共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
B. W. KIRKPATRICK 《Animal genetics》1992,23(6):543-548
Examination of published rat and human sequences for the insulin-like growth factor-I (IGF-I) gene indicated the presence of CA dinucleotide repeats in corresponding segments of each. Presence of similar microsatellite sequences in the porcine and bovine IGF-I genes was hypothesized. A 1200-bp segment upstream of the porcine and bovine IGF-I genes was amplified using the polymerase chain reaction (PCR) with primers developed from a consensus of human, rat and bovine sequences. Both porcine and bovine PCR products contained similar microsatellite sequences. Amplified pIGF-I DNA was cloned and sequenced, and an additional primer was developed specifically for microsatellite marker detection. Six allelic variants of 124, 130, 132, 134, 136 or 138 bp were observed in pigs with differing frequencies between breeds (P < 0.01). The same primers were used to amplify the corresponding bovine microsatellite. Three alleles of 126, 128 and 130 bp were observed in a genetically diverse cattle population with estimated frequencies of 0.06, 0.68 and 0.26, respectively. Results of this study indicate sequence information from the human and laboratory species can be used to facilitate genetic marker development in livestock species. 相似文献
11.
12.
13.
Evidence that receptor aggregation may play a role in transmembrane signaling through the insulin-like growth factor-I receptor 总被引:3,自引:0,他引:3
alpha IR-3 is a mouse monoclonal antibody that binds to an epitope on the human insulin-like growth factor I (IGF-I) receptor and inhibits [125I]IGF-I binding to this receptor on human skin fibroblasts (HSF) and Hep G2 human hepatoblastoma cells. Unlike the natural ligand (IGF-I), neither intact alpha IR-3 nor its monovalent Fab fragment stimulate aminoisobutyric acid (AIB) uptake in HSF, and both competitively antagonize IGF-I's ability to produce this effect. However, when HSF are incubated with alpha IR-3 or its Fab' fragment, subsequent exposure to anti-mouse immunoglobulin G (IgG) produces a potent stimulation of AIB uptake. Anti-Mouse IgG by itself does not effect AIB uptake. alpha IR-3 also antagonizes IGF-I's ability to stimulate glycogen synthesis in Hep G2 cells. As with AIB uptake in HSF, the combination of alpha IR-3 followed by anti-mouse IgG stimulates glycogen synthesis in Hep G2 cells to the same extent as that produced by IGF-I. The triggering of these two biological effects depends on the concentration of both alpha IR-3 and anti-mouse IgG. These results are consistent with the possibility that local aggregation or cross-linking of IGF-I receptors plays an important role in transmembrane signaling by this receptor. 相似文献
14.
Slot-blot hybridization technique was used to evaluate growth hormone-releasing hormone (GHRH) mRNA levels in the hypothalamus of long-term (14 days) hypophysectomized (HPX) rats treated or not with 125 micrograms hGH/rat, twice daily IP, since the first day postsurgery. In addition, mRNA levels were determined in the hypothalamus of short-term (4 days) GH-treated (250 micrograms hGH/rat, twice daily IP) intact rats. GHRH mRNA levels were increased in HPX rats, and GH treatment partially counteracted this rise. Short-term administration of GH decreased GHRH mRNA levels in intact rats. These results, evaluated together with previous findings showing decreased hypothalamic GHRH-like immunoreactivity in both HPX rats and intact rats given GH (6, 7, 9), indicate that GH exerts a negative feedback action on the synthesis and release of GHRH. 相似文献
15.
16.
17.
Insulin-like growth factor-I (IGF-I) has both metabolic and mitogenic activities mediated through interaction with the type 1 IGF receptor. The circulation of IGF-I in blood and interstitial fluid is not free but bound mostly to a family of six high affinity IGF-binding proteins, which form stable complexes with IGF and neutralize its bioactivity. Therefore, displacement of this large pool of endogenous IGF from the binding proteins could elevate "free" IGF levels to elicit beneficial effects in diabetes and other IGF-responsive diseases comparable with those produced by administration of exogenous IGF-I. We report here the identification of a nonpeptide ligand NBI-31772, which displaces IGF-I from all six IGF-binding proteins at low nanomolar concentrations from screening of the in-house chemical libraries. Furthermore, the released free IGF-I was shown to be biologically active in an in vitro bioassay. Thus, NBI-31772 could serve as a valuable lead molecule for the design of novel therapeutics to treat diabetes and other IGF-responsive diseases. 相似文献
18.
19.
20.
Growth hormone dependence of somatomedin-C/insulin-like growth factor-I and insulin-like growth factor-II messenger ribonucleic acids 总被引:2,自引:0,他引:2
M A Hynes J J Van Wyk P J Brooks A J D'Ercole M Jansen P K Lund 《Molecular endocrinology (Baltimore, Md.)》1987,1(3):233-242
The GH dependence of somatomedin-C/insulin-like growth factor I (Sm-C/IGF-I) and insulin like growth factor II (IGF-II) mRNAs was investigated by Northern blot hybridizations of polyadenylated RNAs from liver, pancreas, and brain of normal rats, untreated hypophysectomized rats, and hypophysectomized rats 4 h or 8 h after an ip injection of human GH (hGH). Using a 32P-labeled human Sm-C/IGF-I cDNA as probe, four Sm-C/IGF-I mRNAs of 7.5, 4.7, 1.7, and 1.2 kilobases (kb) were detected in rat liver and pancreas but were not detectable in brain. In both liver and pancreas, the abundance of these Sm-C/IGF-I mRNAs was 8- to 10-fold lower in hypophysectomized rats than in normal rats. Within 4 h after injection of hGH into hypophysectomized animals, the abundance of liver and pancreatic Sm-C/IGF-I mRNAs was restored to normal. A human IGF-II cDNA was used as a probe for rat IGF-II mRNAs which were found to be very low in abundance in rat liver and showed no evidence of regulation by GH status. In pancreas, IGF-II mRNA abundance was below the detection limit of the hybridization procedures. The brain contained two IGF-II mRNAs of 4.7 and 3.9 kb that were 5-fold lower in abundance in hypophysectomized rats than in normal rats. These brain IGF-II mRNAs were not, however, restored to normal abundance at 4 or 8 h after ip hGH injection into hypophysectomized animals. To investigate further, the effect of GH status on abundance of Sm-C/IGF-I and IGF-II mRNAs in rat brain, a second experiment was performed that differed from the first in that hypophysectomized rats were given an injection of hGH into the lateral ventricle (intracerebroventricular injection) and a rat Sm-C/IGF-I genomic probe was used to analyze Sm-C/IGF-I mRNAs. In this experiment, a 7.5 kb Sm-C/IGF-I mRNA was detected in brain polyadenylated RNAs. The abundance of the 7.5 kb mRNA was 4-fold lower in hypophysectomized rats than in normal rats and was increased to 80% of normal within 4 h after icv administration of hGH to hypophysectomized animals. As in the first experiment, the abundance of the 4.7 and 3.9 kb brain IGF-II mRNAs was lower than normal in hypophysectomized rats. Brain IGF-II mRNAs were increased to 50% of normal in hypophysectomized rats given an icv injection of hGH but within 8 h after the injection rather than at 4 h as with Sm-C/IGF-I mRNAs. 相似文献