首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Positive selection by autoantigens is believed to play an important role in the generation/maintenance of B-1a cells. Recently, it has been described that splenectomy results in the loss of an already established B-1a cell pool. To elucidate whether the spleen influences the peritoneal B-1a repertoire, we have analyzed the consequences of splenectomy in the recently established IgL-transgenic L2 mouse model. L2 mice are characterized by a severe block of B-2 development and predominance of B-1a cells, which exhibit a pronounced IgH oligoclonality, presumably due to positive selection by autoantigens. In this study, we show that, in striking contrast to splenectomized normal mice, L2 mice exhibit unchanged frequencies of peritoneal B-1a cells. The IgH repertoire of these B-1a cells, however, was severely perturbed in that the previously described predominant B-1a H chains were no longer present. The repertoire changes were partial since phosphatidylcholine-specific B-1a cells were present in similar numbers before and after splenectomy. Thus, splenic Ags appear to act as "survival factors" for major subsets of peritoneal B cells. The loss of B-1a cells in the absence of such factors is compensated by repertoire changes among B-1a cells in B cell lymphopenic L2 but not normal mice.  相似文献   

2.
Transgenic (Tg) L2 mice expressing high levels of the lambda2 (315) L chain contain only B cell populations involved in the first line of defense, i.e., B-1 and marginal zone (MZ) B cells. The strongly oligoclonal IgH chain repertoire of Tg B-1a cells in such mice was attributed to strong positive selection by autoantigens. In this study, we show that the MZ B cells of L2 mice correspond very closely to MZ B cells of normal mice, as revealed by surface marker expression and gene expression profiling. We demonstrate that the IgH chain repertoire of these Tg MZ B cells is extremely heterogeneous. This is in sharp contrast to the oligoclonality found in B-1a cells of the same mice, which was attributed to strong positive selection mediated by autoantigens. Therefore, the strong positive selection of the IgH chain repertoire in L2 mice is B-1a specific. Thus, our data demonstrate that despite common functional properties, MZ B and B-1a cells exhibit striking differences in their selection and/or maintenance requirements.  相似文献   

3.
Analyses of VHDJH rearrangements isolated from murine peritoneal B-1a cells (CD5+, IgMhi, B220lo), peritoneal B-1b cells (CD5-, IgMhi, B220lo), and conventional splenic B cells provide evidence that a unique repertoire of VH regions is displayed by each of these B-cell subsets. The B-1a subset is characterized by a low N-region diversity, by a high frequency of sequence homologies in the VH-D and D-JH junctions, and by a limited exonuclease nibbling of the terminals of the joining gene segments. Through expansion in ageing mice, B-1a clones with these properties are favoured. B-1b cells are similar to conventional B-2 cells with respect to N-region diversity, but are unique in terms of D gene expression. Thus, while most murine pre-B and B cells preferentially use DSP and DFL gene segments in a given reading frame (RF1), B-1b cells frequently express D genes in another reading frame (RF2). Together, these findings provide structural evidence for a model where B-1a, B-1b and B-2 cells are produced by separate progenitors that are active at different stages of ontogeny.  相似文献   

4.
Functional activity of natural antibody is altered in Cr2-deficient mice   总被引:8,自引:0,他引:8  
The major source of natural IgM Abs are B-1 cells, which differ from conventional B cells in their anatomic location, cell surface phenotype, restricted usage of particular V(H) genes and limited use of N-region addition during V-D-J rearrangement. The origin of B-1 cells is unclear. However, they are capable of self-renewal and their development is sensitive to signaling via the B cell receptor, as genetic defects that impair the strength of the signal often result in limited development. These findings suggest that B-1 cells require either an intrinsic signal, or contact with Ag, for positive selection and expansion and/or maintenance in the periphery. In support of interaction with cognate Ag, deficiency in the complement receptors CD21/CD35 results in a 30-40% decrease in the CD5(+) B-1 population. To determine whether this reduction reflects a loss of certain specificities or simply a proportional decline in the repertoire, we examined peritoneal B cells isolated from Cr2(+) and Cr2(def) mice for recognition of a B-1 cell Ag, i.e., phosphatidylcholine, and assayed for injury in an IgM natural Ab-dependent model of reperfusion injury. We found a similar frequency of phosphatidylcholine-specific CD5(+) B-1 cells in the two strains of mice. By contrast, the Cr2(def) mice have reduced injury in the IgM-dependent model of reperfusion injury. Reconstitution of the deficient mice with pooled IgM or adoptive transfer of Cr2(+) peritoneal B cells restored injury. These results suggest that complement receptors CD21/CD35 are important in maintenance of the B-1 cell repertoire to some, but not all, specificities.  相似文献   

5.
Normal animals contain an autoreactive B lymphocyte subset, the B-1 subset, which is controlled by undefined mechanisms to prevent autoimmunity. Using a V(H)11V(kappa)9 Ig transgenic mouse, with a specificity prototypic of the subset, we have explored conditions responsible for the previously reported Ag hyporesponsiveness of these cells. We report that peritoneal V(H)11V(kappa)9 B cells exhibit typical B-1 behavior with high basal intracellular free Ca(2+) and negligible receptor-mediated calcium mobilization. However, splenic B cells from this mouse, while phenotypically similar to their peritoneal counterparts, including expression of CD5, mount robust B-2-like responses to Ag as measured by calcium influx and altered tyrosine phosphorylation responses. When these splenic cells are adoptively transferred to the peritoneal cavity and encounter their cognate self-Ag, they acquire a B-1 signaling phenotype. The ensuing hyporesponsiveness is characterized by increases in both basal intracellular calcium and resting tyrosyl phosphorylation levels and is highlighted by a marked abrogation of B cell receptor-mediated calcium mobilization. Thus, we show that self-Ag recognition in specific microenvironments such as the peritoneum, and we would propose other privileged sites, confers a unique form of anergy on activated B cells. This may explain how autoreactive B-1 cells can exist while autoimmunity is avoided.  相似文献   

6.
Cutting edge commentary: two B-1 or not to be one   总被引:3,自引:0,他引:3  
B-1 cells differ from conventional B-2 cells both phenotypically and functionally. Two seemingly mutually exclusive hypotheses have been proposed to explain the origin of B-1 cells. The lineage hypothesis holds that certain B cell precursors are destined early on to become B-1 cells. The differentiation hypothesis holds that every B cell has the same potential to acquire B-1 characteristics. Reconsideration of previous studies of transgenic and knockout mice, plus recent results identifying differences between splenic and peritoneal B-1 cells, point to unexpected complexity in the pathway leading to B-1 status. A new paradigm is suggested, in which surface Ig signaling is required for B-1 cell production, but in which the signaling threshold and context that lead to B-1 cell development and/or expansion differ for particular B cell precursors. Surface Ig signaling may also produce receptor editing, apoptotic deletion, and tolerance induction; how these different outcomes are determined remains uncertain.  相似文献   

7.
Na?ve murine B cells are typically divided into three subsets based on functional and phenotypic characteristics: innate-like B-1 and marginal zone B cells vs. adaptive B-2 cells, also known as follicular or conventional B cells. B-1 cells, the innate-immune-like component of the B cell lineage are the primary source of natural antibodies and have been shown to modulate autoimmune diseases, human B-cell leukemias, and inflammatory disorders such as atherosclerosis. On the other hand, B-2 cells are the principal mediators of the adaptive humoral immune response and represent an important pharmacological target for various conditions including rheumatoid arthritis, lupus erythematosus, and lymphomas. Using the resources of the Nuclear Receptor Signaling Atlas program, we used quantitative real-time PCR to assess the complement of the 49 murine nuclear receptor superfamily expressed in quiescent and toll-like receptor (TLR)-stimulated peritoneal B-1 and B-2 cells. We report the expression of 24 nuclear receptors in basal B-1 cells and 25 nuclear receptors in basal B-2 cells, with, in some cases, dramatic changes in response to TLR 4 or TLR 2/1 stimulation. Comparative nuclear receptor profiling between B-1 and peritoneal B-2 cells reveals a highly concordant expression pattern, albeit at quantitatively dissimilar levels. We also found that splenic B cells express 23 nuclear receptors. This catalog of nuclear receptor expression in B-1 and B-2 cells provides data to be used to better understand the specific roles of nuclear receptors in B cell function, chronic inflammation, and autoimmune disease.  相似文献   

8.
Mice expressing the X-linked immunodeficiency (xid) mutation lack functional Bruton's tyrosine kinase and were shown to be specifically deficient in peritoneal B-1 lymphocytes. We have previously shown that IL-9, a cytokine produced by TH2 lymphocytes, promotes B-1 cell expansion in vivo. To determine whether IL-9 overexpression might compensate the xid mutation for B-1 lymphocyte development, we crossed xid mice with IL-9-transgenic mice. In this model, IL-9 restored normal numbers of mature peritoneal B-1 cells that all belonged to the CD5(-) B-1b subset. Despite this normal B-1 lymphocyte number, IL-9 failed to restore classical functions of B-1 cells, namely, the production of natural IgM Abs, the T15 Id Ab response to phosphorylcholine immunization, and the antipolysaccharide humoral response against Streptococcus pneumoniae. By using bromelain-treated RBC, we showed that the antigenic repertoire of these IL-9-induced B-1b lymphocytes was different from the repertoire of classical CD5(+) B-1a cells, indicating that the lack of B-1 function by B-1b cells is associated with distinct Ag specificities. Taken together, our data show that B-1b cell development can restore the peritoneal B-1 population in xid mice but that these B-1b cells are functionally distinct from CD5(+) B-1a lymphocytes.  相似文献   

9.
CD5+ B cells have attracted considerable interest because of their association with self-reactivity, autoimmunity, and leukemia. In mice, CD5+ B cells are readily generated from fetal/neonatal precursors, but inefficiently from precursors in adult. One model proposed to explain this difference is that their production occurs through a distinctive developmental process, termed B-1, that enriches pre-B cells with novel germline VDJs and that requires positive selection of newly formed B cells by self-Ag. In contrast, follicular B cells are generated throughout adult life in a developmental process termed B-2, selecting VDJs that pair well with surrogate L chain, and whose maturation appears relatively independent of antigenic selection. In the present study, I focus on processes that shape the repertoire of mouse CD5+ B cells, describing the differences between B-1 and B-2 development, and propose a model encompassing both in the generation of functional B cell subpopulations.  相似文献   

10.
Purified populations of B cells expressing the Ly-1 and/or Mac-1 surface Ag were isolated from normal unmanipulated mice by cell sorting. The number of lymphocytes in each population secreting antibodies reactive with DNA, bromelain-treated mouse RBC, phosphorylcholine and TNP-keyhole limpet hemocyanin was quantitated by ELISA spot assay. The proportion of B cells secreting Ig in vivo and the repertoire of antibodies they produced varied as a function of B cell phenotype and location. Among peritoneal lymphocytes, those that were Ly-1+ or Ly-1- Mac-1+ secreted Ig 10 times more frequently that Mac-1- Ly-1- B cells from the same location. In addition, the former populations expressed repertoires that were significantly skewed toward the production of antibodies reactive with bromelain-treated mouse RBC (p less than 0.001). In contrast, splenic B cells expressing the Ly-1 surface Ag did not differ significantly from splenic Ly-1- B cells in their expressed repertoire or frequency of Ig production. B cells isolated from the spleen and peritoneum tended to differ in antibody specificity from bone marrow and lymph node-derived lymphocytes. For example, B cells from the spleen secreted anti-DNA antibodies two to four times more frequently than B cells from other organs. These results demonstrate that phenotype and microenvironment influence the repertoire of antibodies expressed by B cells in vivo.  相似文献   

11.
We previously identified an enhancer element upstream of the mouse cd5 gene that was required in reporter assays for the induction of cd5 promoter activity by BCR cross-linking. This element is highly conserved in placental mammals. To determine its physiological role, we have now generated mice with a targeted deletion of the enhancer. The result is the loss of CD5 expression in peritoneal and splenic B-1a cells of adult mice and an inability to induce CD5 by cross-linking of the BCR on splenic B-2 cells. Surprisingly, CD5 expression on B-1a cells of neonatal mice was only minimally compromised. Cd5 enhancer deletion also had only a modest effect on CD5 expression in the T lineage. Thus, this enhancer provides age- and tissue-specific regulation of CD5 expression and is an example of the utilization of different modes of regulation of expression in T and B cells.  相似文献   

12.
Radiation-induced apoptosis (RiA) is used therapeutically for tumor cell ablation as well as a tool to characterize hemopoietic cell lineages. We report that the peritoneal B-1 B cell subset is selectively resistant to RiA. Inherent radioresistance is not shared by splenic B-2 or B-1 cells. However, it is conferred upon B-2 cells by BCR crosslinking in the presence of IL-6 or IL-10. In vivo experiments with gene-targeted mice confirm that IL-6 and, to a lesser extent, IL-10 are the relevant stimuli that combine with BCR ligands to promote B-1 cell radioresistance. STAT3 promotes cell survival in response to selected growth factors, and is activated by combined BCR crosslinking and IL-6 (IL-10). Importantly, STAT3(-/-) B-1 cells become susceptible to irradiation, indicating that STAT3 activation by the BCR in the presence of IL costimuli account for the inherent radioresistance of peritoneal B-1 B cells.  相似文献   

13.
CD22 is a B cell-restricted transmembrane protein that apparently controls signal transduction thresholds initiated through the B cell Ag receptor (BCR) in response to Ag. However, it is still poorly understood how the expression of CD22 is regulated in B cells after their activation. Here we show that the expression levels of CD22 in conventional B-2 cells are markedly down-regulated after cross-linking of BCR with anti-IgM mAb but are up-regulated after stimulation with LPS, anti-CD40 mAb, or IL-4. In contrast, treatment with anti-IgM mAb barely modulated the expression levels of CD22 in CD5(+) B-1 cells, consistent with a weak Ca(2+) response in anti-IgM-treated CD5(+) B-1 cells. Moreover, in CD22-deficient mice, anti-IgM treatment did not trigger enhanced Ca(2+) influx in CD5(+) B-1 cells, unlike CD22-deficient splenic B-2 cells, suggesting a relatively limited role of CD22 in BCR signaling in B-1 cells. In contrast, CD22 levels were markedly down-regulated on wild-type B-1 cells in response to LPS or unmethylated CpG-containing oligodeoxynucleotides. These data indicate that the expression and function of CD22 are differentially regulated in B-1 and conventional B-2 cells, which are apparently implicated in innate and adaptive immunity, respectively.  相似文献   

14.
15.
In this study, we describe a new population of NK cells that reside in the normal, uninflamed peritoneal cavity. Phenotypically, they share some similarities with the small population of CD49b(-), CD27(+) immature splenic NK cells, as well as liver NK cells, but they differ in their expression of CD62L, TRAIL, and EOMES. Functionally, the peritoneal NK cells resemble the immature splenic NK cells in their production of IFN-γ, GM-CSF, and TNF-α and in the killing of YAC-1 target cells. We also found that the peritoneum induces different behavior in mature and immature splenic NK cells. When transferred i.v. into RAGγc knockout mice, both populations undergo homeostatic proliferation in the spleen, but only the immature splenic NK cells are able to reach the peritoneum. When transferred directly into the peritoneum, the mature NK cells survive but do not divide, whereas the immature NK cells proliferate profusely. These data suggest that the peritoneum is not only home to a new subset of tissue-resident NK cells, but that it differentially regulates the migration and homeostatic proliferation of immature versus mature NK cells.  相似文献   

16.
Peritoneal cavity B-1 cells are believed to produce IgM natural Abs. We have used alpha1,3-galactosyltransferase-deficient (GalT(-/-)) mice, which, like humans, produce IgM natural Abs against the carbohydrate epitope Galalpha1,3Gal (Gal), to demonstrate that peritoneal cavity B-1b cells with anti-Gal receptors produce anti-Gal IgM Abs only after LPS stimulation. Likewise, peritoneal cavity cells of GalT(-/-) and wild-type mice do not produce IgM Abs of other specificities without LPS stimulation. Development of Ab-secreting capacity is associated with loss of CD11b/CD18 (Mac-1) expression. In contrast, there are large numbers of cells producing anti-Gal and other IgM Abs in fresh splenocyte preparations from GalT(-/-) and (for non-Gal specificities) wild-type mice. These cells are Mac-1(-) but otherwise B-1b-like in their phenotype. We therefore hypothesized a pathway wherein peritoneal cavity B cells migrate into the spleen after activation in vivo and lose Mac-1 expression to become IgM Ab-producing cells. Consistent with this possibility, splenectomy reduced anti-Gal Ab production after immunization of GalT(-/-) mice with Gal-positive rabbit RBC. Furthermore, splenectomized B6 GalT(-/-), Ig micro -chain mutant ( micro (-/-)) (both Gal- and B cell-deficient) mice produced less anti-Gal IgM than nonsplenectomized controls after adoptive transfer of peritoneal cavity cells from B6 GalT(-/-) mice. When sorted GalT(-/-) Mac-1(+) peritoneal cavity B cells were adoptively transferred to B6 GalT(-/-), micro (-/-) mice, IgM Abs including anti-Gal appeared, and IgM-producing and Mac1(-) B cells were present in the spleen 5 wk after transfer. These findings demonstrate that peritoneal cavity Mac-1(+) B-1 cells are precursors of Mac-1(-) splenic IgM Ab-secreting cells.  相似文献   

17.
Peritoneal B-1a cells differ from splenic B-2 cells in the molecular mechanisms that control G(0)-S progression. In contrast to B-2 cells, cyclin D2 is up-regulated in a rapid and transient manner in phorbol ester (PMA)-stimulated B-1a cells, whereas cyclin D3 does not accumulate until late G(1) phase. This nonoverlapping expression of cyclins D2 and D3 suggests distinct functions for these proteins in B-1a cells. To investigate the contribution of cyclin D3 in the proliferation of B-1a cells, we transduced p16(INK4a) peptidyl mimetics (TAT-p16) into B-1a cells before cyclin D3 induction to specifically block cyclin D3-cyclin-dependent kinase 4/6 assembly. TAT-p16 inhibited DNA synthesis in B-1a cells stimulated by PMA, CD40L, or LPS as well as endogenous pRb phosphorylation by cyclin D-cyclin-dependent kinase 4/6. Unexpectedly, however, cyclin D3-deficient B-1a cells proliferated in a manner similar to wild-type B-1a cells following PMA or LPS stimulation. This was due, at least in part, to the compensatory sustained accumulation of cyclin D2 throughout G(0)-S progression. Taken together, experiments in which cyclin D3 was inhibited in real time demonstrate the key role this cyclin plays in normal B-1a cell mitogenesis, whereas experiments with cyclin D3-deficient B-1a cells show that cyclin D2 can compensate for cyclin D3 loss in mutant mice.  相似文献   

18.
B-1 lymphocytes are the predominant cells in mouse peritoneal cavity. They express macrophage and lymphocyte markers and are divided into B-1a, B-1b and B-1c subtypes. The role of B-1 cells is not completely clear, but they are responsible for natural IgM production and seem to play a regulatory role. An enriched B-1b cell population can be obtained from non-adherent peritoneal cell cultures, and we have previously demonstrated that these cells undergo differentiation to acquire a mononuclear phagocyte phenotype upon attachment to the substrate in vitro. Nevertheless, the B-1 cell response to antigens or adjuvants has been poorly investigated. Because killed Propionibacterium acnes exhibits immunomodulatory effects on both macrophages and B-2 lymphocytes, we analyzed whether a killed bacterial suspension or its soluble polysaccharide (PS) could modulate the absolute number of peritoneal B-1 cells in BALB/c mice, the activation status of these cells and their ability to differentiate into phagocytes in vitro. In vivo, P. acnes treatment elevated the absolute number of all B-1 subsets, whereas PS only increased B-1c. Moreover, the bacterium increased the number of B-1b cells that were positive for MHC II, TLR2, TLR4, TLR9, IL-4, IL-5 and IL-12, in addition to up-regulating TLR9, CD80 and CD86 expression. PS increased B-1b cell expression of TLR4, TLR9, CD40 and CD86, as well as IL-10 and IL-12 synthesis. Both of the treatments decreased the absolute number of B-1b cells in vitro, suggesting their early differentiation into B-1 cell-derived phagocytes (B-1CDP). We also observed a higher phagocytic activity from the phagocytes that were derived from B-1b cells after P. acnes and PS treatment. The adjuvant effect that P. acnes has on B-1 cells, mainly the B-1b subtype, reinforces the importance of B-1 cells in the innate and adaptive immune responses.  相似文献   

19.
Since apoptotic cell Ags are thought to be a source of self-Ag in systemic lupus erythematosus, we have examined the role of apoptotic cells in the regulation and activation of B cells specific for Sm, a ribonucleoprotein targeted in human and murine lupus. Using Ig-transgenic mice that have a high frequency of anti-Sm B cells, we find that apoptotic cell injection induces a transient splenic B cell response, while simultaneously causing extensive splenic and peritoneal anti-Sm B cell death. In contrast, mice deficient in the clearance of apoptotic cells develop a chronic anti-Sm response beginning at 1-2 mo of age. These mice have expanded marginal zone and B-1 B cell populations and anti-Sm B cells of both types are activated to form Ab-secreting cells. This activation appears to be Ag-specific, suggesting that activation is due to increased availability of apoptotic cell Ags. Since marginal zone and B-1 cells are positively selected, these data suggest a loss of ignorance rather than a loss of tolerance.  相似文献   

20.
To determine the regulation of B cells specific for the ribonucleoprotein Sm, a target of the immune system in human and mouse lupus, we have generated mice carrying an anti-Sm H chain transgene (2-12H). Anti-Sm B cells in nonautoimmune 2-12H-transgenic (Tg) mice are functional, but, in the absence of immunization, circulating anti-Sm Ab levels are not different from those of non-Tg mice. In this report, we compare the regulation of anti-Sm B cells in nonautoimmune and autoimmune MRL/Mp-lpr/lpr (MRL/lpr) and bcl-2-22-Tg mice. Activation markers are elevated on splenic and peritoneal anti-Sm B cells of both nonautoimmune and autoimmune genetic backgrounds indicating Ag encounter. Although tolerance to Sm is maintained in 2-12H/bcl-2-22-Tg mice, it is lost in 2-12H-Tg MRL/lpr mice, as the transgene accelerates and increases the prevalence of the anti-Sm response. The 2-12H-Tg MRL/lpr mice have transitional anti-Sm B cells in the spleen similar to nonautoimmune mice. However, in contrast to nonautoimmune mice, there are few if any peritoneal anti-Sm B-1 cells. These data suggest that a defect in B-1 differentiation may be a factor in the loss of tolerance to Sm and provide insight into the low prevalence of the anti-Sm response in lupus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号