首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We consider the problem of color regulation in visual pigments for both bovine rhodopsin (lambda max = 500 nm) and octopus rhodopsin (lambda max = 475 nm). Both pigments have 11-cis-retinal (lambda max = 379 nm, in ethanol) as their chromophore. These rhodopsins were bleached in their native membranes, and the opsins were regenerated with natural and artificial chromophores. Both bovine and octopus opsins were regenerated with the 9-cis- and 11-cis-retinal isomers, but the octopus opsin was additionally regenerated with the 13-cis and all-trans isomers. Titration of the octopus opsin with 11-cis-retinal gave an extinction coefficient for octopus rhodopsin of 27,000 +/- 3000 M-1 cm-1 at 475 nm. The absorption maxima of bovine artificial pigments formed by regenerating opsin with the 11-cis dihydro series of chromophores support a color regulation model for bovine rhodopsin in which the chromophore-binding site of the protein has two negative charges: one directly hydrogen bonded to the Schiff base nitrogen and another near carbon-13. Formation of octopus artificial pigments with both all-trans and 11-cis dihydro chromophores leads to a similar model for octopus rhodopsin and metarhodopsin: there are two negative charges in the chromophore-binding site, one directly hydrogen bonded to the Schiff base nitrogen and a second near carbon-13. The interaction of this second charge with the chromophore in octopus rhodopsin is weaker than in bovine, while in metarhodopsin it is as strong as in bovine.  相似文献   

2.
Opsin readily undergoes Schiff base formation between an active site lysine and 9-cis- or 11-cis-retinaldehyde to form the visual pigments isorhodopsin (lambda max = 487 nm) and rhodopsin (lambda max = 500 nm), respectively (Dratz, 1977). It would be predicted that 9-cis-retinoyl fluoride (1), an isostere of 9-cis-retinal, should be an active site directed, mechanism-based labeling agent of opsin, since a stable peptide bond should be formed instead of a Schiff base. It is shown here that 9-cis-retinoyl fluoride (1) reacts with opsin in a time-dependent fashion (t1/2 = 9 min at 25 microM 1) to form a new, nonbleachable pigment with a lambda max of approximately 365 nm. beta-Ionone competitively slows down the rate of the reaction. The absorbance of the new pigment at approximately 365 nm is similar to that of model amide compounds. This result is consistent in a general and qualitative way with the Nakanishi-Honig point-charge model for visual pigments which requires that the chromophore be charged, a situation not possible when the retinoid is linked to opsin via a peptide bond rather than a protonated Schiff base [Honig, B., Dinur, U., Nakanishi, K., Balogh-Nair, V., Gawinowicz, M.A., Arnabaldi, M., & Motto, M.G. (1979) J. Am. Chem. Soc. 101, 7084-7086]. 9-cis-Retinoyl fluoride (1) is approximately 4-fold more potent than all-trans-retinoyl fluoride (2) as an inactivator of bovine opsin. Importantly, 13-cis-retinoyl fluoride (3) is inactive, and no new absorption band at 365 nm is observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Glutamic acid at position 113 in bovine rhodopsin ionizes to form the counterion to the protonated Schiff base (PSB), which links the 11-cis-retinylidene chromophore to opsin. Photoactivation of rhodopsin requires both Schiff base deprotonation and neutralization of Glu-113. To better understand the role of electrostatic interactions in receptor photoactivation, absorbance difference spectra were collected at time delays from 30 ns to 690 ms after photolysis of rhodopsin mutant E113Q solubilized in dodecyl maltoside at different pH values at 20 degrees C. The PSB form (pH 5. 5, lambda(max) = 496 nm) and the unprotonated Schiff base form (pH 8. 2, lambda(max) = 384 nm) of E113Q rhodopsin were excited using 477 nm or 355 nm light, respectively. Early photointermediates of both forms of E113Q were qualitatively similar to those of wild-type rhodopsin. In particular, early photoproducts with spectral shifts to longer wavelengths analogous to wild-type bathorhodopsin were seen. In the case of the basic form of E113Q, the absorption maximum of this intermediate was at 408 nm. These results suggest that steric interaction between the retinylidene chromophore and opsin, rather than charge separation, plays the dominant role in energy storage in bathorhodopsin. After lumirhodopsin, instead of deprotonating to form metarhodopsin I(380) on the submillisecond time scale as is the case for wild type, the acidic form of E113Q produced metarhodopsin I(480), which decayed very slowly (exponential lifetime = 12 ms). These results show that Glu-113 must be present for efficient deprotonation of the Schiff base and rapid visual transduction in vertebrate visual pigments.  相似文献   

4.
Methylation of the active-site lysine of rhodopsin   总被引:2,自引:0,他引:2  
C Longstaff  R R Rando 《Biochemistry》1985,24(27):8137-8145
Purified bovine rhodopsin was reductively methylated with formaldehyde and pyridine/borane with the incorporation of approximately 20 methyl groups in the protein. Rhodopsin contains 10 non-active-site lysines, which account for the uptake of the 20 methyl groups. The permethylated rhodopsin thus formed is active toward bleaching, regeneration with 11-cis-retinal, and the activation of the GTPase (G protein) when photolyzed. The critical active-site lysine of permethylated rhodopsin can be liberated by photolysis. This lysine can be reductively methylated at 4 degrees C. Methylation under these conditions leads to the incorporations of approximately 1.5 methyl groups per opsin molecule using radioactive formaldehyde, with the ratio of epsilon-dimethyllysine:epsilon-monomethyllysine:lysine being approximately 5:4:1. The modified opsin(s) can regenerate with 11-cis-retinal to produce a mixture of active-site methylated and unmethylated rhodopsins having a lambda max = 512 nm. Using [14C]formaldehyde and [3H]retinal followed by reduction of the Schiff base, digestion, and chromatography showed that the active-site N-methyllysine was bound to the retinal. Treatment of the methylated opsin mixture (containing 1.5 active-site methyl groups) with o-phthalaldehyde/mercaptoethanol to functionalize the opsin bearing unreacted lysine, followed by regeneration with 11-cis-retinal and chromatographic separation, led to the preparation of the pure active-site epsilon-lysine monomethylated rhodopsin with a lambda max = 520 nm, significantly shifted bathochromically from rhodopsin or permethylated rhodopsin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
R D Calhoon  R R Rando 《Biochemistry》1985,24(23):6446-6452
The absorption of a photon of light by rhodopsin results in the cis to trans isomerization of the 11-cis-retinal Schiff base chromophore. In the studies reported here, an attempt is made to determine the mechanism of the energization of rhodopsin as it relates to the chemistry of the isomerization process and the geometrical state of the chromophore. Studies were performed with vitamin A analogues to probe this mechanism. Both 11-cis-7,8-dihydroretinal and 9-cis-7,8-dihydroretinal form bleachable pigments when combined with opsin. Photolysis of these pigments in the presence of G-protein results in the activation of the latter as revealed by its GTPase activity. Phosphodiesterase is also activated when it is included in the incubation. Therefore, the possibility that rhodopsin is energized by mechanisms involving photochemically induced charge transfer from the protonated Schiff base to the beta-ionone ring can be discarded. Further studies were conducted with all-trans-vitamin A derivatives to determine if these compounds can form the GTPase-activating state R*, a situation that is possible, in principle, by microscopic reversibility. Neither all-trans-retinal nor its oxime, when incubated with bovine opsin in the dark, caused activation of the GTPase, requiring at least a 5 kcal/mol energy gap between them. Furthermore, stoichiometric adducts of all-trans-retinoids and opsin were also unable to mediate activation of the GTPase. Since both all-trans-15,16-dihydroretinylopsin and all-trans-retinoylopsin possess an all-trans-retinoid permanently adducted to opsin, it can be concluded that the all-trans-retinoid chromophore-opsin linkage may be necessary but not sufficient to achieve activation of the visual pigment.  相似文献   

6.
R D Calhoon  R R Rando 《Biochemistry》1985,24(12):3029-3034
The stoichiometry of the reaction between [14C]-9-cis-retinoyl fluoride, a close isostere of 9-cis-retinal, and bovine opsin and the biochemical and spectral properties of this new pigment were investigated. The stoichiometry of retinoid incorporation is approximately one in dodecyl maltoside, a detergent in which opsin is capable of regeneration with 11-cis-retinal. Interestingly, in Ammonyx LO, a detergent that does not permit rhodopsin regeneration, the stoichiometry of binding is still approximately one. By contrast, heat-denatured opsin does not irreversibly bind substantial [14C]retinoyl fluoride. This result strongly suggests that the nucleophilicity of the active site lysine is retained in Ammonyx LO but that further conformational changes in the protein, required to form rhodopsin, are not possible. These results are all consistent with an active site directed mechanism for the irreversible reaction of 9-cis-retinoyl fluoride with opsin probably at the active site lysine residue. The ultraviolet spectra of 9-cis-retinoylopsin and its all-trans congener show gamma max's at 373 and 380 nm, respectively, somewhat bathochromically shifted from their respective model N-butylretinamides which absorb at 347 and 351 nm. Photolysis of both 9-cis- and all-trans-retinoylopsins leads to the same photostationary state. This shows that, as expected, photoisomerization without bleaching occurs. The photolysis of either 9-cis- or all-trans-retinoylopsin in the presence of the G protein (transducin) does not lead to the activation of the latter. This is consistent with the notion that a protonated Schiff base is critical for the function of rhodopsin.  相似文献   

7.
Photochemical reactions of fluorinated rhodopsin analogues (F-rhodopsins) prepared from 10- or 12-fluorinated retinals (10- or 12-F-retinals) and cattle opsin were investigated by means of low-temperature spectrophotometry. On irradiation with blue light at liquid nitrogen temperature (-191 degrees C), the F-rhodopsins were converted to their respective batho intermediates. On warming, they decomposed to their respective fluororetinals and cattle opsin through lumi and meta intermediates. There was a difference in photochemical behavior between batho-12-F-rhodopsin and batho-10-F-rhodopsin. Upon irradiation with red light at -191 degrees C, batho-12-F-rhodopsin was converted to a mixture of 12-F-rhodopsin and 9-cis-12-F-rhodopsin like that of the natural bathorhodopsin, whereas batho-10-F-rhodopsin was not converted to 9-cis-10-F-rhodopsin but only to 10-F-rhodopsin. This fact suggests that the fluorine substituent at the C10 position (i.e., 10-fluoro) of the retinylidene chromophore may interact with the protein moiety during the process of isomerization of the chromophore or in the state of the batho intermediate. On irradiation with blue light at -191 degrees C, 9-cis-10-F-rhodopsin was converted to another bathochromic intermediate that was different in absorption spectrum from batho-10-F-rhodopsin. 9-cis-10-F-rhodopsin was practically "photoinsensitive" at liquid helium temperature (-265 degrees C), whereas 10-F-rhodopsin was converted to a photo-steady-state mixture of 10-F-rhodopsin and batho-10-F-rhodopsin. The specific interaction between the fluorine atom at the C10 position of the retinylidene chromophore and the opsin was discussed in terms of electrostatic interactions.  相似文献   

8.
Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin   总被引:1,自引:0,他引:1  
C Pande  H Deng  P Rath  R H Callender  J Schwemer 《Biochemistry》1987,26(23):7426-7430
We present the first visual pigment resonance Raman spectra from the UV-sensitive eyes of an insect, Ascalaphus macaronius (owlfly). This pigment contains 11-cis-retinal as the chromophore. Raman data have been obtained for the acid metarhodopsin at 10 degrees C in both H2O and D2O. The C = N stretching mode at 1660 cm-1 in H2O shifts to 1631 cm-1 upon deuteriation of the sample, clearly showing a protonated Schiff base linkage between the chromophore and the protein. The structure-sensitive fingerprint region shows similarities to the all-trans-protonated Schiff base of model retinal chromophores, as well as to the octopus acid metarhodopsin and bovine metarhodopsin I. Although spectra measured at -100 degrees C with 406.7-nm excitation, to enhance scattering from rhodopsin (lambda max 345 nm), contain a significant contribution from a small amount of contaminants [cytochrome(s) and/or accessory pigment] in the sample, the C = N stretch at 1664 cm-1 suggests a protonated Schiff base linkage between the chromophore and the protein in rhodopsin as well. For comparison, this mode also appears at approximately 1660 cm-1 in both the vertebrate (bovine) and the invertebrate (octopus) rhodopsins. These data are particularly interesting since the absorption maximum of 345 nm for rhodopsin might be expected to originate from an unprotonated Schiff base linkage. That the Schiff base linkage in the owlfly rhodopsin, like in bovine and in octopus, is protonated suggests that a charged chromophore is essential to visual transduction.  相似文献   

9.
With the aim of preparing a light-stable rhodopsin-like pigment, an analog, II, of 11-cis retinal was synthesized in which isomerization of the C11-C12 cis-double bond is blocked by a cyclohexene ring built around the C10 to C13-methyl. The analog II formed a rhodopsin-like pigment (rhodopsin-II) with opsin expressed in COS-1 cells and with opsin from rod outer segments. The rate of rhodopsin-II formation from II and opsin was approximately 10 times slower than that of rhodopsin from 11-cis retinal and opsin. After solubilization in dodecyl maltoside and immunoaffinity purification, rhodopsin-II displayed an absorbance ratio (A280nm/A512nm) of 1.6, virtually identical with that of rhodopsin. Acid denaturation of rhodopsin-II formed a chromophore with lambda max, 452 nm, characteristic of protonated retinyl Schiff base. The ground state properties of rhodopsin-II were similar to those of rhodopsin in extinction coefficient (41,200 M-1 cm-1) and opsin-shift (2600 cm-1). Rhodopsin-II was stable to hydroxylamine in the dark, while light-dependent bleaching by hydroxylamine was slowed by approximately 2 orders of magnitude relative to rhodopsin. Illumination of rhodopsin-II for 10 s caused approximately 3 nm blue-shift and 3% loss of visible absorbance. Prolonged illumination caused a maximal blue-shift up to approximately 20 nm and approximately 40% loss of visible absorbance. An apparent photochemical steady state was reached after 12 min of illumination. Subsequent acid denaturation indicated that the retinyl Schiff base linkage was intact. A red-shift (approximately 12 nm) in lambda max and a 45% recovery of visible absorbance was observed after returning the 12-min illuminated pigment to darkness. Rhodopsin-II showed marginal light-dependent transducin activation and phosphorylation by rhodopsin kinase.  相似文献   

10.
9-cis-Retro-gamma-rhodopsin (lambda max = 420 nm) was prepared from 9-cis-retro-gamma-retinal and cattle opsin. After cooling to liquid nitrogen temperature (77 K), the pigment was irradiated with light at 380 nm. The spectrum shifted to the longer wavelengths, owing to formation of a batho product. This fact indicates that the conjugated double bond system from C-5 to C-8 of the chromophoric retinal in rhodopsin was not necessary for formation of bathorhodopsin. Reirradiation of the batho product with light at wavelengths longer than 520 nm yielded a mixture composed of presumably 9- or 11-cis forms of retro-gamma-rhodopsin. These three isomers are interconvertible by light at liquid nitrogen temperature. Thus the retro-gamma-rhodopsin system is similar in photochemical reaction at 77 K to cattle rhodopsin system. Each system has its own batho product. Based on these results, it was infered that the formation of batho-rhodopsin is due to photoisomerization of the chromophoric retinal of rhodopsin and is not due to translocation of a proton on the ring or on the side chain from C-6 to C-8 of the chromophoric retinal to the Schiff-base nitrogen.  相似文献   

11.
Of the four classes of vertebrate cone visual pigments, the shortwave-sensitive SWS1 class shows the shortest lambda(max) values with peaks in different species in either the violet (390-435 nm) or ultraviolet (around 365 nm) regions of the spectrum. Phylogenetic evidence indicates that the ancestral pigment was probably UV-sensitive (UVS) and that the shifts between violet and UV have occurred many times during evolution. This is supported by the different mechanisms for these shifts in different species. All visual pigments possess a chromophore linked via a Schiff base to a Lys residue in opsin protein. In violet-sensitive (VS) pigments, the Schiff base is protonated whereas in UVS pigments, it is almost certainly unprotonated. The generation of VS from ancestral UVS pigments most likely involved amino acid substitutions in the opsin protein that serve to stabilise protonation. The key residues in the opsin protein for this are at sites 86 and 90 that are adjacent to the Schiff base and the counterion at Glu113. In this review, the different molecular mechanisms for the UV or violet shifts are presented and discussed in the context of the structural model of bovine rhodopsin.  相似文献   

12.
B W Vought  A Dukkipatti  M Max  B E Knox  R R Birge 《Biochemistry》1999,38(35):11287-11297
Two short-wavelength cone opsins, frog (Xenopus laevis) violet and mouse UV, were expressed in mammalian COS1 cells, purified in delipidated form, and studied using cryogenic UV-vis spectrophotometry. At room temperature, the X. laevis violet opsin has an absorption maximum at 426 nm when generated with 11-cis-retinal and an absorption maximum of 415 nm when generated with 9-cis-retinal. The frog short-wavelength opsin has two different batho intermediates, one stable at 30 K (lambda(max) approximately 446 nm) and the other at 70 K (lambda(max) approximately 475 nm). Chloride ions do not affect the absorption maximum of the violet opsin. At room temperature, mouse UV opsin has an absorption maximum of 357 nm, while at 70 K, the pigment exhibits a bathochromic shift to 403 nm with distinct vibronic structure and a strong secondary vibronic band at 380 nm. We have observed linear relationships when analyzing the energy difference between the initial and bathochromic intermediates and the normalized difference spectra of the batho-shifted intermediates of rod and cone opsins. We conclude that the binding sites of these pigments change from red to green to violet via systematic shifts in the position of the primary counterion relative to the protonated Schiff base. The mouse UV cone opsin does not fit this trend, and we conclude that wavelength selection in this pigment must operate via a different molecular mechanism. We discuss the possibility that the mouse UV chromophore is initially unprotonated.  相似文献   

13.
Bovine rhodopsin was bleached and regenerated with 7,9-dicis-retinal to form 7,9-dicis-rhodopsin, which was purified on a concanavalin A affinity column. The absorption maximum of the 7,9-dicis pigment is 453 nm, giving an opsin shift of 1600 cm-1 compared to 2500 cm-1 for 11-cis-rhodopsin and 2400 cm-1 for 9-cis-rhodopsin. Rapid-flow resonance Raman spectra have been obtained of 7,9-dicis-rhodopsin in H2O and D2O at room temperature. The shift of the 1654-cm-1 C = N stretch to 1627 cm-1 in D2O demonstrates that the Schiff base nitrogen is protonated. The absence of any shift in the 1201-cm-1 mode, which is assigned as the C14-C15 stretch, or of any other C-C stretching modes in D2O indicates that the Schiff base C = N configuration is trans (anti). Assuming that the cyclohexenyl ring binds with the same orientation in 7,9-dicis-, 9-cis-, and 11-cis-rhodopsins, the presence of two cis bonds requires that the N-H bond of the 7,9-dicis chromophore points in the opposite direction from that in the 9-cis or 11-cis pigment. However, the Schiff base C = NH+ stretching frequency and its D2O shift in 7,9-dicis-rhodopsin are very similar to those in 11-cis- and 9-cis-rhodopsin, indicating that the Schiff base electrostatic/hydrogen-bonding environments are effectively the same. The C = N trans (anti) Schiff base geometry of 7,9-dicis-rhodopsin and the insensitivity of its Schiff base vibrational properties to orientation are rationalized by examining the binding site specificity with molecular modeling.  相似文献   

14.
The photochemical and subsequent thermal reactions of the mouse short-wavelength visual pigment (MUV) were studied by using cryogenic UV-visible and FTIR difference spectroscopy. Upon illumination at 75 K, MUV forms a batho intermediate (lambda(max) approximately 380 nm). The batho intermediate thermally decays to the lumi intermediate (lambda(max) approximately 440 nm) via a slightly blue-shifted intermediate not observed in other photobleaching pathways, BL (lambda(max) approximately 375 nm), at temperatures greater than 180 K. The lumi intermediate has a significantly red-shifted absorption maximum at 440 nm, suggesting that the retinylidene Schiff base in this intermediate is protonated. The lumi intermediate decays to an even more red-shifted meta I intermediate (lambda(max) approximately 480 nm) which in turn decays to meta II (lambda(max) approximately 380 nm) at 248 K and above. Differential FTIR analysis of the 1100-1500 cm(-1) region reveals an integral absorptivity that is more than 3 times smaller than observed in rhodopsin and VCOP. These results are consistent with an unprotonated Schiff base chromophore. We conclude that the MUV-visual pigment possesses an unprotonated retinylidene Schiff base in the dark state, and undergoes a protonation event during the photobleaching cascade.  相似文献   

15.
K R Babu  A Dukkipati  R R Birge  B E Knox 《Biochemistry》2001,40(46):13760-13766
Short-wavelength visual pigments (SWS1) have lambda(max) values that range from the ultraviolet to the blue. Like all visual pigments, this class has an 11-cis-retinal chromophore attached through a Schiff base linkage to a lysine residue of opsin apoprotein. We have characterized a series of site-specific mutants at a conserved acidic residue in transmembrane helix 3 in the Xenopus short-wavelength sensitive cone opsin (VCOP, lambda(max) approximately 427 nm). We report the identification of D108 as the counterion to the protonated retinylidene Schiff base. This residue regulates the pK(a) of the Schiff base and, neutralizing this charge, converts the violet sensitive pigment into one that absorbs maximally in the ultraviolet region. Changes to this position cause the pigment to exhibit two chromophore absorbance bands, a major band with a lambda(max) of approximately 352-372 nm and a minor, broad shoulder centered around 480 nm. The behavior of these two absorbance bands suggests that these represent unprotonated and protonated Schiff base forms of the pigment. The D108A mutant does not activate bovine rod transducin in the dark but has a significantly prolonged lifetime of the active MetaII state. The data suggest that in short-wavelength sensitive cone visual pigments, the counterion is necessary for the characteristic rapid production and decay of the active MetaII state.  相似文献   

16.
The chromophore of octopus rhodopsin is 11-cis retinal, linked via a protonated Schiff base to the protein backbone. Its stable photoproduct, metarhodopsin, has all-trans retinal as its chromphore. The Schiff base of acid metarhodopsin (lambda max = 510 nm) is protonated, whereas that of alkaline metarhodopsin (lambda max = 376 nm) is unprotonated. Metarhodopsin in photoreceptor membranes was titrated and the apparent pK of the Schiff base was measured at different ionic strengths. From these salt-dependent pKs the surface charge density of the octopus photoreceptor membranes and the intrinsic Schiff base pK of metarhodopsin were obtained. The surface charge density is sigma = -1.6 +/- 0.1 electronic charges per 1,000 A2. Comparison of the measured surface charge density with values from octopus rhodopsin model structures suggests that the measured value is for the extracellular surface and so the Schiff base in metarhodopsin is freely accessible to protons from the extracellular side of the membrane. The intrinsic Schiff base pK of metarhodopsin is 8.44 +/- 0.12, whereas that of rhodopsin is found to be 10.65 +/- 0.10 in 4.0 M KCl. These pK values are significantly higher than the pK value around 7.0 for a retinal Schiff base in a polar solvent; we suggest that a plausible mechanism to increase the pK of the retinal pigments is the preorganization of their chromophore-binding sites. The preorganized site stabilizes the protonated Schiff base with respect to the unprotonated one. The difference in the pK for the octopus rhodopsin compared with metarhodopsin is attributed to the relative freedom of the latter's chromophore-binding site to rearrange itself after deprotonation of the Schiff base.  相似文献   

17.
The rhabdoms of Euphausia superba contain one digitonin-extractable rhodopsin, lambda max 485 nm. The rhodopsin undergoes unusual pH- dependent spectral changes: above neutrality, the absorbance decreases progressively at 485 nm and rises near 370 nm. This change is reversible and appears to reflect an equilibrium between a protonated and an unprotonated form of the rhodopsin Schiff-base linkage. Near neutral pH and at 10 degrees C, the rhodopsin is partiaLly converted by 420-nm light to a stable 493-nm metarhodopsin. The metarhodopsin is partially photoconverted to rhodopsin by long-wavelength light in the absence of NH2OH; in the presence of NH2OH, it is slowly converted to retinal oxime and opsin. The rhodopsin of Meganyctiphanes norvegica measured in fresh rhabdoms by microspectrophotometry has properties very similar to those of the extracted rhodopsin of E. superba. Its lambda max is 488 nm and it is partially photoconverted by short wavelength irradiation to a stable photoconvertible metarhodopsin similar to that of E. superba. In the presence of light and NH2OH, the M. norvegica metarhodopsin is converted to retinal oxime and opsin. Our results indicate that previous determinations of euphausiid rhodopsin absorbance spectra were incorrect because of accessory pigment contamination.  相似文献   

18.
In order to prepare a completely light-stable rhodopsin, we have synthesized an analog, II, of 11-cis retinal in which isomerization at the C11-C12 cis-double bond is blocked by formation of a cyclohexene ring from the C10 to C13-methyl. We used this analog to generate a rhodopsin-like pigment from opsin expressed in COS-1 cells and opsin from rod outer segments (Bhattacharya, S., Ridge, K.D., Knox, B.E., and Khorana, H. G. (1992) J. Biol. Chem. 267, 6763-6769). The pigment (lambda max, 512 nm) formed from opsin and analog II (rhodospin-II) showed ground state properties very similar to those of rhodopsin, but was not entirely stable to light. In the present work, 12 opsin mutants (Ala-117----Phe, Glu-122----Gln(Ala, Asp), Trp-126----Phe(Leu, Ala), Trp-265----Ala(Tyr, Phe), Tyr-268----Phe, and Ala-292----Asp), where the mutations were presumed to be in the retinal binding pocket, were reconstituted with analog II. While all mutants formed rhodopsin-like pigments with II, blue-shifted (12-30 nm) chromophores were obtained with Ala-117----Phe, Glu-122----Gln(Ala), Trp-126----Leu(Ala), and Trp-265----Ala(Tyr, Phe) opsins. The extent of chromophore formation was markedly reduced in the mutants Ala-117----Phe and Trp-126----Ala. Upon illumination, the reconstituted pigments showed varying degrees of light sensitivity; the mutants Trp-126----Phe(Leu) showed light sensitivity similar to wild-type. Continuous illumination of the mutants Glu-122----Asp, Trp-265----Ala, Tyr-268----Phe, and Ala-292----Asp resulted in hydrolysis of the retinyl Schiff base. Markedly reduced light sensitivity was observed with the mutant Trp-265----Tyr, while the mutant Trp-265----Phe was light-insensitive. Consistent with this result, the mutant Trp-265----Phe showed no detectable light-dependent activation of transducin or phosphorylation by rhodopsin kinase.  相似文献   

19.
A photoactivatable analog of 11-cis-retinal has been used to probe the orientation of retinal in bovine rhodopsin. The analog binds to the opsin to regenerate a chromophore with lambda max at 458 nm. The linkage site of the analog to the opsin was confirmed to be Lys-296 as in 11-cis-retinal rhodopsin. The analog-reconstituted rhodopsin activated transducin and was phosphorylated by rhodopsin kinase on illumination. On photolysis of rhodopsin containing the radioactively labeled analog at 365 nm at -15 degrees C, 20-25% of the analog was covalently linked to the protein. Proteolysis of the labeled protein and characterization of the appropriate peptides showed that cross-linking of the analog was predominantly to helices C or F. When analog reconstituted rhodopsin in rod outer segments was photolyzed, cross-linking was predominantly to helix C. However, when analog-reconstituted rhodopsin, purified in lauryl maltoside, was photolyzed, labeling occurred mainly in helix F. Sequence analysis showed major sites of cross-linking to be Phe-115, Ala-117, Glu-122, Trp-126, and Ser-127 in helix C while Trp-265 was the major site in helix F. The results suggest that the beta-ionone ring of retinal orients toward helices C and F.  相似文献   

20.
A Maeda  Y Shichida  T Yoshizawa 《Biochemistry》1979,18(8):1449-1453
Squid rhodopsin was irradiated with orange light (greater than 530 nm) at various temperatures from -190 to 10 degrees C until a photo-steady-state mixture was formed. Then the chromophoric retinals were extracted from the photo-steady-state mixtures and their isomer composition was analyzed by high-performance liquid chromatography. In the case of photo-steady-state mixture formed at -85 degrees C, large peaks in the chromatogram were found at the positions of both 7-cis- and 13-cis-retinals. Each peak was further identified by synthesizing the pigments from these retinals with cattle opsin or apobacteriorhodopsin. Both 7-cis- and 13-cis-retinals were also extracted from a photo-steady-state mixture formed by irradiation at -40, at 0, or at 10 degrees C. These isomers were scarcely detected in a photo-steady-state mixture formed by irradiation at -190 degrees C, though 9-cis-retinal was found as a major constituent in this mixture. Irradiation of lumirhodopsin at -190 degrees C, however, produced 7-cis-retinal pigment. These findings suggest that bathorhodopsin may have a conformation to prevent the formation of 7-cis-retinal from the all-trans form and that this particular conformation may be relaxed by the conversion of bathorhodopsin to lumirhodopsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号