首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Phylogeny of not-yet-cultured spirochetes from termite guts.   总被引:9,自引:4,他引:5       下载免费PDF全文
Comparisons of 16S rDNA sequences were used to determine the phylogeny of not-yet-cultured spirochetes from hindguts of the African higher termite, Nasutitermes lujae (Wasmann). The 16S rRNA genes were amplified directly from spirochete-rich hindguts by using universal primers, and the amplified products were cloned into Escherichia coli. Clones were screened with a spirochete-specific DNA probe. Analysis of 1,410 base positions of the 16S rDNA insert from one spirochete clone, designated NL1, supported its assignment to the genus Treponema, with average interspecies similarities of ca. 85%. The sequence of NL1 was most closely related (ca. 87 to 88% similarity) to sequences of Spirochaeta stenostrepta and Spirochaeta caldaria and to a previously published sequence (ca. 87% similarity) of spirochetal clone MDS1 from the Australian lower termite, Mastotermes darwiniensis (Froggatt). On the basis of 16S rRNA sequence comparisons and individual base signatures, clones NL1 and MDS1 clearly represent two novel species of Treponema, although specific epithets have not yet been proposed. The gross morphology of NL1 was determined from in situ hybridization experiments with an NL1-specific, fluorescently labeled oligonucleotide probe. Cells were approximately 0.3 to 0.4 by 30 microns in size, with a wavelength and amplitude of about 10 microns and 0.8 to 1.6 micron, respectively. Moreover, electron microscopy of various undulate cells present in gut contents confirmed that they possessed ultrastructural features typical of spirochetes, i.e., a wavy protoplasmic cylinder, periplasmic flagella, and an outer sheath. The sequence data suggest that termite gut spirochetes may represent a separate line of descent from other treponemes and that they constitute a significant reservoir of previously unrecognized spirochetal biodiversity.  相似文献   

2.
Phylogenetic diversity of termite gut spirochaetes   总被引:2,自引:0,他引:2  
A molecular phylogenetic analysis was done of not-yet-cultured spirochaetes inhabiting the gut of the termite, Reticulitermes flavipes (Kollar). Ninety-eight clones of near-full-length spirochaetal 16S rDNA genes were classified by ARDRA pattern and by partial sequencing. All clones grouped within the genus Treponema , and at least 21 new species of Treponema were recognized within R. flavipes alone. Analysis of 190 additional clones from guts of Coptotermes formosanus Shiraki and Zootermopsis angusticollis (Hagen), as well as published data on clones from Cryptotermes domesticus (Haviland), Mastotermes darwiniensis Froggatt, Nasutitermes lujae (Wasmann) and Reticulitermes speratus (Kolbe), revealed a similar level of novel treponemal phylogenetic diversity in these representatives of five of the seven termite families. None of the clones was closely related (i.e. all bore ≤ 91% sequence similarity) to any previously recognized treponeme. The data also revealed the existence of two major phylogenetic groups of treponemes: one containing all of the currently known isolates of Treponema and a large number of phylotypes from the human gingival crevice, but only a minority of the termite gut spirochaete clones; another containing the majority of termite spirochaete clones and two Spirochaeta ( S. caldaria and S. stenostrepta ), which, although free living, group within the genus Treponema on the basis of 16S rRNA sequence. Signature nucleotides that almost perfectly distinguished the latter group, herein referred to as the 'termite cluster', occurred at the following ( E. coli numbering) positions: 289-G · C-311; A at 812; and an inserted nucleotide at 1273. The emerging picture is that the long-recognized and striking morphological diversity of termite gut spirochaetes is paralleled by their phylogenetic diversity and may reflect substantial physiological diversity as well.  相似文献   

3.
Phylogenetic analysis of the spirochetes.   总被引:45,自引:19,他引:26       下载免费PDF全文
The 16S rRNA sequences were determined for species of Spirochaeta, Treponema, Borrelia, Leptospira, Leptonema, and Serpula, using a modified Sanger method of direct RNA sequencing. Analysis of aligned 16S rRNA sequences indicated that the spirochetes form a coherent taxon composed of six major clusters or groups. The first group, termed the treponemes, was divided into two subgroups. The first treponeme subgroup consisted of Treponema pallidum, Treponema phagedenis, Treponema denticola, a thermophilic spirochete strain, and two species of Spirochaeta, Spirochaeta zuelzerae and Spirochaeta stenostrepta, with an average interspecies similarity of 89.9%. The second treponeme subgroup contained Treponema bryantii, Treponema pectinovorum, Treponema saccharophilum, Treponema succinifaciens, and rumen strain CA, with an average interspecies similarity of 86.2%. The average interspecies similarity between the two treponeme subgroups was 84.2%. The division of the treponemes into two subgroups was verified by single-base signature analysis. The second spirochete group contained Spirochaeta aurantia, Spirochaeta halophila, Spirochaeta bajacaliforniensis, Spirochaeta litoralis, and Spirochaeta isovalerica, with an average similarity of 87.4%. The Spirochaeta group was related to the treponeme group, with an average similarity of 81.9%. The third spirochete group contained borrelias, including Borrelia burgdorferi, Borrelia anserina, Borrelia hermsii, and a rabbit tick strain. The borrelias formed a tight phylogenetic cluster, with average similarity of 97%. THe borrelia group shared a common branch with the Spirochaeta group and was closer to this group than to the treponemes. A single spirochete strain isolated fromt the shew constituted the fourth group. The fifth group was composed of strains of Serpula (Treponema) hyodysenteriae and Serpula (Treponema) innocens. The two species of this group were closely related, with a similarity of greater than 99%. Leptonema illini, Leptospira biflexa, and Leptospira interrogans formed the sixth and most deeply branching group. The average similarity within this group was 83.2%. This study represents the first demonstration that pathogenic and saprophytic Leptospira species are phylogenetically related. The division of the spirochetes into six major phylogenetic clusters was defined also by sequence signature elements. These signature analyses supported the conclusion that the spirochetes represent a monophylectic bacterial phylum.  相似文献   

4.
A novel spirochete strain, SPN1, was isolated from the hindgut contents of the termite Neotermes castaneus. The highest similarities (about 90%) of the strain SPN1 16S rRNA gene sequence are with spirochetes belonging to the genus Spirochaeta, and thus, the isolate could not be assigned to the so-called termite clusters of the treponemes or to a known species of the genus Spirochaeta. Therefore, it represents a novel species, which was named Spirochaeta coccoides. In contrast to all other known validly described spirochete species, strain SPN1 shows a coccoid morphology and is immotile. The isolated strain is obligately anaerobic and ferments different mono-, di-, and oligosaccharides by forming formate, acetate, and ethanol as the main fermentation end products. Furthermore, strain SPN1 is able to grow anaerobically with yeast extract as the sole carbon and energy source. The fastest growth was obtained at 30 degrees C, the temperature at which the termites were also grown. The cells possess different enzymatic activities that are involved in the degradation of lignocellulose in the termite hindgut, such as beta-D-glucosidase, alpha-L-arabinosidase, and beta-D-xylosidase. Therefore, they may play an important role in the digestion of breakdown products from cellulose and hemicellulose in the termite gut.  相似文献   

5.
Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites were analyzed without cultivation of these microorganisms. A portion of the 16S rDNA (ca. 850 bp) was amplified directly from DNA of the mixed population in the gut by PCR and cloned. A total of 30 spirochetal phylotypes affiliated with the treponemes were identified from four termite species and they were compared with those already reported from other termites. They represented separate lines of descent from any known species of Treponema, and they were divided into two discrete clusters; one was related to Spirochaeta stenostrepta and S. caldaria, and the other was grouped together with members of the Treponema bryantii subgroup. Although some sequences from evolutionarily related termites showed close similarity, most of the sequences of spirochetes were dissimilar among different termite species, and spirochetal sequences from a single termite species occurred in several distinct phylogenetic positions. These findings suggest that termites constitute a rich reservoir of novel spirochetal diversity and that evolution of the symbiosis is not simple.  相似文献   

6.
Sulfate-reducing bacteria (SRB) from termites have been assigned to the genus Desulfovibrio. Desulfovibrio intestinalis lives in the gut of the Australian termite Mastotermes darwiniensis. For the first time we were able to enrich and identify a sulfate-reducing bacterium from the gut of the rose-chafer Pachnoda marginata, which showed the highest 16S rDNA sequence identity (93%) to Desulfovibrio intestinalis and Desulfovibrio strain STL1. Compared to Mastotermes darwiniensis (1x10(7) cells of SRB per ml gut contents), sulfate-reducing bacteria occurred in higher numbers in the gut contents of Pachnoda marginata reaching cell titers of up to 2x10(8) cells per ml gut contents. In vitro sulfate reduction rates were determined with SRB from the gut contents of the termite Mastotermes darwiniensis and the beetle Pachnoda marginata. Due to the higher cell titer, the sulfate reduction rate of Pachnoda marginata was 10(4) nmolxh-1xml-1 and therefore, 21 times higher than that of Mastotermes darwiniensis. In addition, we detected in vivo sulfate reduction in Mastotermes darwiniensis, which indicates that sulfate reducers play an active role in the sulfur metabolism in the termite gut.  相似文献   

7.
A Gram-negative, anaerobic sulfate-reducing bacterium was isolated from hindgut contents of the lower termite Mastotermes darwiniensis Froggatt (strain KMS2). Strain KMS2 is motile by a single polar flagellum. The isolate possesses desulfoviridin and catalase activity. The G+C content of its DNA is in the range of 54.5-55.5 mol% (strain KMS2). It respires hydrogen and different low molecular weight organic compounds in the presence of sulfate, thiosulfate, and sulfite, and also oxygen. The isolated strain ferments pyruvate. Fastest growth with a doubling time of 12.5 h was obtained at 37 degrees C and not at 28 degrees C, the temperature at which the termites were grown. The isolate showed a 16S rDNA sequence homology of 95.9% to Desulfovibrio desulfuricans ATCC 27774 and a DNA-DNA homology of 44.6% to D. desulfuricans Essex 6 (type strain). Based on its biochemical properties and 16S rDNA sequence, the isolate was assigned to a new species named Desulfovibrio intestinalis.  相似文献   

8.
Phylogenetic relationships, diversity, and in situ identification of spirochetes in the gut of the termite Neotermes koshunensis were examined without cultivation, with an emphasis on ectosymbionts attached to flagellated protists. Spirochetes in the gut microbial community investigated so far are related to the genus Treponema and divided into two phylogenetic clusters. In situ hybridizations with a 16S rRNA-targeting consensus oligonucleotide probe for one cluster (known as termite Treponema cluster I) detected both the ectosymbiotic spirochetes on gut protists and the free-swimming spirochetes in the gut fluid of N. koshunensis. The probe for the other cluster (cluster II), which has been identified as ectosymbionts on gut protists of two other termite species, Reticulitermes speratus and Hodotermopsis sjoestedti, failed to detect any spirochete population. The absence of cluster II spirochetes in N. koshunensis was confirmed by intensive 16S ribosomal DNA (rDNA) clone analysis, in which remarkably diverse spirochetes of 45 phylotypes were identified, almost all belonging to cluster I. Ectosymbiotic spirochetes of the three gut protist species Devescovina sp., Stephanonympha sp., and Oxymonas sp. in N. koshunensis were identified by their 16S rDNA and by in situ hybridizations using specific probes. The probes specific for these ectosymbionts did not receive a signal from the free-swimming spirochetes. The ectosymbionts were dispersed in cluster I of the phylogeny, and they formed distinct phylogenetic lineages, suggesting multiple origins of the spirochete attachment. Each single protist cell harbored multiple spirochete species, and some of the spirochetes were common among protist species. The results indicate complex relationships of the ectosymbiotic spirochetes with the gut protists.  相似文献   

9.
We describe two new pillotinaceous spirochetes (Canaleparolina darwiniensis, Diplocalyx cryptotermitidis) and identify for the first time Hollandina pterotermitidis from both the subterranean termite Cryptotermes cavifrons and the wood-eating cockroach Cryptocercus punctulatus based on morphometric analysis of transmission electron micrographic thin sections. C. darwiniensis, gen. nov., sp. nov., limited to near Darwin, Australia, invariably is present on the surface of the treponeme-studded trichomonad Mixotricha paradoxa, a consistent inhabitant of the hindgut of healthy termite Mastotermes darwiniensis. The spirochete both attached to the surface of protists and free-swimming in the paunch (hindgut) lumen of the insect has 16 periplasmic flagella (16:32:16) and imbricated wall structures that resemble flattened crenulations of Pillotina. The flagella surround half the protoplasmic cylinder. C. darwiniensis is the largest (0.5 microm diameter x 25 microm length) of the three epibiotic bacteria (two spirochetes, one rod) that comprise the complex cortex of its host Mixotricha paradoxa. Several criteria distinguish Diplocalyx cryptotermitidis sp. nov. isolated from Cryptotermes cavifrons intestine: smaller diameter, fewer flagella, absence of inner and outer coats of the outer membrane, wider angle subtended by its flagella and, most notably, cytoplasmic tubule-associated centers, which are periodic electron dense spheres within the protoplasmic cylinder from which emanate cytoplasmic tubules up to 24 nm in diameter. This is also the first report of abundant populations of Hollandina in Cryptotermes cavifrons (those populations belong to the species H. pterotermitidis). Morphometric analysis of the first thin sections of any spirochetes (published nearly 40 years ago by A.V. Grimstone) permits us to identify the large (0.9 microm diameter) free-swimming intestinal symbiont of Cryptocercus punctulatus also as Hollandina pterotermitidis.  相似文献   

10.
The phylogenetic diversity of the intestinal microflora of a lower termite, Reticulitermes speratus, was examined by a strategy which does not rely on cultivation of the resident microorganisms. Small-subunit rRNA genes (16S rDNAs) were directly amplified from the mixed-population DNA of the termite gut by the PCR and were clonally isolated. Analysis of partial 16S rDNA sequences showed the existence of well-characterized genera as well as the presence of bacterial species for which no 16S rDNA sequence data are available. Of 55 clones sequenced, 45 were phylogenetically affiliated with four of the major groups of the domain Bacteria: the Proteobacteria, the spirochete group, the Bacteroides group, and the low-G+C-content gram-positive bacteria. Within the Proteobacteria, the 16S rDNA clones showed a close relationship to those of cultivated species of enteric bacteria and sulfate-reducing bacteria, while the 16S rDNA clones in the remaining three groups showed only distant relationships to those of known organisms in these groups. Of the remaining 10 clones, among which 8 clones formed a cluster, there was only very low sequence similarity to known 16S rRNA sequences. None of these clones were affiliated with any of the major groups within the domain Bacteria. The 16S rDNA gene sequence data show that the majority of the intestinal microflora of R. speratus consists of new, uncultured species previously unknown to microbiologists.  相似文献   

11.
Enzymatic activities for interconversion of purines in spirochetes.   总被引:4,自引:2,他引:2       下载免费PDF全文
Enzymatic activities that catalyze the interconversion of purines and purine derivatives were detected in cell extracts of Spirochaeta aurantia, Spirochaeta stenostrepta, Treponema succinifaciens, and Treponema denticola. Phosphoribosyltransferase activities present in cell extracts of each of the four spirochete species functioned in the conversion of adenine, hypoxanthine, and guanine to AMP, IMP, and GMP, respectively. Nucleotidase activities in the extracts mediated the formation of nucleosides from nucleotides. The conversion of adenosine, inosine, and guanosine to the respective purine bases was catalyzed by nucleoside phosphorylase and, in some instances, by nucleoside hydrolase activities. Guanine deaminase activity was found in both S. aurantia and S. stenostrepta, whereas adenosine deaminase activity was detected only in S. aurantia. Adenine deaminase activity in T. succinifaciens extracts was sensitive to O2 and was relatively resistant to heating. Our results indicate that the four species of spirochetes studied possess a broad spectrum of purine interconversion enzymes. It is suggested that these enzymes may function in metabolic processes important for the survival of spirochetes in nutrient-poor natural environments.  相似文献   

12.
The phylogenetic relationships of symbiotic spirochetes from five dry-wood feeding lower termites (Cryptotermes cavifrons, Heterotermes tenuis, Kalotermes flavicollis, Neotermes mona, and Reticulitermes grassei) was compared to those described in previous reports. The 16S rDNA bacterial genes were PCR-amplified from DNA isolated from intestinal samples using a spirochete-selective primer, and the 16S amplicons were cloned into Escherichia coli. Sequences of the cloned inserts were then used to determine closest relatives by comparison with published sequences. Clones sharing more than 97% sequence identity were grouped into the same phylotype. Forty-three new phylotypes were identified. These termite whole-gut-spirochetes fell into two previous defined clusters, designated as Treponema Clusters I and II, and one new Cluster III. Thirty-seven phylotypes were grouped in Cluster I. Cluster II comprised three phylotypes, two from Reticulitermes grassei (LJ029 and LJ012) and one from Heterotermes tenuis (LQ016). Three phylotypes, LK057, LK050 and LK028, were affiliated to Cluster III. Members of Cluster I showed the following characteristics: (i) spirochete phylotypes from a particular species of termite were more closely related to each other than to phylotypes of other termite species; (ii) spirochetes obtained from different genera of the same family, such as Cryptotermes sp., Kalotermes sp., and Neotermes sp., all from the family Kalotermitidae, were also related to each other. It was therefore concluded that spirochetes are specific symbionts that have coevolved with their respective species of termites, are stably harbored, and are closely related to members of the same termite family.  相似文献   

13.
Phylogenetic relationships, diversity, and in situ identification of spirochetes in the gut of the termite Neotermes koshunensis were examined without cultivation, with an emphasis on ectosymbionts attached to flagellated protists. Spirochetes in the gut microbial community investigated so far are related to the genus Treponema and divided into two phylogenetic clusters. In situ hybridizations with a 16S rRNA-targeting consensus oligonucleotide probe for one cluster (known as termite Treponema cluster I) detected both the ectosymbiotic spirochetes on gut protists and the free-swimming spirochetes in the gut fluid of N. koshunensis. The probe for the other cluster (cluster II), which has been identified as ectosymbionts on gut protists of two other termite species, Reticulitermes speratus and Hodotermopsis sjoestedti, failed to detect any spirochete population. The absence of cluster II spirochetes in N. koshunensis was confirmed by intensive 16S ribosomal DNA (rDNA) clone analysis, in which remarkably diverse spirochetes of 45 phylotypes were identified, almost all belonging to cluster I. Ectosymbiotic spirochetes of the three gut protist species Devescovina sp., Stephanonympha sp., and Oxymonas sp. in N. koshunensis were identified by their 16S rDNA and by in situ hybridizations using specific probes. The probes specific for these ectosymbionts did not receive a signal from the free-swimming spirochetes. The ectosymbionts were dispersed in cluster I of the phylogeny, and they formed distinct phylogenetic lineages, suggesting multiple origins of the spirochete attachment. Each single protist cell harbored multiple spirochete species, and some of the spirochetes were common among protist species. The results indicate complex relationships of the ectosymbiotic spirochetes with the gut protists.  相似文献   

14.
The bacterial community structure of the activated sludge from a 25 million-gal-per-day industrial wastewater treatment plant was investigated using rRNA analysis. 16S ribosomal DNA (rDNA) libraries were created from three sludge samples taken on different dates. Partial rRNA gene sequences were obtained for 46 rDNA clones, and nearly complete 16S rRNA sequences were obtained for 18 clones. Seventeen of these clones were members of the beta subdivision, and their sequences showed high homology to sequences of known bacterial species as well as published 16S rDNA sequences from other activated sludge sources. Sixteen clones belonged to the alpha subdivision, 7 of which showed similarity to Hyphomicrobium species. This cluster was chosen for further studies due to earlier work on Hyphomicrobium sp. strain M3 isolated from this treatment plant. A nearly full-length 16S rDNA sequence was obtained from Hyphomicrobium sp. strain M3. Phylogenetic analysis revealed that Hyphomicrobium sp. strain M3 was 99% similar to Hyphomicrobium denitrificans DSM 1869(T) in Hyphomicrobium cluster II. Three of the cloned sequences from the activated sludge samples also grouped with those of Hyphomicrobium cluster II, with a 96% sequence similarity to that of Hyphomicrobium sp. strain M3. The other four cloned sequences from the activated sludge sample were more closely related to those of the Hyphomicrobium cluster I organisms (95 to 97% similarity). Whole-cell fluorescence hybridization of microorganisms in the activated sludge with genus-specific Hyphomicrobium probe S-G-Hypho-1241-a-A-19 enhanced the visualization of Hyphomicrobium and revealed that Hyphomicrobium appears to be abundant both on the outside of flocs and within the floc structure. Dot blot hybridization of activated sludge samples from 1995 with probes designed for Hyphomicrobium cluster I and Hyphomicrobium cluster II indicated that Hyphomicrobium cluster II-positive 16S rRNA dominated over Hyphomicrobium cluster I-positive 16S rRNA by 3- to 12-fold. Hyphomicrobium 16S rRNA comprised approximately 5% of the 16S rRNA in the activated sludge.  相似文献   

15.
Treponema primitia, an H2-consuming CO2-reducing homoacetogenic spirochete in termite hindguts, requires an exogenous source of folate for growth. Tetrahydrofolate (THF) acts as a C1 carrier in CO2-reductive acetogenesis, a microbially mediated process important to the carbon and energy requirements of termites. To examine the hypothesis that other termite gut microbes probably supply some form of folate to T. primitia in situ, we used a bioassay to screen for and isolate folate-secreting bacteria from hindguts of Zootermopsis angusticollis, which is the host of T. primitia. Based on morphology, physiology, and 16S rRNA gene sequences, the major folate secretors were identified as strains of Lactococcus lactis and Serratia grimesii. During growth, these isolates secreted 5-formyl-THF at levels up to 146 ng/ml, and their cell-free culture fluids satisfied the folate requirement of T. primitia strains in vitro. Analysis of Z. angusticollis hindgut fluid revealed that 5-formyl-THF was the only detectable folate compound and occurred at an in situ concentration (1.3 mug/ml) which was more than sufficient to support the growth of T. primitia. These results imply that cross-feeding of 5-formyl-THF by other community members is important for growth of symbiotic hindgut spirochetes and thus termite nutrition and survival.  相似文献   

16.
Some species of protists inhabiting the hindgut of lower-termites have a large number of ectosymbiotic spirochetes on the cell surface. The phylogenetic positions of the ectosymbiotic spirochetes of three oxymonad protists, Dinenympha porteri in the gut of Reticulitermes speratus, and Pyrsonympha sp. and Dinenympha sp. in Hodotermopsis sjoestedti, were investigated without cultivation of these organisms. Protist fractions carefully collected with a micromanipulator were used as templates for the amplification of small subunit ribosomal RNA genes (SSU rDNA). The phylogenetic tree inferred from the nucleotide sequences of the SSU rDNA showed that they were affiliated with the Treponema cluster of spirochetes and they were divided into two clusters. One was grouped together with the spirochetal sequences reported previously from the gut of termites and the other was related to the Treponema bryantii subgroup of treponemes (denoted as termite Treponema clusters I and II, respectively). Whole-cell in situ hybridization using a fluorescent-labeled oligonucleotide probe specific for the group of sequences in cluster II identified most of the ectosymbiotic spirochetes of the oxymonad protists in the gut of R. speratus and H. sjoestedti. However, not all of the ectosymbiotic spirochetes could be detected by means of this cluster II group-specific probe and the population of ectosymbiotic spirochetes of cluster II was different among the oxymonad species. In the case of D. porteri, an oligonucleotide probe specific for one member of cluster II recognized a portion of the ectosymbiotic spirochetes of cluster II, and their population was also different depending on the cell-type of D. porteri in terms of the attachment of ectosymbiotic spirochetes. The results indicate that the spirochetes of cluster II and probably those of a part of cluster I can be assigned to ectosymbiotic species of oxymonad protists and that the population of ectosymbiotic spirochetes associated with a single protist consists of at least three species of phylogenetically distinct spirochetes.  相似文献   

17.
Long after their original discovery, termite gut spirochetes were recently isolated in pure culture for the first time. They revealed metabolic capabilities hitherto unknown in the Spirochaetes division of the Bacteria, i.e., H(2) plus CO(2) acetogenesis (J. R. Leadbetter, T. M. Schmidt, J. R. Graber, and J. A. Breznak, Science 283:686-689, 1999) and dinitrogen fixation (T. G. Lilburn, K. S. Kim, N. E. Ostrom, K. R. Byzek, J. R. Leadbetter, and J. A. Breznak, Science 292:2495-2498, 2001). However, application of specific epithets to the strains isolated (Treponema strains ZAS-1, ZAS-2, and ZAS-9) was postponed pending a more complete characterization of their phenotypic properties. Here we describe the major properties of strain ZAS-9, which is readily distinguished from strains ZAS-1 and ZAS-2 by its shorter mean cell wavelength or body pitch (1.1 versus 2.3 micro m), by its nonhomoacetogenic fermentation of carbohydrates to acetate, ethanol, H(2), and CO(2), and by 7 to 8% dissimilarity between its 16S rRNA sequence and those of ZAS-1 and ZAS-2. Strain ZAS-9 is proposed as the type strain of the new species, Treponema azotonutricium. Strains ZAS-1 and ZAS-2, which are H(2)-consuming, CO(2)-reducing homoacetogens, are proposed here to be two strains of the new species Treponema primitia. Apart from the salient differences mentioned above, the genomes of all three strains were similar in size (3,461 to 3,901 kb), in G+C content (50.0 to 51.0 mol%), and in possession of 2 copies of the gene encoding 16S rRNA (rrs). For comparison, the genome of the free-living spirochete Spirochaeta aurantia strain J1 was analyzed by the same methods and found to have a size of 3,719 kb, to contain 65.6 mol% G+C, and also to possess 2 copies of the rrs gene.  相似文献   

18.
The spirochetes are free-living or host-associated, helical bacteria, some of which are pathogenic to man and animal. Comparisons of 16S rRNA sequences demonstrate that the spirochetes represent a monophyletic phylum within the bacteria. The spirochetes are presently classified in the Class Spirochaetes in the order Spirochetales and are divided into three major phylogenetic groupings, or families. The first family Spirochaetaceae contains species of the genera Borrelia, Brevinema, Cristispira, Spirochaeta, Spironema, and Treponema. The second family Brachyspiraceae contains the genus Brachyspira (Serpulina). The third family Leptospiraceae contains species of the genera Leptonema and Leptospira. Novel spirochetal species, or phylotypes, that can not be presently cultivated in vitro, have been identified from the human oral cavity, the termite gut, and other host-associated or free-living sources. There are now over 200 spirochetal species or phylotypes, of which more than half is presently not cultivable. It is likely that there is still a significant unrecognized spirochetal diversity that should be evaluated.  相似文献   

19.
The relictual Mastotermes darwiniensis is one of the world's most destructive termites. Like all phylogenetically basal termites, it possesses protozoa in its hindgut, which are believed to help it digest wood. L. Li, J. Frohlich, P. Pfeiffer, and H. Konig (Eukaryot. Cell 2:1091-1098, 2003) recently cloned the genes encoding cellulases from the protozoa of M. darwiniensis; however, they claimed that these genes are essentially inactive, not contributing significantly to cellulose digestion. Instead, they suggested that the protozoa sequester enzymes produced by the termite in its salivary glands and use these to degrade cellulose in the hindgut. We tested this idea by performing gel filtration of enzymes in extracts of the hindgut, as well as in a combination of the salivary glands, foregut, and midgut. Three major cellulases were found in the hindgut, each of which had a larger molecular size than termite-derived salivary gland enzymes. N-terminal amino acid sequencing of one of the hindgut-derived enzymes showed that it was identical to the putative amino acid sequence of one mRNA sequence isolated by Li et al. (Eukaryot. Cell 2:1091-1098, 2003). The overall activity of the hindgut cellulases was found to be of approximately equal magnitude to the termite-derived cellulases detected in the mixture of salivary gland, foregut, and midguts. Based on these results, we conclude that, contrary to Li et al. (Eukaryot. Cell 2:1091-1098, 2003), the hindgut protozoan fauna of M. darwiniensis actively produce cellulases, which play an important role in cellulose digestion of the host termite.  相似文献   

20.
The bacterial community structure of the activated sludge from a 25 million-gal-per-day industrial wastewater treatment plant was investigated using rRNA analysis. 16S ribosomal DNA (rDNA) libraries were created from three sludge samples taken on different dates. Partial rRNA gene sequences were obtained for 46 rDNA clones, and nearly complete 16S rRNA sequences were obtained for 18 clones. Seventeen of these clones were members of the beta subdivision, and their sequences showed high homology to sequences of known bacterial species as well as published 16S rDNA sequences from other activated sludge sources. Sixteen clones belonged to the alpha subdivision, 7 of which showed similarity to Hyphomicrobium species. This cluster was chosen for further studies due to earlier work on Hyphomicrobium sp. strain M3 isolated from this treatment plant. A nearly full-length 16S rDNA sequence was obtained from Hyphomicrobium sp. strain M3. Phylogenetic analysis revealed that Hyphomicrobium sp. strain M3 was 99% similar to Hyphomicrobium denitrificans DSM 1869T in Hyphomicrobium cluster II. Three of the cloned sequences from the activated sludge samples also grouped with those of Hyphomicrobium cluster II, with a 96% sequence similarity to that of Hyphomicrobium sp. strain M3. The other four cloned sequences from the activated sludge sample were more closely related to those of the Hyphomicrobium cluster I organisms (95 to 97% similarity). Whole-cell fluorescence hybridization of microorganisms in the activated sludge with genus-specific Hyphomicrobium probe S-G-Hypho-1241-a-A-19 enhanced the visualization of Hyphomicrobium and revealed that Hyphomicrobium appears to be abundant both on the outside of flocs and within the floc structure. Dot blot hybridization of activated sludge samples from 1995 with probes designed for Hyphomicrobium cluster I and Hyphomicrobium cluster II indicated that Hyphomicrobium cluster II-positive 16S rRNA dominated over Hyphomicrobium cluster I-positive 16S rRNA by 3- to 12-fold. Hyphomicrobium 16S rRNA comprised approximately 5% of the 16S rRNA in the activated sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号