首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The uptake of [3H]-histamine into the retina and optic lobe of the locust, Schistocerca americana gregaria was studied by means of autoradiography at the light- and electron-microscopic levels. Light-microscopic autoradiography showed a significant accumulation of [3H]-histamine in several regions of the optic lobe. Dense accumulations of silver grains were concentrated along the medial border of the medullary neuropil and around the entire periphery of the lobula. No significant accumulations of grains were present within the retina or the neuropil zones of the lamina, medulla or lobula.Electron-microscopic autoradiography showed histamine-accumulating cells along the border of the medulla to exhibit electron density and morphology typical of glial cells. Labelled histamine was present within both glial cell bodies and their processes. In the region surrounding the neuropil of the lobula, [3H]-histamine was concentrated within fine glial processes wrapped around neuronal cell bodies and their axons. No neuronal cell bodies or axons showed accumulation of silver grains above background.These results are consistent with previous studies showing the glial uptake of amino acid and biogenic amine putative neurotransmitters. However, the lack of a demonstration of a specific uptake of histamine in neuropil zones makes it difficult to assess the role of histamine uptake in the inactivation of neurally released histamine in the locust visual system.  相似文献   

2.
The distribution of the NPY-like substances in the nervous system and the midgut of the migratory locust, Locusta migratoria and in the brain of the grey fleshfly, Sarcophaga bullata was determined by immunocytochemistry using an antiserum directed against synthetic porcine NPY. The peroxidase-antiperoxidase procedure revealed that NPY immunoreactive cell bodies and nerve fibers were observed in the brain, optic lobes, corpora cardiaca, suboesophageal ganglion and ventral nerve cord of the locust and in the brain, optic lobes and suboesophageal ganglion of the fleshfly. In the locust midgut, numerous endocrine cells and nerve fibers penetrating the outer musculature contained NPY-like immunoreactivity. The concentrations of NPY immunoreactive material in acetic acid extracts of locust brain, optic lobes, thoracic ganglia, ovaries and midguts was measured using a specific radioimmunoassay technique. The dilution curves of the crude tissue extracts were parallel to the standard curve. The highest amount of NPY-like immunoreactivity was found in the locust ovary and midgut. Reverse-phase high-performance liquid chromatography (RP-HPLC) and radioimmunoassay were used to characterize the NPY-like substances in the locust brain and midgut. HPLC-analysis revealed that NPY-immunoreactivity in the locust brain eluted as three separate peaks. The major peak corresponded to a peptide less hydrophobic than synthetic porcine NPY. RP-HPLC analysis of midgut extracts revealed the presence of an additional NPY-immunoreactive peak which had a retention time similar to the porcine NPY standard. The present data show the existence of a widespread network of NPY immunoreactive neurons in the nervous system of the locust and the fleshfly. Characterization of the immunoreactive substances indicates that peptides similar but not identical to porcine NPY are present in the central nervous system and midgut of insects.  相似文献   

3.
The distribution of corazonin in the central nervous system of the heteropteran insect Triatoma infestans was studied by immunohistochemistry. The presence of corazonin isoforms was investigated using MALDI-TOF mass spectrometry in samples containing the brain, the subesophageal ganglion, the corpora cardiaca-corpus allatum complex and the anterior part of the aorta. Several groups of immunopositive perikarya were detected in the brain, the subesophageal ganglion and the thoracic ganglia. Regarding the brain, three clusters were observed in the protocerebrum. One of these clusters was formed by somata located near the entrance of the ocellar nerves whose fibers supplied the aorta and the corpora cardiaca. The remaining groups of the protocerebrum were located in the lateral soma cortex and at the boundary of the protocerebrum with the optic lobe. The optic lobe housed immunoreactive somata in the medial soma layer of the lobula and at the level of the first optic chiasma. The neuropils of the deutocerebrum and the tritocerebrum were immunostained, but no immunoreactive perikarya were detected. In the subesophageal ganglion, immunostained somata were found in the soma layers of the mandibular and labial neuromeres, whereas in the mesothoracic ganglionic mass, they were observed in the mesothoracic, metathoracic and abdominal neuromeres. Immunostained neurites were also found in the esophageal wall. The distribution pattern of corazonin like immunoreactivity in the central nervous system of this species suggests that corazonin may act as a neurohormone. Mass spectrometric analysis revealed that [Arg7]-corazonin was the only isoform of the neuropeptide present in T. infestans tissue samples.  相似文献   

4.
Information regarding melatonin production in molluscs is very limited. In this study the presence and daily fluctuations of melatonin levels were investigated in hemolymph, retina and nervous system-related structures in the cephalopod Octopus vulgaris. Adult animals were maintained in captivity under natural photoperiod and killed at different times in a regular daily cycle. Levels of melatonin, serotonin (5-HT) and its acid metabolite (5-hydroxyindole acetic acid, 5-HIAA) in the hemolymph, retina, optic lobe, and cerebral ganglion were assayed by HPLC. Melatonin content fluctuated rhythmically in the retina and hemolymph, peaking at night. In the retina, but not in the other neural tissues, the rhythm was opposite to that of 5-HT, which displayed basal levels at night. Also, 5-HIAA levels in the retina were higher during the night, supporting that rhythmic melatonin production could be linked to diurnal changes in 5-HT degradation. The high levels of melatonin found in the retina point to it as the major source of melatonin in octopus; in addition, a large variation of melatonin content was found in the optic lobe with maximal values at night. All these data suggest that melatonin might play a role in the transduction of the light–dark cycle information for adjustment of rhythmic physiological events in cephalopods.  相似文献   

5.
Abstract— (1) The effects of gamma-hydroxybutyrate, imidazole-4-acetic acid and pento-barbitone on mouse brain glucose, glycogen and lactate levels have been studied. All the drugs significantly increased the brain glucose content, but did not significantly alter brain glycogen levels. The increase in brain glucose following imidazole-4-acetic acid or hypnotic doses of pentobarbitone was matched by corresponding decreases in the lactate level; this was not the case with gamma-hydroxybutyrate where the total glucose equivalents in the brain, expressed as the tissue level of (glucose) + (lactate/2), were significantly increased.
(2) All drugs except imidazole-4-acetic acid significantly decreased the rate of appearance of [14C]glucose into the bloodstream in vivo but had no effect on the uptake of glucose into rat diaphragm in vitro when present at 2·5 mM concentration.
(3) Only imidazole-4-acetic acid significantly inhibited glucose uptake into the brain in vivo but at 2·5 mM had no significant effect on glucose uptake into rat cerebral cortical slices in vitro.
(4) It is concluded that the very large increase in brain glucose level observed following the injection of hypnotic doses of gamma-hydroxybutyrate cannot be explained in terms of an increased net uptake of glucose into the brain.  相似文献   

6.
A chordotonal organ in the prothoracic segment of a locust combines features of a proprioceptive mechanoreceptor and an acoustic organ. This organ is closely associated with the tracheal system in the neck. The central nervous projections of the sensory cells contact neuropiles in all thoracic ganglia with the most dense arborizations in the metathoracic ganglion in close proximity, and even with some overlap, to the projections of tympanic fibres. Physiological experiments show that this organ responds to mechanical displacement of its receptor apodeme and, in addition, to acoustic stimulation via either a region of the cervical membrane which may act as a functional tympanic membrane, or via the tracheal system. Accepted: 14 October 1998  相似文献   

7.
Abstract— Octopamine distribution has been surveyed in the nervous systems of two insect species, the locust, Schistocerca americana gregaria , and the cockroach Periplaneta americana. It is essentially similar for both species, being highly localised in the ganglia of the ventral nerve cord. Large amounts of octopamine are also found in the optic lobes especially, in the locust where it is concentrated in the medulla of the optic lobe. Octopamine can also be shown to be associated with insect neurohae-mal structures such as the corpora cardiaca and the neurohaemal organs of the medial nervous system. The significance of the distribution is discussed.  相似文献   

8.
Summary The distribution of octopamine in the metathoracic ganglion, brain and corpus cardiacum of Locusta migratoria and Schistocerca gregaria was investigated by means of immunocytochemistry with an antiserum against octopamine. The dorsal unpaired median (DUM) cells of the metathoracic ganglion were found to be strongly octopamine-immunoreactive. In the rostroventral part of the protocerebrum a group of seven immunopositive cells was demonstrated. Stained nerve fibres of these cells run into three directions: circumoesophageal connectives, midbrain, and optic lobes. As far as the protocerebrum is concerned, immunoreactive fibres were found in the central body, the protocerebral bridge, and in other neuropile areas. In the optic lobe a dense plexus of immunopositive fibres was found in the lobula and in the medulla. In the brain one other immunopositive cell was demonstrated, situated at the lateral border of the tritocerebrum. Octopamine could not be shown to occur either in the globuli cells of the mushroom bodies or in the dorsolateral part of the protocerebrum, where the perikarya of the secretomotor neurones are located that innervate the glandular cells of the corpus cardiacum. In the nervi corporis cardiaci II, which contain the axons of the neurones that extend into the glandular part of the corpus cardiacum, and in the corpus cardiacum proper no specific octopamine immunoreactivity could be found.  相似文献   

9.
It is generally believed that neural transmission in the central nervous systems of insects is cholinergic, on the basis of secondary evidence: the presence of cholinesterase, and sensitivity of a nonsynaptic region of the neuron, its cell body, to iontophoresed acetylcholine. In the present work a preparation has been developed which takes advantage of the availability of identified motor neurons in the locust metathoracic ganglion with known 3-dimensional geometry of dendritic fields. These neurons transmit at their peripheral neuromuscular junctions with glutamate. The fast extensor tibiae motor neuron also makes excitatory central connections onto its functional antagonists the flexor tibiae motor neurons. Unless Dale's principle is contravened, transmission at these central synapses should also be glutamatergic. This transmission onto flexor motor neurons was found to be attenuated 70% by a glutamatergic blocker. Glutamate iontophoresed into selected areas of neuropil into which the motor neurons have dendritic branches caused the neurons to be depolarized, in a dose-dependent manner. Individual motor neurons were directly excited to spike with suprathreshold iontophoretic current. With long durations of release they were desensitized, but recovered quickly with rest. The data provide evidence that central transmission onto motor neurons in the locust metathoracic ganglion is glutamatergic.  相似文献   

10.
Histamine serves a neurotransmitter role in arthropod photoreceptor neurons, but is also present in a small number of interneurons throughout the nervous system. In search of a suitable model system for the analysis of histaminergic neurotransmission in insects, we mapped the distribution of histamine in the brain of the desert locust Schistocerca gregaria by immunocytochemistry. In the optic lobe, apparently all photoreceptor cells of the compound eye with projections to the lamina and medulla showed intense immunostaining. Photoreceptors of the dorsal rim area of the eye had particularly large fiber diameters and gave rise to uniform varicose immunostaining throughout dorsal rim areas of the lamina and medulla. In the locust midbrain 21 bilateral pairs of histamine-immunoreactive interneurons were found, and 13 of these were reconstructed in detail. While most neuropil areas contained a dense meshwork of immunoreactive processes, immunostaining in the antennal lobe and in the calyces of the mushroom body was sparse and no staining occurred in the pedunculus and lobes of the mushroom body, in the protocerebral bridge, and in the lower division of the central body. A prominent group of four immunostained neurons had large cell bodies near the median ocellar nerve root and descending axonal fibers. These neurons are probably identical to previously identified primary commissure pioneer neurons of the locust brain. The apparent lack in the desert locust of certain histamine-immunoreactive neurons which were reported in the migratory locust may be responsible for differences in the physiological role of histamine between both species.The study was supported by the Deutsche Forschungsgemeinschaft, grants Ho 950/13 and 950/14  相似文献   

11.
12.
Histamine N-methyltransferase (EC 2.1.1.8) was purified 1100-fold from ox brain. The native enzyme has an Mr of 34800 +/- 2400 as measured by gel filtration on Sephadex G-100. The enzyme is highly specific for histamine. It does not methylate noradrenaline, adrenaline, DL-3,4-dihydroxymandelic acid, 3,4-dihydroxyphenylacetic acid, 3-hydroxytyramine or imidazole-4-acetic acid. Unlike the enzyme from rat and mouse brain, ox brain histamine N-methyltransferase did not exhibit substrate inhibition by histamine. Initial rate and product inhibition studies were consistent with an ordered steady-state mechanism with S-adenosylmethionine being the first substrate to bind to the enzyme and N-methylhistamine being the first product to dissociate.  相似文献   

13.
The activity of the substance(s) which are contained in the cephalic endocrine organs of the locust which induce egg diapause in Bombyx mori was examined by implantation and injection of saline extracts of these organs. Extracts from the median and lateral neurosecretory parts of the locust brain were not effective in inducing egg diapause. Extracts of the corpora cardiaca, corpora allata, and suboesophageal ganglion of the locust induced diapause eggs in Bombyx pharate adults from which the suboesophageal ganglion had been removed. The first two extracts could induce egg diapause even in isolated abdomens of pharate adults of Bombyx. In the locust corpora cardiaca, the activity was present only in the glandular lobe and not in the nervous region. This activity decreased when the nervi corporis cardiaci I and II and of nervi corporis allati I were cut. Allatectomy also brought about a decrease in the activity in the glandular lobe which could not be restored by the injection of juvenile hormone. The activity in the corpora allata was enhanced slightly by the disconnection though not significantly.From these results, it is assumed that the corpora cardiaca, corpora allata and suboesophageal ganglion of the locust contain and active principle(s) capable of inducing egg diapause in Bombyx mori. The nervous connections between the brain, corpora cardiaca, and corpora allata are essential for the accumulation of the active substance(s) in the glandular lobes of the corpora cardiaca.  相似文献   

14.
The number and location of neurons, in the central nervous system, that project into the frontal connective was studied in the locust by using retrograde neurobiotin staining. Staining one frontal connective revealed some 70 neurons in the brain. Most of these were located within both tritocerebral lobes. Additional groups of neurons were located within the deutocerebrum and protocerebrum. Some 60 neurons were labelled in the suboesophageal ganglion. These formed nine discernable populations. In addition, two neurons were located in the prothoracic ganglion and two neurons in the first abdominal neuromere of the metathoracic ganglion. Thus, some 250 neurons located within the head ganglia, and even neurons in thoracic ganglia, project into the ganglia of the enteric nervous system. This indicates that the coordination between the central and enteric ganglia is much more complex than previously thought. With the exception of some previously described dorsal unpaired median neurons and a few motor neurons in the head ganglia, the identity and function of most of these neurons is as yet unknown. Possible functions of the neurons in the thoracic ganglia are discussed.  相似文献   

15.
Locustatachykinin I is one of four closely related myotropic neuropeptides isolated from brain and corpora-cardiaca complexes of the locust Locusta migratoria. Antiserum was raised against locustatachykinin I for use in immunocytochemistry. It was found that the antiserum recognizes also locustatachykinin II and hence probably also the other two locustatachykinins due to their similarities in primary structure. Locustatachykinin-like immunoreactive (LomTK-LI) neurons were mapped in the brain of the locust, L. migratoria. A total of approximately 800 Lom TK-LI neurons were found with cell bodies distributed in the proto-, deutoand tritocerebrum, in the optic lobes and in the frontal ganglion. Processes of these neurons innervate most of the synaptic neuropils of the brain and optic lobes, as well as the frontal ganglion and hypocerebral ganglion. The widespread distribution of LomTK-LI neurons in the locust brain indicates an important role of the locustatachykinins in signal transfer or regulation thereof. As a comparison neurons were mapped with an antiserum against the cockroach myotropic peptide leucokinin I. This antiserum, which probably recognizes the native peptide locustakinin, labels a population of about 140 neurons distinct from the LomTK-LI neurons (no colocalized immunoreactivity). These neurons have cell bodics that are distributed in the proto- and tritocerebrum and in the optic lobe. The processes of the leucokinin-like immunoreactive (LK-LI) neurons do not invade as large areas in neuropil as the Lom TK-LI neurons do and some neuropils, e.g. the mushroom bodies, totally lack innervation by LK-LI fibers. In some regions, however, the processes of the Lom TK-LI and LK-LI neurons are superimposed: most notably in the central body and optic lobes. A functinal relation between the two types of neuropeptide in the locust brain can, however, not be inferred from the present findings.  相似文献   

16.
Protein kinase C (PKC) activation has been associated with synaptic plasticity in many projections, and manipulating PKC in the retinotectal projection strongly affects the activity-driven sharpening of the retinotopic map. This study examined levels of PKC in the regenerating retinotectal projection via immunostaining and assay of activity. A polyclonal antibody to the conserved C2 (Ca2+ binding) domain of classical PKC isozymes (anti-panPKC) recognized a single band at 79–80 kD on Western blots of goldfish brain. It stained one class of retinal bipolar cells and the ganglion cells in normal retina, as shown previously. Strong staining was not present in the optic fiber layer of retina or in optic nerve, optic tract, or terminal zone in tectum, with the exception of a single fascicle of optic nerve fibers that by their location and by L1 (E587) staining were identified as those arising from newly added ganglion cells at the retinal margin. Normal tectal sections showed dark staining of a subclass of type XIV neuron with somas at the top of the periventricular layer and an apical dendrite ascending to stratum opticum. In regenerating retina, swollen ganglion cells stained darkly and stained axons were seen in the optic fiber layer. In regenerating optic nerve (2–11 weeks postcrush), all fascicles of optic fibers stained darkly for both PKC and L1(E587). At 5 weeks postcrush, PKC staining could also be seen in the medial and lateral optic tracts and stratum opticum at the front half of the tectum and very lightly over the terminal zones. PKC activity was measured in homogenized tissues dissected from a series of fish with unilateral nerve crush from 1 to 5 weeks previously. Activity levels stimulated by phorbols and Ca2+ were measured by phosphorylation of a specific peptide and referred to levels measured in the opposite control side. Regeneration did not increase overall PKC activity in retina or tectum, but in optic nerve there was an 80% rise after the first week. The increased activity verifies that the increased staining in nerve represented an up-regulation of functional PKC during nerve regeneration. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 315–324, 1998  相似文献   

17.
Summary An antiserum raised against gamma aminobuyric acid (GABA) was used to stain the thoracic nervous system of the locust. It stained both neuronal somata and processes within the neuropile. Among the stained somata, those of the three pairs of common inhibitory motor neurones could be identified in each of the three thoracic ganglia. In the pro- and mesothoracic ganglia five discrete groups of somata are stained, four ventral and one dorsal. In the metathoracic neuromere, an additional second dorsal group can be identified. In the abdominal neuromeres of the metathoracic ganglion both dorsal and ventral somata are stained but the latter cannot be divided into discrete populations. In each ganglion, dorsal commissures (DC) IV and V are composed of stained neurites, DCVII, the supramedian commissure, the perpendicular tract, and all the longitudinal tracts contain both stained and unstained neurites. DCI, II, III and VI, the T and I tracts are unstained. An abundance of GABA-like immunoreactive processes is found throughout the neuropile except for the anterior ventral association centre where stained processes are sparser. Some of the stained cell groups contain neurones that have been studied physiologically. The function of these neurones is discussed.Beit Memorial Fellow  相似文献   

18.
Four tachykinin-related peptides, locustatachykinin 1–4 (LomTK 1–4) are distributed in interneurons throughout the central nervous system of the locust Locusta migratoria and may have important roles as neurotransmitters or neuromodulators. In search of the central actions of LomTKs, we analyzed the response of the efferent dorsal unpaired median (DUM) neurons in the locust metathoracic ganglion. Immunocytochemistry, using an antiserum against LomTK 1, combined with intracellular filling of efferent DUM neurons with Lucifer yellow, revealed that LomTK-immunoreactive fibers are in close proximity to dendritic arborizations of the DUM neurons. Hence, LomTKs may act on DUM neurons by releasing locally in the metathoracic ganglion. Intracellular recordings were made from somata of DUM neurons, and LomTKs were either bath-applied to an isolated metathoracic ganglion or pressure-ejected onto the DUM neuron soma. LomTK 1 at concentrations of 0.1 mM–0.1 μM caused a relatively slow, reversible depolarization with a subsequent increase in the frequency of action potential firing. Amino-terminally truncated forms of LomTK 1 were applied to DUM neurons. The heptapeptide [3–9]-LomTK 1 had a substantially reduced activity, and bioactivity was lost after further truncation. Spantide 1, an antagonist of mammalian tachykinin receptors, reversibly blocked the effect of LomTK 1. The effect of LomTK 1 was clearly reduced in the presence of GDP-β-S, a stable analog of GDP that inactivates G-proteins. The action of LomTK 1 was potentiated by both IBMX and theophylline, two cyclic AMP (cAMP) phosphodiesterase inhibitors. The action of LomTK 1 was mimicked by pressure-ejecting 8-bromo-cAMP, a membrane permeable analog of cAMP, and by forskolin, an adenylate cyclase activator. Furthermore, cAMPS, a blocker of protein kinase A activity, reduced the effect of LomTK 1. These findings indicate that cAMP is involved in mediating DUM neuron depolariztion. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 297–315, 1997  相似文献   

19.
Neuron-specific enolase (NSE) immunocytochemistry was carried out in retinae of goldfish, axolotl, clawed frog, cane toad, lizard, chick, guinea-pig, rabbit, rat, cat and human. With the exception of Anura, strong immunoreactivity was seen in the large ganglion, amacrine cells and horizontal cells of the retina in all of the other species. Photoreceptors were found to be labelled in the rat and human retina and only one cone type in rabbit. Photoreceptor pedicles and ellipsoids were stained in the goldfish and the somata and inner segments of some photoreceptors in axolotl. In the axolotl retina, besides neurons, Müller cells (MCs) were also immunolabelled. In the retina of the cane toad and the clawed frog MCs were the only stained elements. Similarly in other parts of the central nervous system of the cane toad, glial elements of the optic tectum and spinal cord were immunoreactive. In contrast, in the peripheral nervous system, neurons of the 1st sympathetic ganglion and the 2nd dorsal root ganglion were labelled. In double-labelling experiments, glial fibrillary acidic protein and NSE showed colocalisation both in the glial elements of the optic tectum and spinal cord and in MCs of the retina of the cane toad.  相似文献   

20.
Simultaneous intracellular recordings were made from pairs of motor neurons in the pro- or mesothoracic ganglion of the locust. Though central connections were sought between pairs of motor neurons, none were found. This is in sharp contrast to the findings that flexor and extensor tibiae neurons in the metathoracic ganglion make certain connections between themselves (Hoyle and Burrows, 1973; Heitler and Burrows, 1977a). As the previously mentioned authors believed that the metathoracic flexor-extensor connections were used as part of the motor program for jumping and kicking, the present results strongly support their hypothesis. Common PSPs have been found in a variety of pairs of motor neurons. Of note are common PSPs of the same sign to antagonists. Different innervation patterns have been found for the flexor and extensor muscles. It is proposed that serially homologous motor neurons serving similar functions are, to a first approximation, similar in the locust. Serially homologous motor neurons serving different functions will, in most cases, have altered structures and/or functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号