首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rapid mixing/photocross-linking technique developed in our laboratory has been employed in the study of the mechanism of promoter binding by Escherichia coli RNA polymerase (RPase). We have previously reported on the quantitation of the one-dimensional diffusion coefficient (D1) for RPase along the DNA template (Singer, P. T., and Wu, C.-W. (1987) J. Biol. Chem. 262, 14178-14189). In this paper, we describe the effect of salt concentration and temperature on the kinetics of promoter search by RPase using plasmid pAR1319 DNA, which contains the A2 early promoter from bacteriophage T7, as template. Over a range of KCl concentrations from 25 to 200 mM, the apparent bimolecular rate constant (ka) for the association of RPase with the A2 promoter on this DNA template varied approximately 2-fold, achieving a maximal value between 100 and 125 mM KCl. More significantly, the transient distribution of RPase among nonspecific DNA binding sites changed markedly as a function of salt concentration, indicative of gross changes in the average number of base pairs covered by sliding during a nonspecific lifetime. Using the mathematical treatment outlined in our earlier report, the nonspecific dissociation rate constant (koff) was calculated from the binding curves for the nonspecific as well as promoter-containing DNA. The observed variations in ka as a function of monovalent cation concentration ([M+]) were due primarily to changes in koff, as D1 was found to be essentially independent of [M+]. Interestingly, D1 decreased by one-third as the concentration of magnesium was lowered from 10 to 1 mM. In addition, the dependence of koff (and consequently the nonspecific equilibrium association constant, keq) on [M+] agreed qualitatively with the results of deHaseth et al. (deHaseth, P.L., Lohman, T. M., Burgess, R. R., and Record, M. T., Jr. (1977) Biochemistry 17, 1612-1622), though we consistently measure a weaker Keq. The association rate constant was also measured between 4 and 37 degrees C, and was found to vary approximately 2-fold over that range. An activation energy for the bimolecular association of RPase to the A2 promoter was calculated to be 2.2 +/- 0.4 kcal/mol, while the activation energy for one-dimensional diffusion was 4.7 +/- 0.8 kcal/mol.  相似文献   

2.
3.
Nuclear magnetic resonance studies were performed to investigate the effect of DNA template on the interaction of initiating nucleotide ATP with Escherichia coli RNA polymerase (RPase) in which one of the two intrinsic Zn ions was substituted with a Co(II) (Co-Zn RPase) or Mn(II) (Mn-Zn RPase) ion. This intrinsic metal ion is located at the initiation site in the beta subunit of RPase. The paramagnetic effects of Co-Zn and Mn-Zn RPases on the relaxation rates of 1H- and 31P-nuclei of ATP were used to determine the distances from the intrinsic metal to various atoms of ATP bound at the initiation sites in the presence of DNA. The distances from the metal to H2, H8, H1', alpha-P, beta-P, and gamma-P atoms were estimated to be 6.7 +/- 0.9, 4.1 +/- 0.6, 6.0 +/- 1.2, 7.5 +/- 0.8, 9.4 +/- 1.0, and 9.8 +/- 1.0 A, respectively. These distances were compared with those measured in the absence of DNA (Chatterji, D., and Wu, F. Y.-H. (1982) Biochemistry 21, 4657). In both the presence and absence of DNA, the close proximity between the intrinsic metal and the H8 atom strongly indicates that the metal is coordinated directly to the base moiety of ATP. Such a coordination may provide a structural basis for the selection of a purine nucleotide during the initiation process. The presence of DNA causes the H2 atom to move away (greater than 2 A) from the intrinsic metal, whereas all three phosphorus atoms shift closer (greater than 3 A) toward the metal. The possible mechanistic implications of the conformational alteration of ATP at the initiation site induced by the DNA template is discussed.  相似文献   

4.
Cytosolic serine hydroxymethyltransferase has been shown previously to exhibit both broad substrate and reaction specificity. In addition to cleaving many different 3-hydroxyamino acids to glycine and an aldehyde, the enzyme also catalyzes with several amino acid substrate analogs decarboxylation, transamination, and racemization reactions. To elucidate the relationship of the structure of the substrate to reaction specificity, the interaction of both amino acid and folate substrates and substrate analogs with the enzyme has been studied by three different methods. These methods include investigating the effects of substrates and substrate analogs on the thermal denaturation properties of the enzyme by differential scanning calorimetry, determining the rate of peptide hydrogen exchange with solvent protons, and measuring the optical activity of the active site pyridoxal phosphate. All three methods suggest that the enzyme exists as an equilibrium between "open" and "closed" forms. Amino acid substrates enter and leave the active site in the open form, but catalysis occurs in the closed form. The data suggest that the amino acid analogs that undergo alternate reactions, such as racemization and transamination, bind only to the open form of the enzyme and that the alternate reactions occur in the open form. Therefore, one role for forming the closed form of the enzyme is to block side reactions and confer reaction specificity.  相似文献   

5.
6.
7.
Melanin, the major determinant of skin colour, is a tyrosine-based heteropolymer of indeterminate molecular weight. In vivo, melanin synthesis occurs within highly specialized organelles called melanosomes. Coated vesicles encapsulating the enzyme tyrosinase and tyrosinase related proteins, fuse with premelanosomes that contain structural proteins to form mature melanosomes. Coated vesicles and premelanosomes have been shown to have only melanin monomers but not the polymer. Our earlier results have clearly shown that the presence of proteins other than tyrosinase are critical for the post-tyrosinase steps of melanin polymerization at acidic pH. Proteins in melanosomes are difficult to purify because of their firm association with melanin. Thus, with progressive melanization, melanoproteins become progressively insoluble. In this paper, we discuss the isolation and purification of melanosomal proteins and their role in melanin polymerization. We have hypothesized that the initiation of polymerization and the binding of melanin to proteins are two discrete events and we have developed assays to quantify these events. Purified melanosomal proteins differ in their ability to polymerize melanin monomers. Further, we have also shown that two polypeptides (28 and 45 kDa) purified from melanosomes inhibit melanin polymerization but can bind preformed melanin. In conclusion, melanosomal proteins regulate melanin polymerization and differ in their ability to bind melanin. Polymerization and binding abilities of melanosomal proteins are specific to each protein and melanin-protein interaction is not nonspecific.  相似文献   

8.
The choline homologue 3-[(trimethylammonio)methyl]catechol (TMC) has been synthesized, and the controllable features of its complex oxidation have been examined spectroscopically and correlated with its toxin binding inactivating reactions with the acetylcholine receptor (AcChR) from Torpedo californica electroplax. Affinity-dependent reactions of early intermediates in the oxidation of TMC are suggested to intercede covalently in this inactivation. At pH 7.4, where the oxidative polymerization of catechols proceeds spontaneously, pyrocatechol produced no effect on the toxin binding function of AcChR, whereas comparable concentrations of TMC led to inactivation of half of all available sites. Lower concentrations of TMC converted via oxidation with ceric salts to an in situ mixture of monohydroxylated catechols were shown to be effective in short-term incubations in inactivating approximately half of the toxin binding sites by covalent labeling of the receptor. Mixtures of dihydroxycatechol intermediates, hydroxy-p-quinones, and polymeric products led to nonspecific toxin binding site inactivation of AcChR in excess of half of all available sites. Collectively, the results suggest that both covalent labeling and oxygen reduction product inactivating mechanisms are operative in these model macromolecular site reactions and that catechol-containing affinity reagents may be useful in elucidating the molecular features of sites to which they are directed.  相似文献   

9.
Melanin, the major determinant of skin colour, is a tyrosine‐based heteropolymer of indeterminate molecular weight. In vivo, melanin synthesis occurs within highly specialized organelles called melanosomes. Coated vesicles encapsulating the enzyme tyrosinase and tyrosinase related proteins, fuse with premelanosomes that contain structural proteins to form mature melanosomes. Coated vesicles and premelanosomes have been shown to have only melanin monomers but not the polymer. Our earlier results have clearly shown that the presence of proteins other than tyrosinase are critical for the post‐tyrosinase steps of melanin polymerization at acidic pH. Proteins in melanosomes are difficult to purify because of their firm association with melanin. Thus, with progressive melanization, melanoproteins become progressively insoluble. In this paper, we discuss the isolation and purification of melanosomal proteins and their role in melanin polymerization. We have hypothesized that the initiation of polymerization and the binding of melanin to proteins are two discrete events and we have developed assays to quantify these events. Purified melanosomal proteins differ in their ability to polymerize melanin monomers. Further, we have also shown that two polypeptides (28 and 45 kDa) purified from melanosomes inhibit melanin polymerization but can bind preformed melanin. In conclusion, melanosomal proteins regulate melanin polymerization and differ in their ability to bind melanin. Polymerization and binding abilities of melanosomal proteins are specific to each protein and melanin–protein interaction is not nonspecific.  相似文献   

10.
AMP and NaF each taken separately were shown to activate DNA polymerization catalyzed by Klenow fragment of DNA polymerase I by means of interaction of AMP or NaF with 3'----5'-exonuclease center of the enzyme. In the presence of NaF which is a selective inhibitor of 3'----5'-exonuclease center, AMP is an inhibitor of polymerization competitive with respect to dATP. Ki values and the pattern of inhibition with respect to dATP were determined for AMP, ADP, ATP, carboxymethylphosphonyl-5'-AMP, Pi, PPi, PPPi, methylenediphosphonic acid and its ethylated esters, phosphonoformic acid, phosphonoacetic acid and its ethylated esters as well as for some bicarbonic acids in the reactions of DNA polymerization catalyzed by Klenow fragment of DNA polymerase I (in the presence of NaF) and DNA polymerase alpha from human placenta in the presence of poly(dT) template and r(pA)10 primer. All nucleotides and their analogs were found to be capable of competing with dATP for the active center of the enzyme. Most of the analogs of PPi and phosphonoacetic acid are inhibitors of Klenow fragment competitive with respect to dATP. Nowever these analogs display a mixed-type inhibition in the case of human DNA polymerase alpha. We postulated a similar mechanism of interaction for dNTP with both DNA-polymerases. It is suggested that each phosphate group of PPi makes equal contribution to the interaction with DNA polymerases and that the distance between the phosphate groups is important for this interaction. beta-phosphate of NTP or dNTP is suggested to make negligible contribution to the efficiency of the formation of enzyme complexes with dNTP. beta-phosphate is likely to be an essential point of PPi interaction with the active center of proteins during the cleavage of the alpha-beta-phosphodiester bond of dNTP in the reaction of DNA polymerization.  相似文献   

11.
12.
13.
14.
The interaction between Escherichia coli RNA polymerase and a restriction fragment of coliphage T7 DNA containing four promoter sites for the coli enzyme has been studied by difference uv absorption spectroscopy in a low ionic strength buffer containing 10 mm MgCl2 and 50 mM KCl. The binding of the enzyme to the DNA is accompanied by a hyperchromic shift which shows a maximum around 260 nm, and increases with increasing temperature in the temperature range studied (4-40 degrees C). Measurements were also carried out with whole T7 DNA and a restriction fragment containing no promoter site. A comparison of the results obtained with the various DNAs suggests that the binding of an RNA polymerase to a promoter site in the low ionic strength medium causes the disruption of a short segment of the DNA helix, of the order of ten pairs; the binding of an enzyme molecule to a promotor site appears to have a cooperative effect on the binding of the enzyme molecules to adjacent non-promoter sites with concomitant disruption of DNA base pairs.  相似文献   

15.
1. The 5'-terminal sequence of the RNA transcribed from bacteriophage fd replicative form DNA under the control of promotor region I has been determined to be ppp(Gp)nUpApApApGpApCpCpUpGpApUpUp. . . 2. This sequence is complementary to the 5'-terminal sequence of the minus strand of the corresponding RNA polymerase binding site I, the starting point for RNA synthesis lying approximately in the middle of the binding site. 3. This initial sequence is also transcribed faithfully from isolated complexes of RNA polymerase and binding site I, obtained by DNase digestion of complexes between RNA polymerase and fd replicative form DNA. These highly stable complexes can not be reconstituted from binding site and enzyme. 4. It is concluded that RNA polymerase binding site and initiation site are identical parts of a promoter region, and that no "drift" between these sites is required as a step in RNA chain initiation. An additional non-transcribed outside region is implicated as essential for full promoter function.  相似文献   

16.
17.
A process of thrombin interaction with synthetic and natural substrates in the presence of Na+ ions has been analyzed in the survey. Molecular bases of this interaction have been presented, interrelation between the structure and function of thrombin has been noted; the nature of the unique site of its active centre which determines high thrombin affinity for the substrates and increase of its catalytic activity defined by the term of "specificity to univalent cations" have been considered in detail. Na+ ions play the role of allosteric effector in realization of two informational states of thrombin which penform, respectively, two fundamental and competing functions in the process of hemostasis. The molecular basis of the process of Na+ binding with thrombin is rather simple and depends only on the single site which importance for the enzyme function is marked by numerous investigations of a number of authors, and it is shown that Na(+)-binding site is distributed in the other zone of thrombin molecule as compared to exosites I and II, which do not take part in Na(+)-binding and allosteric transduction. Considerable attention was given to conformational conversions of a thrombin molecule caused by Na+ ions binding. It was shown that the transition slow <--> fast of the enzyme forms leads to formation of the ion pair Arg-187: Asp-222, optimal orientation of Asp-189 and Ser-195 for binding of substrates and considerable shift of the lateral chain Glu-192 determined by the disturbance of the lattice of water molecules which connects Na(+)-binding site with aminoacid Ser-195 of the active centre of the enzyme. New data have been presented which indicate that the changes in the lattice of water molecules and allosteric nucleus of Na(+)-binding site of the enzyme are the basic link of raising the affinity between the thrombin and substrate and mechanism of the enzyme activation by Na(+)-ions. The survey touches some problems of creation of allosteric inhibitors of thrombin which can take essential effect on Na(+)-binding site and favor stabilization of the anticoagulant slow-form of thrombin, and of enzyme rational mutants with selective specificity in respect of protein C which display effective and safe anticoagulant and antithrombotic effects in vivo.  相似文献   

18.
Nucleotide binding and phosphorylation in microtubule assembly in vitro.   总被引:4,自引:0,他引:4  
Two non-hydrolyzable analogs of GTP, guanylyl-β,γ-methylene diphosphonate and guanylyl imidodiphosphate, have been found to induce rapid and efficient microtubule assembly in vitro by binding at the exchangeable site (E-site) on tubulin. Characterization of microtubule polymerization by several criteria, including polymerization kinetics, nucleotide binding to depolymerized and polymerized microtubules, and microtubule stability, reveals strong similarities between microtubule assembly induced by GTP and non-hydrolyzable GTP analogs. Nucleoside triphosphates which bind weakly or not at all to tubulin, such as ATP, UTP and CTP, are shown to induce microtubule assembly by means of a nucleoside diphosphate kinase (NDP-kinase, EC 2.7.4.6.) activity which is not intrinsic to tubulin. The NDP-kinase mediates microtubule polymerization by phosphorylating tubulin-bound GDP in situ at the E-site. Although hydrolysis of exchangeably bound GTP occurs, it is found to be uncoupled from the polymerization reaction. The non-exchangeable nucleotide binding site on tubulin (N-site) is not directly involved in microtubule assembly in vitro. The N-site is shown to contain almost exclusively GTP which is not hydrolyzed during microtubule assembly. A scheme is presented in which GTP acts as an allosteric effector at the E-site during microtubule assembly in vitro.  相似文献   

19.
Interaction of ferredoxin-NADP+ reductase from Anabaena with its substrates   总被引:1,自引:0,他引:1  
The interaction of ferredoxin-NADP+ reductase from the cyanobacterium Anabaena variabilis with its substrates, NADP+ and ferredoxin, has been studied by difference absorption spectroscopy. Several structural analogs of NADP+ have been shown to form complexes the stabilities of which are strongly dependent on the ionic strength of the medium. In most cases the binding energy of these complexes and their difference absorption spectra are similar to those reported for the spinach enzyme. However, NADP+ perturbs the absorption spectra of the Anabaena and spinach enzymes in a different way. This difference has been shown to be related to the binding of the nicotinamide ring of NADP+ to the enzymes. These results are interpreted as being due to a different nicotinamide binding site in the two reductases. The enthalpic and entropic components of the Gibbs energy of formation of the NADP+ complex have been estimated. An increase in entropy on NADP+ binding seems to be the main source of stability for the complex. A shift of approximately 40 mV in the redox potential of the couple NADP+/NADPH has been observed to occur upon binding of NADP+ to the oxidized enzyme. This allows us to calculate the binding energy between the reductase and NADPH. The ability of the reductase, ferredoxin, and NADP+ to form a ternary complex indicates that the protein carrier binds to the reductase through a different site than that of the pyridine nucleotide.  相似文献   

20.
Fluorescence excited-state energy transfer measurements were carried out between the N-(1-pyrene)maleimide (PM)-labeled sigma subunit and Co in the beta subunit of Co-Zn RNA polymerase (RPase). sigma subunit with or without PM labeling was cleaved with 2-nitro-5-thiocyanobenzoic acid, and the reaction products were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. One molecule of the fluorescent probe (PM) was found to be attached to the cysteine-132 residue of the sigma subunit. When excited at 340 nm, the fluorescence emission bands from 380 to 420 nm of PM-labeled sigma overlap with the charge transfer absorption band of Co-Zn RPase around 400 nm. Based on F?rster's equation, the R0 values for the donor-acceptor pair were calculated to be 21.5 and 22 A in the absence and presence of template analog (dA-dT)60, respectively. Using these R0 values and the observed energy transfer efficiencies, the distance between the cysteine-132 of the sigma subunit and Co located at the initiation site of the beta subunit was calculated to be 22 A with or without the template present, indicating that no major conformational change of the enzyme was induced upon template binding. However, a small but significant change in the above distance was observed upon the addition of ATP to RPase in the presence (dA-dT)60 but not in the absence of (dA-dT)60 template. The biological implications of these observations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号