首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C5L2 is a new cellular receptor found to interact with the human anaphylatoxins complement factor C5a and its C-terminal cleavage product C5a des Arg. The classical human C5a receptor (C5aR) preferentially binds C5a, with a 10-100-fold lower affinity for C5a des Arg. In contrast, C5L2 binds both ligands with nearly equal affinity. C5aR presents acidic and tyrosine residues in its N terminus that interact with the core of C5a while a hydrophobic pocket formed by the transmembrane helices interacts with residues in the C terminus of C5a. Here, we have investigated the molecular basis for the increased affinity of C5L2 for C5a des Arg. Rat and mouse C5L2 preferentially bound C5a des Arg, whereas rodent C5aR showed much higher affinity for intact C5a. Effective peptidic and non-peptidic ligands for the transmembrane hydrophobic pocket of C5aR were poor inhibitors of ligand binding to C5L2. An antibody raised against the N terminus of human C5L2 did not affect the binding of C5a to C5L2 but did inhibit C5a des Arg binding. A chimeric C5L2, containing the N terminus of C5aR, had little effect on the affinity for C5a des Arg. Mutation of acidic and tyrosine residues in the N terminus of human C5L2 revealed that 3 residues were critical for C5a des Arg binding but had little involvement in C5a binding. C5L2 thus appears to bind C5a and C5a des Arg by different mechanisms, and, unlike C5aR, C5L2 uses critical residues in its N-terminal domain for binding only to C5a des Arg.  相似文献   

2.
T Crass  W Bautsch  S A Cain  J E Pease  P N Monk 《Biochemistry》1999,38(30):9712-9717
Despite the expression of only one type of receptor, there is great variation in the ability of different cell types to discriminate between C5a and its more stable metabolite, C5a des Arg74. The mechanism that underlies this phenomenon is not understood but presumably involves differences in the interaction with the C5a receptor. In this paper, we have analyzed the effects of a substitution mutation of the receptor (Glu199 --> Lys199) and the corresponding reciprocal mutants (Lys68 --> Glu68) of C5a, C5a des Arg74 and peptide analogues of the C-terminus of C5a on the ability of the C5a receptor to discriminate between ligands with and without Arg74. The use of these mutants indicates that the Lys68/Glu199 interaction is essential for activation of receptor by C5a des Arg74 but not for activation by intact C5a. The substitution of Asp for Arg74 of C5a [Lys68] produces a ligand with equal potency on both the wild-type and mutant receptors, suggesting that it is the C-terminal carboxyl group rather than the side chain of Arg74 that controls the responsiveness of the receptor to Lys68. In contrast, the mutation of Lys68 to Glu(68) has little effect on the ability of either C5a or C5a des Arg(74) to displace [(125)I]C5a from the receptors, indicating that binding of ligand and receptor activation are distinct but interdependent events. C5a and the truncated ligand, C5a des Arg74, appear to have different modes of interaction with the receptor and the ability of the human C5a receptor to discriminate between these ligands is at least partly dependent on an interaction with the receptor residue, Glu199.  相似文献   

3.
B*2701 differs from all other HLA-B27 subtypes of known peptide specificity in that, among its natural peptide ligands, arginine is not the only allowed residue at peptide position 2. Indeed, B*2701 is unique in binding many peptides with Gln2 in vivo. However, the mutation (Asp74Tyr) responsible for altered selectivity is far away from the B pocket of the peptide binding site to which Gln/Arg2 binds. Here, we present a model that explains this effect. It is proposed that a new rotameric state of the conserved Lys70 is responsible for the unique B*2701 binding motif. This side chain should be either kept away from pocket B through its interaction with Asp74 in most HLA-B27 subtypes, or switched to this pocket if residue 74 is Tyr as in B*2701. Involvement of Lys70 in pocket B would thus allow binding of peptides with Gln2. Binding of Arg2-containing peptides to B*2701 is also possible because Lys70 could adopt another conformation, H-bonded to Asn97, which preserves the same binding mode of Arg2 as in B*2705. This model was experimentally validated by mutating Lys70 into Ala in B*2701. Edman sequencing of the B*2701(K70A) peptide pool showed only Arg2, characteristic of HLA-B27-bound peptides, and no evidence for Gln2. This supports the computational model and demonstrates that allowance of B*2701 for peptides with Gln2 is due to the long-range effect of the polymorphic residue 74 of HLA-B27, by inducing a conformational switch of the conserved Lys70.  相似文献   

4.
The serum glycoprotein C5a, which is derived from the proteolytic cleavage of complement protein C5, has been implicated in the pathogenesis of a number of inflammatory and allergic conditions. Because C5a induces an inflammatory response upon binding to a specific receptor, structural and mutagenesis studies were carried out to gain a better understanding of this binding interaction. These studies led to the first structural definition of the C terminus of recombinant human (rh)-C5a, determined by two-dimensional nuclear magnetic resonance (NMR) spectroscopy. Our results show that the C terminus adopts an α-helical conformation spanning residues 69 to 74, while the core domain exists as an antiparallel α-helical bundle. This C-terminal helix is connected to the core by a short loop that orients Arg 74 adjacent to Arg 62. Point mutation analysis had already revealed that residues 62 and 74 significantly contribute to agonist activity and receptor binding. Correlation of the C5a tertiary structure with mutational analyses clarifies the significance of the functional and binding properties of Arg 62 and suggests that both Arg 62 and Arg 74 interact at the same binding site on the receptor. Proteins 28:261–267, 1997 © 1997 Wiley-Liss Inc.  相似文献   

5.
The interaction of the chemoattractant des-Arg74-C5a (C5a des Arg) with its receptor on a human monocyte-like cell line, U-937, was examined. The data obtained suggest that C5a des Arg receptor expression is regulated by the extracellular concentration of C5a des Arg itself.  相似文献   

6.
S A Cain  T Coughlan  P N Monk 《Biochemistry》2001,40(46):14047-14052
The interaction between the anaphylatoxin C5a and its receptor involves two distinct sites. One site is formed by acidic residues at the receptor N-terminus and contributes to only ligand binding. The second site, responsible for activation, is less well defined. In this study, we demonstrate that the receptor residue D(282), near the extracellular face of transmembrane domain VII, is a component of the second ligand-binding site. Mutation of D(282) to A decreases the sensitivity of the receptor to activation by intact C5a but not by its less potent metabolite, C5adR(74), which lacks the C-terminal arginine(74). The mutation of the R(74) residue of C5a to A causes a 60-fold decrease in wild-type receptor sensitivity, but only a 2-fold decrease for the receptor mutated at D(282). In contrast, the mutation of R(74) to D makes C5a completely inactive on both wild-type and A(282) C5a receptors. The mutation of D(282) to R partly restores the response to C5a[D(74)], which is a more effective ligand than C5a at the mutant receptor. A peptide mimic of the C5a activation domain with a C-terminal R potently activates the wild type but is only a weak agonist at the mutant D(282)R-C5a receptor. Conversely, a peptide with D at the C-terminus is a more effective activator of D(282)R than wild-type C5a receptors. These data indicate that the R(74) side chain of C5a makes an interaction with receptor D(282) that is responsible for the higher potency of intact C5a versus that of C5adR(74).  相似文献   

7.
An activation switch in the ligand binding pocket of the C5a receptor   总被引:1,自引:0,他引:1  
Although agonists are thought to occupy binding pockets within the seven-helix core of serpentine receptors, the topography of these binding pockets and the conformational changes responsible for receptor activation are poorly understood. To identify the ligand binding pocket in the receptor for complement factor 5a (C5aR), we assessed binding affinities of hexapeptide ligands, each mutated at a single position, for seven mutant C5aRs, each mutated at a single position in the putative ligand binding site. In ChaW (an antagonist) and W5Cha (an agonist), the side chains at position 5 are tryptophan and cyclohexylalanine, respectively. Comparisons of binding affinities indicated that the hexapeptide residue at this position interacts with two C5aR residues, Ile-116 (helix III) and Val-286 (helix VII); in a C5aR model these two side chains point toward one another. Both the I116A and the V286A mutations markedly increased binding affinity of W5Cha but not that of ChaW. Moreover, ChaW, the antagonist hexapeptide, acted as a full agonist on the I116A mutant. These results argue that C5aR residues Ile-116 and Val-286 interact with the side chain at position 5 of the hexapeptide ligand to form an activation switch. Based on this and previous work, we present a docking model for the hexapeptide within the C5aR binding pocket. We propose that agonists induce a small change in the relative orientations of helices III and VII and that these helices work together to allow movement of helix VI away from the receptor core, thereby triggering G protein activation.  相似文献   

8.
Abstract

Human ghrelin is a peptide hormone of 28 aminoacid residues, in which the Ser3 is modified by an octanoyl group. Ghrelin has a major role in the energy metabolism of the human body stimulating growth hormone release as well as food intake. Here we perform molecular dynamics simulations in explicit water and in a DMPC-lipid bilayer/water system in order to structurally characterize this highly flexible peptide and its lipid binding properties. We find a loop structure with residues Glu17 to Lys 20 in the bending region and a short α-helix from residues Pro7 to Glu13. The presence of a lipid membrane does not influence these structural features, but reduces the overall flexibility of the molecule as revealed by reduced root mean square fluctuations of the atom coordinates. The octanoyl-side chain does not insert into the lipid membrane but points into the water phase. The peptide binds to the lipid membrane with its bending region involving residues Arg15, Lys16, Glu17, and Ser18. The implications of these results for the binding pocket of the ghrelin receptor are discussed.  相似文献   

9.
Human ghrelin is a peptide hormone of 28 aminoacid residues, in which the Ser3 is modified by an octanoyl group. Ghrelin has a major role in the energy metabolism of the human body stimulating growth hormone release as well as food intake. Here we perform molecular dynamics simulations in explicit water and in a DMPC-lipid bilayer/water system in order to structurally characterize this highly flexible peptide and its lipid binding properties. We find a loop structure with residues Glu17 to Lys 20 in the bending region and a short alpha-helix from residues Pro7 to Glu13. The presence of a lipid membrane does not influence these structural features, but reduces the overall flexibility of the molecule as revealed by reduced root mean square fluctuations of the atom coordinates. The octanoyl-side chain does not insert into the lipid membrane but points into the water phase. The peptide binds to the lipid membrane with its bending region involving residues Arg15, Lys16, Glu17, and Ser18. The implications of these results for the binding pocket of the ghrelin receptor are discussed.  相似文献   

10.
The tertiary structure for the region 1-63 of the 74 amino acid human complement protein C5a in solution was calculated from a large number of distance constraints derived from nuclear Overhauser effects with an angular distance geometry algorithm. The protein consists of four helices juxtaposed in an approximately antiparallel topology connected by peptide loops located at the surface of the molecule. The structures obtained for the helices are compatible with alpha-helical hydrogen-bonding patterns, which provides an explanation for the observed slow solvent exchange kinetics of the amide protons in these peptide regions. In contrast to the peptide region 1-63, no defined structure could be assigned to the C-terminal region 64-74, which increasingly acquires dynamic random coil characteristics as the end of the peptide chain is approached. An average root-mean-square deviation of 1.6 A was obtained for the alpha-carbons of the first 63 residues in the calculated ensemble of C5a structures, while the alpha-helices were determined with an average root-mean-square deviation of 0.8 A for the alpha-carbons. A comparison between the solution structure of C5a and the crystal structure of the functionally related C3a protein, as well as inferences for the interaction of C5a with its receptor on polymorphonuclear leukocytes, is discussed.  相似文献   

11.
Haemoglobin Aalborg (Gly74 (E18)beta----Arg) has a reduced oxygen affinity, in both the absence and the presence of organic phosphates; it has a raised affinity for organic phosphates, and it is moderately unstable. By contrast, haemoglobin Shepherds Bush (Gly74 (E18)beta----Asp) has an increased oxygen affinity in both the absence and the presence of organic phosphates, a diminished affinity for organic phosphates and is also unstable. We have determined the crystal structure of deoxyhaemoglobin Aalborg at 2.8 A resolution and compared it to the structures of deoxy- and oxyhaemoglobin A and of deoxyhaemoglobin Shepherds Bush. The guanidinium group of Arg74(E18)beta protrudes from the haem pocket and donates hydrogen bonds to the E and F helices. The carboxylate group of Asp74(E18)beta forms a hydrogen bond only with residue EF6 and is partially buried, which may be why haemoglobin Shepherds Bush appears to be more unstable than haemoglobin Aalborg. To discover why the latter has a low oxygen affinity, we superimposed the B, G and H helices of haemoglobin A, whose conformation is known to be unaffected by ligand binding, on those of haemoglobin Aalborg. This also brought helices E and the haems into superposition, but revealed a shift of the F helix of deoxyhaemoglobin Aalborg towards the EF-corner. This shift is opposite to that which occurs on ligand binding and on transition to the quaternary oxy-structure, and is linked to an increased tilt of the proximal histidine residue away from the haem axis. Since the relative positions of helices E and F and of the haem group are thought to be the main determinants of the changes in oxygen affinity, the shift of helix F may account for the reduced oxygen affinity of haemoglobin Aalborg. The shift may be due to a combination of steric and electrostatic effects introduced by the arginine residue's side-chain. The effects of the arginine and aspartate substitutions at position E18 beta on the 2,3-diphosphoglycerate affinity are equal and opposite. They can be quantitatively accounted for by the electrostatic attraction or repulsion by the oppositely charged side-chains.  相似文献   

12.
The tRNA(Gm18) methyltransferase (TrmH) catalyzes the 2'-O methylation of guanosine 18 (Gua18) of tRNA. We solved the crystal structure of Thermus thermophilus TrmH complexed with S-adenosyl-L-methionine at 1.85 A resolution. The catalytic domain contains a deep trefoil knot, which mutational analyses revealed to be crucial for the formation of the catalytic site and the cofactor binding pocket. The tRNA dihydrouridine(D)-arm can be docked onto the dimeric TrmH, so that the tRNA D-stem is clamped by the N- and C-terminal helices from one subunit while the Gua18 is modified by the other subunit. Arg41 from the other subunit enters the catalytic site and forms a hydrogen bond with a bound sulfate ion, an RNA main chain phosphate analog, thus activating its nucleophilic state. Based on Gua18 modeling onto the active site, we propose that once Gua18 binds, the phosphate group activates Arg41, which then deprotonates the 2'-OH group for methylation.  相似文献   

13.
CRAM is a cysteine-rich acidic transmembrane protein, highly expressed in the procyclic form of Trypanosoma brucei. Cell surface expression of CRAM is restricted to the flagellar pocket of trypanosomes, the only place where receptor mediated endocytosis takes place in the parasite. CRAM can function as a receptor and was hypothesized to be a lipoprotein receptor of trypanosomes. We study mechanisms involved in the presentation and routing of CRAM to the flagellar pocket of insect- and bloodstream-form trypanosomes. By deletional mutagenesis, we found that deleting up to four amino acids from the C terminus of CRAM did not affect the localization of CRAM at the flagellar pocket. Shortening the CRAM protein by 8 and 19 amino acids from the C terminus resulted in the distribution of the CRAM protein in the endoplasmic reticulum (ER) (the CRAM protein is no longer uniquely sequestered at the flagellar pocket). This result indicates that the truncation of the CRAM C terminus affected the transport efficiency of CRAM from the ER to the flagellar pocket. However, when CRAM was truncated between 29 and 40 amino acids from the C terminus, CRAM was not only distributed in the ER but also located to the flagellar pocket and spread to the cell surface and the flagellum. Replacing the CRAM transmembrane domain with the invariant surface glycoprotein 65-derived transmembrane region did not affect the flagellar pocket location of CRAM. These results indicate that the CRAM cytoplasmic extension may exhibit two functional domains: one domain near the C terminus is important for efficient export of CRAM from the ER, while the second domain is of importance for confining CRAM to the flagellar pocket membrane.  相似文献   

14.
The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450   总被引:19,自引:0,他引:19  
The crystal structure of Pseudomonas putida cytochrome P-450cam in the ferric, camphor bound form has been determined and partially refined to R = 0.23 at 2.6 A. The single 414 amino acid polypeptide chain (Mr = 45,000) approximates a triangular prism with a maximum dimension of approximately 60 A and a minimum of approximately 30 A. Twelve helical segments (A through L) account for approximately 40% of the structure while antiparallel beta pairs account for only approximately 10%. The unexposed iron protoporphyrin IX is sandwiched between two parallel helices designated the proximal and distal helices. The heme iron atom is pentacoordinate with the axial sulfur ligand provided by Cys 357 which extends from the N-terminal end of the proximal (L) helix. A substrate molecule, 2-bornanone (camphor), is buried in an internal pocket just above the heme distal surface adjacent to the oxygen binding site. The substrate molecule is held in place by a hydrogen bond between the side chain hydroxyl group of Tyr 96 and the camphor carbonyl oxygen atom in addition to complementary hydrophobic contacts between the camphor molecule and neighboring aliphatic and aromatic residues. The camphor is oriented such that the exo-surface of C5 would contact an iron bound, "activated" oxygen atom for stereoselective hydroxylation.  相似文献   

15.
The 3C-like protease of the Chiba virus, a Norwalk-like virus, is one of the chymotrypsin-like proteases. To identify active-site amino acid residues in this protease, 37 charged amino acid residues and a putative nucleophile, Cys139, within the GDCG sequence were individually replaced with Ala in the 3BC precursor, followed by expression in Escherichia coli, where the active 3C-like protease would cleave 3BC into 3B (VPg) and 3C (protease). Among 38 Ala mutants, 7 mutants (R8A, H30A, K88A, R89A, D138A, C139A, and H157A) completely or nearly completely lost the proteolytic activity. Cys139 was replaceable only with Ser, suggesting that an SH or OH group in the less bulky side chain was required for the side chain of the residue at position 139. His30, Arg89, and Asp138 could not be replaced with any other amino acids. Although Arg8 was also not replaceable for the 3B/3C cleavage and the 3C/3D cleavage, the N-terminal truncated mutant devoid of Arg8 significantly cleaved 3CD into 3C and 3D (polymerase), indicating that Arg8 itself was not directly involved in the proteolytic cleavage. As for position 88, a positively charged residue was required because the Arg mutant showed significant activity. As deduced by the X-ray structure of the hepatitis A virus 3C protease, Arg8, Lys88, and Arg89 are far away from the active site, and the side chain of Asp138 is directed away from the active site. Therefore, these are not catalytic residues. On the other hand, all of the mutants of His157 in the S1 specificity pocket tended to retain very slight activity, suggesting a decreased level of substrate recognition. These results, together with a sequence alignment with the picornavirus 3C proteases, indicate that His30 and Cys139 are active-site residues, forming a catalytic dyad without a carboxylate directly participating in the proteolysis.  相似文献   

16.
A structural model of the transmembrane portion of the acetylcholine receptor was developed from sequences of all its subunits by using transfer energy calculations to locate transmembrane alpha-helices and to calculate which helical side chains should be in contact with water inside the channel, with portions of other transmembrane helices, or with lipid hydrocarbon chains. "Knobs-into-holes" side chain packing calculations were used with other factors to stack the transmembrane alpha-helices together. In the model each subunit has the following structures in order along the sequence from the NH2 terminus: a large extracellular domain of undetermined structure, a short apolar alpha-helix that lies on the extracellular lipid surface of the membrane; three apolar transmembrane alpha-helices (I, II, and III), a cytoplasmic domain of undetermined structure, an amphipathic transmembrane alpha-helix (L) that forms the channel lining, a short extracellular alpha-helix, another apolar transmembrane alpha-helix (IV), and a small cytoplasmic domain formed by the COOH-terminal end of the chain. Three concentric layers form the pore. A bundle of five amphipathic L helices forms the channel lining. This bundle is surrounded by a bundle of 10 alternating II and III helices. Helices I and IV cover portions of the outer surface of the bundle formed by helices II and III. Positions of disulfide bridges are predicted and a mechanism for opening and closing conformational changes is proposed that requires tilting transmembrane helices and possibly a thiol-disulfide interchange reaction.  相似文献   

17.
Macrophage Migration Inhibitory Factor (MIF) is a key mediator of inflammatory responses and innate immunity and has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. The oligomerization of MIF, more specifically trimer formation, is essential for its keto-enol tautomerase activity and probably mediates several of its interactions and biological activities, including its binding to its receptor CD74 and activation of certain signaling pathways. Therefore, understanding the molecular factors governing the oligomerization of MIF and the role of quaternary structure in modulating its structural stability and multifunctional properties is crucial for understanding the function of MIF in health and disease. Herein, we describe highly conserved intersubunit interactions involving the hydrophobic packing of the side chain of Leu46 onto the β-strand β3 of one monomer within a hydrophobic pocket from the adjacent monomer constituted by residues Arg11, Val14, Phe18, Leu19, Val39, His40, Val41, Val42, and Pro43. To elucidate the structural significance of these intersubunit interactions and their relative contribution to MIF’s trimerization, structural stability and catalytic activity, we generated three point mutations where Leu46 was replaced by glycine (L46G), alanine (L46A) and phenylalanine (L46F), and their structural properties, stability, oligomerization state, and catalytic activity were characterized using a battery of biophysical methods and X-ray crystallography. Our findings provide new insights into the role of the Leu46 hydrophobic pocket in stabilizing the conformational state of MIF in solution. Disrupting the Leu46 hydrophobic interaction perturbs the secondary and tertiary structure of the protein but has no effect on its oligomerization state.  相似文献   

18.
Wu J  Gan JH  Xia ZX  Wang YH  Wang WH  Xue LL  Xie Y  Huang ZX 《Proteins》2000,40(2):249-257
The crystal structure of the recombinant trypsin-solubilized fragment of the microsomal cytochrome b(5) from bovine liver has been determined at 1.9 A resolution and compared with the reported crystal structure of the lipase-solubilized fragment of the membrane protein cytochrome b(5). The two structures are similar to each other. However, some detailed structural differences are observed: the conformation of the segment Asn16-Ser20 is quite different, some helices around the heme and some segments between the helices are shifted slightly, the heme is rotated about the normal of the mean plane of heme, one of the propionates of the heme exhibits a different conformation. The average coordination distances between the iron and the two nitrogen atoms of the imidazole ligands are the same in the two structures. Most of the structural differences can be attributed to the different intermolecular interactions which result from the crystal packing. The wild-type protein structure is also compared with its Val61His mutant, showing that the heme binding and the main chain conformations are basically identical with each other except for the local area of the mutation site. However, when Val61 is mutated to histidine, the large side chain of His61 is forced to point away from the heme pocket toward the solvent region, disturbing the micro-environment of the heme pocket and influencing the stability and the redox potential of the protein.  相似文献   

19.
Activation of G protein-coupled receptors by agonists involves significant movement of transmembrane domains (TM) following binding of agonist. The underlying structural mechanism by which receptor activation takes place is largely unknown but can be inferred by detecting variability within the environment of the ligand-binding pocket, which constitutes a water-accessible crevice surrounded by the seven TM helices. Using the substituted cysteine accessibility method, we initially identified those residues within the seventh transmembrane domain (TM7) of wild type angiotensin II type 1 (AT1) receptor that contribute to forming the binding site pocket. We have substituted successively TM7 residues ranging from Ile276 to Tyr302 to cysteine. Treatment of A277C, V280C, T282C, A283C, I286C, A291C, and F301C mutant receptors with the charged sulfhydryl-specific alkylating agent MTSEA significantly inhibited ligand binding, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT1 receptor. Interestingly, this pattern of acquired MTSEA sensitivity was greatly reduced for TM7 reporter cysteines engineered in a constitutively active mutant of the AT1 receptor. Our data suggest that upon activation, TM7 of the AT1 receptor goes through a pattern of helical movements that results in its distancing from the binding pocket per se. These studies support accumulating evidence whereby elements of TM7 of class A GPCRs promote activation of the receptor through structural rearrangements.  相似文献   

20.
Evasion of killing by the complement system, a crucial part of innate immunity, is a key evolutionary strategy of many human pathogens. A major etiological agent of chronic periodontitis, the Gram-negative bacterium Porphyromonas gingivalis, produces a vast arsenal of virulence factors that compromise human defense mechanisms. One of these is peptidylarginine deiminase (PPAD), an enzyme unique to P. gingivalis among bacteria, which converts Arg residues in polypeptide chains into citrulline. Here, we report that PPAD citrullination of a critical C-terminal arginine of the anaphylatoxin C5a disabled the protein function. Treatment of C5a with PPAD in vitro resulted in decreased chemotaxis of human neutrophils and diminished calcium signaling in monocytic cell line U937 transfected with the C5a receptor (C5aR) and loaded with a fluorescent intracellular calcium probe: Fura-2 AM. Moreover, a low degree of citrullination of internal arginine residues by PPAD was also detected using mass spectrometry. Further, after treatment of C5 with outer membrane vesicles naturally shed by P. gingivalis, we observed generation of C5a totally citrullinated at the C-terminal Arg-74 residue (Arg74Cit). In stark contrast, only native C5a was detected after treatment with PPAD-null outer membrane vesicles. Our study suggests reduced antibacterial and proinflammatory capacity of citrullinated C5a, achieved via lower level of chemotactic potential of the modified molecule, and weaker cell activation. In the context of previous studies, which showed crosstalk between C5aR and Toll-like receptors, as well as enhanced arthritis development in mice infected with PPAD-expressing P. gingivalis, our findings support a crucial role of PPAD in the virulence of P. gingivalis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号