文献   

2.
We have developed a novel allele-specific primer elongation protocol using a DNA polymerase on oligonucleotide chips. Oligonucleotide primers carrying polymorphic sites at their free 3'end were covalently bound to glass slides. The generation of single-stranded targets of genomic DNA containing single nuclotide polymorphisms (SNPs) to be typed was achieved by an asymmetric PCR reaction or exonuclease treatment of phosphothioate (PTO)-modified PCR products. In the presence of DNA polymerase and all four dNTPs, with Cy3-dUTP replacing dTTP, allele-specific extension of the immobilized primers took place along a stretch of target DNA sequence. The yield of elongated products was increased by repeated reaction cycles. We performed multiplexed assays with many small DNA targets, or used single targets of up to 4.4 kb mitochondrial DNA (mtDNA) sequence to detect multiple SNPs in one reaction. The latter approach greatly simplifies preamplification of SNP-containing regions, thereby providing a framework for typing hundreds of mtDNA polymorphisms.  相似文献   

3.
Current quantitative polymerase chain reaction (PCR) protocols are only indicative of the quantity of a target sequence relative to a standard, because no means of estimating the amplification rate is yet available. The variability of PCR performed on isolated cells has already been reported by several authors, but it could not be extensively studied, because of lack of a system for doing kinetic data acquisition and of statistical methods suitable for analyzing this type of data. We used the branching process theory to simulate and analyze quantitative kinetic PCR data. We computed the probability distribution of the offspring of a single molecule. We demonstrated that the rate of amplication has a severe influence on the shape of this distribution. For high values of the amplification rate, the distribution has several maxima of probability. A single amplification trajectory is used to estimate the initial copy number of the target sequence as well as its confidence interval, provided that the amplification is done over more than 20 cycles. The consequence of possible molecular fluctuations in the early stage of amplification is that small copy numbers result in relatively larger intervals than large initial copy numbers. The confidence interval amplitude is the theoretical uncertainty of measurements using quantitative PCR. We expect these results to be applicable to the data produced by the next generation of thermocyclers for quantitative applications.  相似文献   

4.
以多倍体罗汉果DNA为材料,采用L16(4~5)正交组合试验和单因素梯度试验,研究Mg~(2+)、dNTP、引物、Taq DNA聚合酶、模板DNA浓度和退火温度、循环次数等对PCR扩增结果以及内切酶量、酶切时间对酶切反应的影响。结果表明,多倍体罗汉果RFLP最优PCR反应体系和扩增参数为:在25μL扩增反应体系中,10×Buffer 2.5μL,MgCl_2 1.5 mmol/L,dNTP 0.2 mmol/L,引物0.1μmol/L,Taq DNA聚合酶2.0 U,模板DNA 60 ng;退火温度为56℃,循环次数为35次。酶切反应体系:内切酶10×Buffer 2.0μL,内切酶5.0U,PCR产物15μL,超纯水补至20μL;酶切时间2 h。  相似文献   

5.
Polymerase chain reaction (PCR) is a sensitive and rapid method for the diagnosis of canine Leishmania infection and can be performed on a variety of biological samples, including peripheral blood, lymph node, bone marrow and skin. Standard PCR requires electrophoretic analysis of the amplification products and is usually not suitable for quantification of the template DNA (unless competitor-based or other methods are developed), being of reduced usefulness when accurate monitoring of target DNA is required. Quantitative real-time PCR allows the continuous monitoring of the accumulation of PCR products during the amplification reaction. This allows the identification of the cycle of near-logarithmic PCR product generation (threshold cycle) and, by inference, the relative quantification of the template DNA present at the start of the reaction. Since the amplification product are monitored in "real-time" as they form cycle-by-cycle, no post-amplification handling is required. The absolute quantification is performed according either to an internal standard co-amplified with the sample DNA, or to an external standard curve obtained by parallel amplification of serial known concentrations of a reference DNA sequence. From the quantification of the template DNA, an estimation of the relative load of parasites in the different samples can be obtained. The advantages compared to standard and semi-quantitative PCR techniques are reduction of the assay's time and contamination risks, and improved sensitivity. As for standard PCR, the minimal components of the quantitative PCR reaction mixture are the DNA target of the amplification, an oligonucleotide primer pair flanking the target sequence, a suitable DNA polymerase, deoxynucleotides, buffer and salts. Different technologies have been set up for the monitoring of amplification products, generally based on the use of fluorescent probes. For instance, SYBR Green technology is a non-specific detection system based on a fluorescent dsDNA intercalator and it is applicable to all potential targets. TaqMan technology is more specific since performs the direct assessment of the amount of amplified DNA using a fluorescent probe specific for the target sequence flanked by the primer pair. This probe is an oligonucleotide labelled with a reporter dye (fluorescent) and a quencher (which absorbs the fluorescent signal generated by the reporter). The thermic protocol of amplification allows the binding of the fluorescent probe to the target sequence before the binding of the primers and the starting of the polymerization by Taq polymerase. During polymerization, 5'-3' exonuclease activity of Taq polymerase digests the probe and in this way the reporter dye is released from the probe and a fluorescent signal is detected. The intensity of the signal accumulates at the end of each cycle and is related to the amount of the amplification product. In recent years, quantitative PCR methods based either on SYBR Green or TaqMan technology have been set up for the quantification of Leishmania in mouse liver, mouse skin and human peripheral blood, targeting either single-copy chromosomal or multi-copy minicircle sequences with high sensitivity and reproducibility. In particular, real-time PCR seems to be a reliable, rapid and noninvasive method for the diagnosis and follow up of visceral leishmaniasis in humans. At present, the application of real-time PCR for research and clinical diagnosis of Leishmania infection in dogs is still foreseable. As for standard PCR, the high sensitivity of real-time PCR could allow the use of blood sampling that is less invasive and easily performed for monitoring the status of the dogs. The development of a real-time PCR assay for Leishmania infantum infection in dogs could support the standard and optimized serological and PCR methods currenly in use for the diagnosis and follow-up of canine leishmaniasis, and perhaps prediction of recurrences associated with tissue loads of residual pathogens after treatment. At this regard, a TaqMan Real Time PCR method developed for the quantification of Leishmania infantum minicircle DNA in peripheral blood of naturally infected dogs sampled before and at different time points after the beginning of a standard antileishmanial therapy will be illustrated.  相似文献   

6.
We investigated the effects of various primer-template mismatches on DNA amplification of an HIV-1 gag region by the polymerase chain reaction (PCR). Single internal mismatches had no significant effect on PCR product yield while those at the 3'-terminal base had varied effects. A:G, G:A, and C:C mismatches reduced overall PCR product yield about 100-fold, A:A mismatches about 20-fold. All other 3'-terminal mismatches were efficiently amplified, although the G:G mismatches appeared to be more sensitive to sequence context and dNTP concentrations than other mismatches. It should be noted that mismatches of T with either G, C, or T had a minimal effect on PCR product yield. Double mismatches within the last four bases of a primer-template duplex where one of the mismatches is at the 3' terminal nucleotide, in general, reduced PCR product yield dramatically. The presence of a mismatched T at the 3'-terminus, however, allowed significant amplification even when coupled with an adjacent mismatch. Furthermore, even two mismatched Ts at the 3'-terminus allowed efficient amplification.  相似文献   

7.
Multiplex polymerase chain reaction (PCR), the amplification of multiple targets in a single reaction, presents a new set of challenges that further complicate more traditional PCR setups. These complications include a greater probability for nonspecific amplicon formation and for imbalanced amplification of different targets, each of which can compromise quantification and detection of multiple targets. Despite these difficulties, multiplex PCR is frequently used in applications such as pathogen detection, RNA quantification, mutation analysis, and (recently) next generation DNA sequencing. Here we investigated the utility of primers with one or two thermolabile 4-oxo-1-pentyl phosphotriester modifications in improving multiplex PCR performance. Initial endpoint and real-time analyses revealed a decrease in off-target amplification and a subsequent increase in amplicon yield. Furthermore, the use of modified primers in multiplex setups revealed a greater limit of detection and more uniform amplification of each target as compared with unmodified primers. Overall, the thermolabile modified primers present a novel and exciting avenue for improving multiplex PCR performance.  相似文献   

8.
F Sun  N Arnheim    M S Waterman 《Nucleic acids research》1995,23(15):3034-3040
We construct a mathematical model for two whole genome amplification strategies, primer extension preamplification (PEP) and tagged polymerase chain reaction (tagged PCR). An explicit formula for the expected target yield of PEP is obtained. The distribution of the target yield and the coverage properties of these two strategies are studied by simulations. From our studies we find that polymerase with high processivity may increase the efficiency of PEP and tagged PCR.  相似文献   

9.
采用正交设计L9(34)对影响葡萄ISSR-PCR反应体系的4个因素(dNTP、TaqDNA聚合酶、引物、模板DNA)在3个浓度水平上进行试验,并通过直观分析初步确定其反应体系;在此基础上,通过单因素试验探讨了dNTP、TaqDNA聚合酶、引物、模板DNA、退火温度及循环次数等因素或条件对葡萄ISSR-PCR扩增结果的影响,确定最佳反应水平。最终建立了葡萄ISSR-PCR扩增的最佳反应体系:在25μL的反应体系中,dNTP浓度0.2 mmol/L,TaqDNA聚合酶的用量0.5 U,引物浓度0.4mmol/L,DNA模板用量40 ng。反应程序:94℃预变性5 min;94℃变性1 min,52℃退火1 min,72℃延伸1 min 30 s,40次循环;最后72℃延伸10 min,10℃保存。  相似文献   

10.
11.
12.
在对目的DNA序列尤其是高GC含量的片段进行PCR扩增的时候,经常需要对一些试验条件进行优化。在一定条件下,二甲基亚砜、甲酰胺、甘油、NP-40和Tween20等可以在某种程度上提高PCR的特异性和效率。我们在对禾本科lea3基因进行分离克隆时发现了一种新的可以提高PCR产量和特异性的物质——极高热稳定单链结合蛋白(ETSSB),研究发现在每50μlPCR反应体系中加入200ng的ETSSB,可以有效地抑制DNA片段的非特异性条带的产生,并可以提高目的片段的产量。  相似文献   

13.
Abstract

The in vitro replication of DNA, principally using the polymerase chain reaction (PCR), permits the amplification of defined sequences of DNA. By exponentially amplifying a target sequence, PCR significantly enhances the probability of detecting target gene sequences in complex mixtures of DNA. It also facilitates the cloning and sequencing of genes. Amplification of DNA by PCR and other newly developed methods has been applied in many areas of biological research, including molecular biology, biotechnology, and medicine, permitting studies that were not possible before. Nucleic acid amplification has added a new and revolutionary dimension to molecular biology. This review examines PCR and other in vitro nucleic acid amplification methodologies—examining the critical parameters and variations and their widespread applications—giving the strengths and limitations of these methodologies.  相似文献   

14.
聚合酶链式反应热流变化的DSC实验研究   总被引:1,自引:0,他引:1  
在PCR每个循环中,目的基因在DNA聚合酶的催化作用下实现快速扩增,同时伴随着化学键的断裂和生成,而不同循环数的扩增效率不同,引起的热现象也不同。实验通过差示扫描量技术,以HBV为PCR扩增体系,分别研究了变性、退火和延伸阶段的热焓及其随循环数的变化,通过分析得出:变性阶段是放热过程,第17个循环放热量达到最大,退火和延伸阶段是吸热过程;3个阶段的热焓随循环数增加都发生明显的变化,其中变性阶段的热流变化最关键。  相似文献   

15.
《Nature methods》2005,2(8):629-630
This method is used to extend partial cDNA clones by amplifying the 5' sequences of the corresponding mRNAs 1-3. The technique requires knowledge of only a small region of sequence within the partial cDNA clone. During PCR, the thermostable DNA polymerase is directed to the appropriate target RNA by a single primer derived from the region of known sequence; the second primer required for PCR is complementary to a general feature of the target-in the case of 5' RACE, to a homopolymeric tail added (via terminal transferase) to the 3' termini of cDNAs transcribed from a preparation of mRNA. This synthetic tail provides a primer-binding site upstream of the unknown 5' sequence of the target mRNA. The products of the amplification reaction are cloned into a plasmid vector for sequencing and subsequent manipulation.  相似文献   

16.
Enhancing PCR amplification and sequencing using DNA-binding proteins   总被引:1,自引:0,他引:1  
The polymerase chain reaction (PCR) is a powerful core molecular biology technique, which when coupled to chain termination sequencing allows gene and DNA sequence information to be derived rapidly. A number of modifications to the basic PCR format have been developed in an attempt to increase amplification efficiency and the specificity of the reaction. We have applied the use of DNA-binding protein, gene 32 protein from bacteriophage T4 (T4gp32) to increase amplification efficiency with a number of diverse templates. In addition, we have found that using single-stranded DNA-binding protein (SSB) or recA protein in DNA sequencing reactions dramatically increases the resolution of sequencing runs. The use of DNA-binding proteins in amplification and sequencing may prove to be generally applicable in improving the yield and quality of a number of templates from various sources.  相似文献   

17.
怀地黄SRAP扩增体系的建立与引物的筛选   总被引:3,自引:0,他引:3  
为建立适合怀地黄SRAP-PCR分子标记技术体系,通过单因子实验分别研究了DNA模板浓度、TaqDNA聚合酶浓度、Mg2+浓度、引物浓度以及dNTP浓度对怀地黄SRAP扩增反应的影响,确立了适合怀地黄SRAP最佳反应体系为:在25μL的反应体系中,模板DNA量20ng/25μL、2.5mmol/LMg2+、0.32μmol/L的上下游引物、0.30μmol/L的dNTP以及2.5UTaq酶,并利用确定的体系从88个引物组合中筛选出12对适合怀地黄SRAP-PCR反应的引物。  相似文献   

18.
We have developed a simple procedure for rapid determination of a DNA sequence recognized by a DNA binding protein based on immobilization of the protein on nitrocellulose filters. The procedure consists of the following steps: A recombinant protein with a functional DNA binding domain is expressed in E. coli. The protein is purified to homogeneity, immobilized on nitrocellulose paper, and exposed to a pool of double stranded oligonucleotides carrying in the central part a 20 bp random sequence, which is flanked by conserved sequences with restriction endonuclease recognition sites for analytical and subcloning purposes and sequences complementary to polymerase chain reaction primers. Oligonucleotides retained by the DNA-binding protein are liberated by increasing the ionic strength and used in a new binding process after amplification by the polymerase chain reaction technique. Finally the amplified product is cloned for determination of the DNA sequence selected by the DNA-binding protein. Murine Zn-finger and basic helix-loop-helix DNA binding proteins were used to demonstrate the efficiency of the method. We show that the yield of oligonucleotides binding to the protein was increased by several consecutive rounds of filter binding and amplification, and that the protein extracted a specific sequence from the pool of random oligonucleotides.  相似文献   

19.
The polymerase chain reaction is an immensely powerful technique for identification and detection purposes. Increasingly, competitive PCR is being used as the basis for quantification. However, sequence length, melting temperature and primary sequence have all been shown to influence the efficiency of amplification in PCR systems and may therefore compromise the required equivalent co-amplification of target and mimic in competitive PCR. The work discussed here not only illustrates the need to balance length and melting temperature when designing a competitive PCR assay, but also emphasises the importance of careful examination of sequences for GC-rich domains and other sequences giving rise to stable secondary structures which could reduce the efficiency of amplification by serving as pause or termination sites. We present data confirming that under particular circumstances such localised sequence, high melting temperature regions can act as permanent termination sites, and offer an explanation for the severity of this effect which results in prevention of amplification of a DNA mimic in competitive PCR. It is also demonstrated that when Taq DNA polymerase is used in the presence of betaine or a proof reading enzyme, the effect may be reduced or eliminated.  相似文献   

20.
Polymerase chain reaction (PCR) technology plays an important role in molecular biology research, but false-positive and nonspecific PCR amplification have plagued many researchers. Currently, research on the optimization of the PCR system focuses on double-primer-based PCR products. This research has shown that PCR amplification based on single-primer binding to the DNA template is an important contributing factor to obtaining false-positive results, fragment impurity, and nonspecific fragment amplification, when the PCR conditions are highly restricted during PCR-based target gene cloning, detection of transgenic plants, simple-sequence repeat marker-assisted selection, and mRNA differential display. Here, we compared single- and double-primer amplification and proposed "single-primer PCR correction"; improvements in PCR that eliminate interference caused by single-primer-based nonspecific PCR amplification were demonstrated and the precision and success rates of experiments were increased. Although for some kinds of experiments, the improvement effect of single-primer PCR correction was variable, the precision and success rate could be elevated at 12-50% in our experiment by this way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号