首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural killer T (NKT) cells are a subset of regulatory T lymphocytes that recognize glycolipid antigens presented by the major histocompatibility complex class I-related glycoprotein CD1d. NKT cells have been implicated in regulating the progression of Type 1 diabetes (T1D) in human patients and in an animal model for T1D. In addition, glycolipid agonists of NKT cells have been successful in preventing diabetes in mice, raising enthusiasm for the development of NKT cell-based therapies for T1D.  相似文献   

2.
Natural killer T (NKT) cells combine features of the innate and adaptive immune systems. Recently, it has become evident that these T cells have crucial roles in the response to infectious agents. The antigen receptor expressed by NKT cells directly recognizes unusual glycolipids that are part of the membrane of certain Gram-negative bacteria and spirochetes. Moreover, even in the absence of microbial glycolipid antigens, these T cells respond to innate cytokines produced by dendritic cells that have been activated by microbes. This indirect sensing of infection, by responding to cytokines from activated dendritic cells, allows NKT cells to react to a broad range of infectious agents.  相似文献   

3.
Autoimmune responses are normally kept in check by immune-tolerance mechanisms, which include regulatory T cells. In recent years, research has focused on the role of a subset of natural killer T (NKT) cells - invariant NKT (iNKT) cells, which are a population of glycolipid-reactive regulatory T cells - in controlling autoimmune responses. Because iNKT cells strongly react with a marine-sponge-derived glycolipid, alpha-galactosylceramide (alpha-GalCer), it has been possible to specifically target and track these cells. As I discuss here, although preclinical studies have shown considerable promise for the development of treatment with alpha-GalCer as a therapeutic modality for autoimmune diseases, several obstacles need to be overcome before moving alpha-GalCer therapy from the bench to the bedside.  相似文献   

4.
The glycosphingolipid ??-GalCer has been found to influence mammalian immune system significantly through the natural killer T cells. Unfortunately, the pre-clinical and clinical studies revealed several critical disadvantages that prevented the therapeutic application of ??-GalCer in treating cancer and other diseases. Recently, the detailed illustration of the CD1d/??-GalCer/NKT TCR complex crystal structural, together with other latest structural and biological understanding on glycolipid ligands and NKT cells, provided a new platform for developing novel glycolipid ligands with optimized therapeutic effects. Here, we designed a series of novel aromatic group substituted ??-GalCer analogues. The biological activity of these analogues was characterized and the results showed the unique substitution group manipulated the immune responses of NKT cells. Computer modeling and simulation study indicated the analogues had unique binding mode when forming CD1d/glycolipid/NKT TCR complex, comparing to original ??-GalCer.  相似文献   

5.
Natural killer T cells: rapid responders controlling immunity and disease   总被引:6,自引:0,他引:6  
Natural killer T (NKT) cells are a subset of T cells that share properties of natural killer cells and conventional T cells. They are involved in immediate immune responses, tumor rejection, immune surveillance and control of autoimmune diseases. Most NKT cells express both an invariant T cell antigen receptor and the NK cell receptor NK1.1, and are referred to as invariant NKT cells. This invariant T cell receptor is restricted to interactions with glycolipids presented by the non-classical MHC, CD1d. These NKT cells rapidly produce high levels of interleukin (IL)-2, IFN-gamma, TNF-alpha, and IL-4 upon stimulation through their TCR. Most also have cytotoxic activity similar to NK cells. NKT cells are involved in a number of pathological conditions, and have been shown to regulate viral infections in vivo, and control tumor growth. They may also play both protective and harmful roles in the progression of certain autoimmune diseases, such as diabetes, lupus, atherosclerosis, and allergen-induced asthma.  相似文献   

6.
然杀伤T细胞(natural killer T cell,NKT细胞)是一种特殊的淋巴细胞亚群,具有部分T细胞和NK细胞的特征。与这些细胞不同的是,NKT细胞不仅能够识别醣脂类抗原,还在激活后产生促炎症因子和抗炎症因子。由于这些特性,NKT细胞在炎症和免疫方面的研究越来越热。动脉粥样硬化是一种受免疫调节的炎性疾病,因此对NKT细胞在该疾病中作用的研究也逐渐开展起来。  相似文献   

7.
CD1d-restricted NKT cells are emerging as an unusual lymphoid lineage with important immunoregulatory properties. To date, much of our understanding of the biology of the CD1/NKT system comes from studies that utilise non-natural glycolipid ligands. Recent evidence suggests that NKT cells play an important role in the response to pathogens, manifesting a range of functions including cytotoxicity, help for antibody formation and regulation of Th1/Th2 differentiation. Infectious disease models provide appropriate physiological and pathophysiological systems to explore the biological roles of this lineage in immunity and disease. Novel insights are emerging from infection models, particularly with respect to the nature of ligands recognised by the T cell receptor of NKT cells, and to the role of diverse non-T cell receptor NK activation and inhibitory receptors in regulation of the lineage. Such insights have the potential to add considerably to our understanding of the CD1/NKT cell system and to the immunology and pathogenesis of infectious diseases.  相似文献   

8.
王伟  杜美  陈正望 《生物磁学》2011,(1):158-160
然杀伤T细胞(natural killer T cell,NKT细胞)是一种特殊的淋巴细胞亚群,具有部分T细胞和NK细胞的特征。与这些细胞不同的是,NKT细胞不仅能够识别醣脂类抗原,还在激活后产生促炎症因子和抗炎症因子。由于这些特性,NKT细胞在炎症和免疫方面的研究越来越热。动脉粥样硬化是一种受免疫调节的炎性疾病,因此对NKT细胞在该疾病中作用的研究也逐渐开展起来。  相似文献   

9.
NKT cells represent a unique subset of immunoregulatory T cells that recognize glycolipid Ags presented by the MHC class I-like molecule CD1d. Because of their immunoregulatory properties, NKT cells are attractive targets for the development of immunotherapies. The prototypical NKT cell ligand alpha-galactosylceramide (alpha-GalCer), originally isolated from a marine sponge, has potent immunomodulatory activities in mice, demonstrating therapeutic efficacy against metastatic tumors, infections, and autoimmune diseases, but also has a number of adverse side effects. In vivo administration of alpha-GalCer to mice results in the rapid activation of NKT cells, which is characterized by cytokine secretion, surface receptor down-regulation, expansion, and secondary activation of a variety of innate and adaptive immune system cells. In this study, we have evaluated the in vivo immune response of mice to a set of structural analogues of alpha-GalCer. Our results show that, contrary to current thinking, beta-anomeric GalCer can induce CD1d-dependent biological activities in mice, albeit at lower potency than alpha-anomeric GalCer. In addition, we show that the response of NKT cells to distinct GalCer differs not only quantitatively, but also qualitatively. These findings indicate that NKT cells can fine-tune their immune responses to distinct glycolipid Ags in vivo, a property that may be exploited for the development of effective and safe NKT cell-based immunotherapies.  相似文献   

10.
Natural killer T (NKT) cells generally recognize lipid-antigens presented in the context of the MHC class I-like molecule CD1d. CD1d-restricted NKT cells consist of two broad subsets: Type I, which express an invariant T cell receptor (TCR) and type II, which utilize diverse TCR gene segments. A major type II NKT subset has been shown to recognize a self-glycolipid, sulfatide. Both subsets play important roles in autoimmune diseases, tumor surveillance, and infectious diseases. While type I NKT cells protect from tumor growth by enhancing tumor surveillance, type II NKT cells may suppress anti-tumor immune responses. In a murine autoimmune hepatitis model, type I NKT cells contribute to pathogenesis, whereas activation of sulfatide-reactive type II NKT cells protects from disease. Sulfatide-mediated activation of type II NKT cells results in modification of dendritic cells and induction of anergy in type I NKT cells. Elucidation of this novel pathway of cross-regulation among NKT cell subsets will provide tools for intervention in autoimmune diseases and for designing strategies for effective anti-tumor immunity.  相似文献   

11.
Type 1 diabetes (T1D) in non-obese diabetic (NOD) mice may be favored by immune dysregulation leading to the hyporesponsiveness of regulatory T cells and activation of effector T-helper type 1 (Th1) cells. The immunoregulatory activity of natural killer T (NKT) cells is well documented, and both interleukin (IL)-4 and IL-10 secreted by NKT cells have important roles in mediating this activity. NKT cells are less frequent and display deficient IL-4 responses in both NOD mice and individuals at risk for T1D (ref. 8), and this deficiency may lead to T1D (refs. 1,6-9). Thus, given that NKT cells respond to the alpha-galactosylceramide (alpha-GalCer) glycolipid in a CD1d-restricted manner by secretion of Th2 cytokines, we reasoned that activation of NKT cells by alpha-GalCer might prevent the onset and/or recurrence of T1D. Here we show that alpha-GalCer treatment, even when initiated after the onset of insulitis, protects female NOD mice from T1D and prolongs the survival of pancreatic islets transplanted into newly diabetic NOD mice. In addition, when administered after the onset of insulitis, alpha-GalCer and IL-7 displayed synergistic effects, possibly via the ability of IL-7 to render NKT cells fully responsive to alpha-GalCer. Protection from T1D by alpha-GalCer was associated with the suppression of both T- and B-cell autoimmunity to islet beta cells and with a polarized Th2-like response in spleen and pancreas of these mice. These findings raise the possibility that alpha-GalCer treatment might be used therapeutically to prevent the onset and recurrence of human T1D.  相似文献   

12.
Glycosphingolipids are a subgroup of glycolipids that contain an amino alcohol sphingoid base linked to sugars. They are found in the membranes of cells ranging from bacteria to vertebrates. This group of lipids is known to stimulate the immune system through activation of a type of white blood cell known as natural killer T cell (NKT cell). Here we summarize the extensive research that has been done to identify the structures of natural glycolipids that stimulate NKT cells and to determine how these antigens are recognized. We also review studies designed to understand how glycolipid variants, both natural and synthetic, can alter the responses of NKT cells, leading to dramatic changes in the global immune response.  相似文献   

13.
An understanding of the complex interactions occurring between tumours and the immune system is a prerequisite for the rational design of effective cancer immunotherapies. To date, attention has focused mainly on the role the adaptive immune system plays in controlling tumourigenesis, with conventional T cells, which recognize peptide antigens presented by classical MHC molecules, coming under close scrutiny. Accumulating reports now suggest that an additional T-cell subset, known as CD1d-restricted natural killer T (NKT) cells, also plays a pivotal role in modulating antitumour responses. Found in both humans and mice, CD1d-restricted NKT cells are a highly specialized cell type that, in contrast to conventional T cells, recognize lipid/glycolipid antigens presented by the non-classical MHC molecule CD1d. Several features of NKT cells, including their ability to rapidly produce large quantities of cytokines upon primary stimulation, make them ideal targets for developing anticancer immunotherapies. This intriguing cell type is the focus of this review.  相似文献   

14.
Natural killer T (NKT) and regulatory T cells (Tregs) play an important role in innate immune response. Natural killer (NK) and NKT cells are indispensable factors in the body's ongoing defense against tumor development, as well as viral infection. NKT cells are a subset of T cells that shares properties of natural killer cells and conventional T cells. They are involved in innate immune responses, tumor rejection, post transplantation immunotherapy, immune surveillance and control of autoimmune diseases. They may also play both protective and harmful roles in the progression of certain autoimmune diseases, such as diabetes, lupus, atherosclerosis, and allergen-induced asthma. Immune surveillance involves the process whereby precancerous and malignant cells are recognized by the host immune system as damaged and are consequently targeted for elimination. The pharmacological management of postoperative pain in patients with malignancies uses very different techniques whose possible cytotoxic functions we still known very poor. The present study compared effects of two different postoperative pain management techniques in patients undergoing colorectal cancer surgery on the innate immunity. Our data indicate that the patients with colorectal cancer have significantly increased the percentage of Tregs and NKT cells. The values were statistically higher during epidural analgesia in comparison with intravenous analgesia, indicating that epidural pain management technique ameliorate the immune suppression after surgery.  相似文献   

15.
Natural killer T (NKT) cells play an important role in controlling cancers, infectious diseases and autoimmune diseases. Although the rhesus macaque is a useful primate model for many human diseases such as infectious and autoimmune diseases, little is known about their NKT cells. We analyzed V alpha 24TCR+ T cells from rhesus macaque peripheral blood mononuclear cells stimulated with alpha-galactosylceramide (alpha-GalCer) and interleukin-2. We found that rhesus macaques possess V alpha 24TCR+ T cells, suggesting that recognition of alpha-GalCer is highly conserved between rhesus macaques and humans. The amino acid sequences of the V-J junction for the V alpha 24TCR of rhesus macaque and human NKT cells are highly conserved (93% similarity), and the CD1d alpha1-alpha2 domains of both species are highly homologous (95.6%). These findings indicate that the rhesus macaque is a useful primate model for understanding the contribution of NKT cells to the control of human diseases.  相似文献   

16.
CD1d function is regulated by microsomal triglyceride transfer protein   总被引:7,自引:0,他引:7  
CD1d is a major histocompatibility complex (MHC) class I-related molecule that functions in glycolipid antigen presentation to distinct subsets of T cells that express natural killer receptors and an invariant T-cell receptor-alpha chain (invariant NKT cells). The acquisition of glycolipid antigens by CD1d occurs, in part, in endosomes through the function of resident lipid transfer proteins, namely saposins. Here we show that microsomal triglyceride transfer protein (MTP), a protein that resides in the endoplasmic reticulum of hepatocytes and intestinal epithelial cells (IECs) and is essential for lipidation of apolipoprotein B, associates with CD1d in hepatocytes. Hepatocytes from animals in which Mttp (the gene encoding MTP) has been conditionally deleted, and IECs in which Mttp gene products have been silenced, are unable to activate invariant NKT cells. Conditional deletion of the Mttp gene in hepatocytes is associated with a redistribution of CD1d expression, and Mttp-deleted mice are resistant to immunopathologies associated with invariant NKT cell-mediated hepatitis and colitis. These studies indicate that the CD1d-regulating function of MTP in the endoplasmic reticulum is complementary to that of the saposins in endosomes in vivo.  相似文献   

17.
Natural Killer T cells (NKT) are critical determinants of the immune response to cancer, regulation of autioimmune disease, clearance of infectious agents, and the development of artheriosclerotic plaques. In this interview, Mitch Kronenberg discusses his laboratory's efforts to understand the mechanism through which NKT cells are activated by glycolipid antigens. Central to these studies is CD1d--the antigen presenting molecule that presents glycolipids to NKT cells. The advent of CD1d tetramer technology, a technique developed by the Kronenberg lab, is critical for the sorting and identification of subsets of specific glycolipid-reactive T cells. Mitch explains how glycolipid agonists are being used as therapeutic agents to activate NKT cells in cancer patients and how CD1d tetramers can be used to assess the state of the NKT cell population in vivo following glycolipid agonist therapy. Current status of ongoing clinical trials using these agonists are discussed as well as Mitch's prediction for areas in the field of immunology that will have emerging importance in the near future.  相似文献   

18.
NKT cells and HIV infection   总被引:1,自引:0,他引:1  
Natural killer T (NKT) cells are a subset of lymphocytes that express a semi-invariant T cell receptor (TCR) that recognizes glycolipids presented by the non-polymorphic MHC class I-like molecule CD1d. NKT cells regulate a wide variety of immune functions against autoantigens and pathogens. Recently, it was shown that NKT cells are targeted by HIV-1 and selectively lost in HIV-infected individuals. This review will focus on the mechanisms, consequences and therapeutic implications of these findings.  相似文献   

19.
Naturally occurring anti-carbohydrate antibodies play a major role in both the innate and adaptive immune responses. To elicit an anti-carbohydrate immune response, glycoproteins can be processed to glycopeptides and presented by the classical antigen-presenting molecules, major histocompatibility complex (MHC) Class I and II. In contrast, much less is known about the mechanism(s) for anti-carbohydrate responses to glycolipids, although it is generally considered that the CD1 family of cell surface proteins presents glycolipids to T cells or natural killer T (NKT) cells. Using model carbohydrate systems (isogloboside 3 and B blood group antigen), we examined the anti-carbohydrate response on glycolipids using both antibody neutralisation and knockout mouse-based experiments. These studies showed that CD4(+) T cells were required to generate antibodies to the carbohydrates expressed on glycolipids, and unexpectedly, these antibody responses were CD1d and NKT cell independent. They also did not require peptide help. These data provide new insight into glycolipid antigen recognition by the immune system and indicate the existence of a previously unrecognised population of glycolipid antigen-specific, CD1-independent, CD4(+) T cells.  相似文献   

20.
NK and NKT cell functions in immunosenescence   总被引:6,自引:0,他引:6  
Immunosenescence is defined as the state of dysregulated immune function that contributes to the increased susceptibility to infection, cancer and autoimmune diseases observed in old organisms, including humans. However, dysregulations in the immune functions are normally counterbalanced by continuous adaptation of the body to the deteriorations that occur over time. These adaptive changes are likely to occur in healthy human centenarians. Both innate (natural) and adaptive (acquired) immune responses decline with advancing age. Natural killer (NK) and natural killer T (NKT) cells represent the best model to describe innate and adaptive immune response in aging. NK and NKT cell cytotoxicity decreases in aging as well as interferon-gamma (IFN-gamma) production by both activated cell types. Their innate and acquired immune responses are preserved in very old age. However, NKT cells bearing T-cell receptor (TCR) gammadelta also display an increased cytotoxicity and IFN-gamma production in very old age. This fact suggests that NKT cells bearing TCRgammadelta are more involved in maintaining innate and adaptive immune response in aging leading to successful aging. The role played by the neuroendocrine-immune network and by nutritional factors, such as zinc, in maintaining NK and NKT cell functions in aging is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号