首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antigenic epitopes on the major core (gag) protein of isolates of simian and human immunodeficiency virus (SIV and HIV) were compared using a panel of eleven mouse monoclonal antibodies (Mabs) that recognized nine distinct gag epitopes. Viral isolates used for comparison were HIV-1IIIb, HIV-2ROD, and SIV isolates from macaque (SIVmac), sooty mangabey (SIVsm-UCD), African green monkey (SIVagm), and stump-tailed macaque (SIVstm-UCD). The relatedness of the various HIV and SIV isolates, as determined by Mabs to core protein epitopes, paralleled that ascertained by genetic sequencing.  相似文献   

2.
A segment of the gag gene of the human immunodeficiency virus (HIV) (HTLV-IIIB strain), the virus which causes acquired immunodeficiency syndrome (AIDS), has been cloned into the bacterial expression vector, pCQV2, and mapped to the right-hand portion of the gag gene containing the carboxyl-terminal portion of p24 and the amino-terminal portion of p15. Nucleic-acid sequencing of the insert-vector junctions further defined the 5'-terminal nucleotide of HIV sequence as nucleotide 997 and the 3'-terminal nucleotide as 1696. When used in an enzyme-linked immunosorbent assay (ELISA) with sera from HIV-infected patients, the cloned antigen reacted with a subset of sera which were positive on a standard ELISA using whole virus as antigen. Western-blot screening of these sera with whole virus indicated that all p24-positive sera were positive with the clone, suggesting that the carboxyl-terminal portion of p24 contains a highly antigenic epitope(s). A serum which was p24-negative p15-positive by Western blot analysis was also highly reactive, indicating that a p15 epitope is present in the cloned antigen. Epitope mapping with a series of monoclonal antibodies to gag resulted in positive ELISA with 2 of 3 anti-p24, 0 of 1 anti-p15, and 0 of 1 anti-p17 Western-blot-positive monoclonal antibodies, suggesting that one of the anti-p24 monoclonal antibodies reacts with epitopes amino-terminal to those coded from nucleotide 997, two anti-p24 monoclonals react with epitopes carboxyl-terminal to those coded from nucleotide 997, and the anti-p15 monoclonal reacts with epitopes carboxyl-terminal to those coded from nucleotide 1696.  相似文献   

3.
Murine monoclonal antibodies directed against the structural proteins p17 and p24 of human immunodeficiency virus type 1 were investigated in an epitope mapping system. Overlapping peptides consisting of 15 amino acids of the p17 and p24 protein, respectively, were used as competitors in an enzyme-linked immunosorbent assay. Three different immunogenic regions (A, B, and C) could be defined, one on p17 and two on p24. Twenty monoclonal antibodies reacted with the human immunodeficiency virus type 1 peptides of region B, although differences in the reactivity of these antibodies with human immunodeficiency virus type 2 and simian immunodeficiency virus strain mac were detectable. Recognized epitopes were characterized by computer analysis as described by T.P. Hopp and K.R. Woods (Proc. Natl. Acad. Sci. USA 78:3824-3828, 1981) and P.Y. Chou and G.D. Fasman (Biochemistry 13:222-245, 1974).  相似文献   

4.
F Shang  H Huang  K Revesz  H C Chen  R Herz    A Pinter 《Journal of virology》1991,65(9):4798-4804
Eight monoclonal antibodies reactive with the matrix protein of human immunodeficiency virus type 1 (HIV-1), p17gag, were isolated from rats which had been immunized with solubilized HIV-1 lysate. The epitope specificities of these antibodies were determined with a series of synthetic peptides representing overlapping regions of p17. Six of the antibodies were mapped to three distinct regions of p17, while two antibodies (G11g1 and G11h3) reacted only with intact recombinant p17, suggesting that they were directed against conformational or discontinuous epitopes. All the antibodies bound to HIV-infected cells which had been permeabilized with acetone, but only G11g1 and G11h3 reacted with live HIV-infected cells. Specificity studies with diverse virus strains demonstrated that these two antibodies recognized distinct epitopes, one which was group specific for HIV-1, and one which was shared with HIV type 2 and simian immunodeficiency virus. Binding competition studies indicated that these epitopes were proximal in native p17. Despite their reactivity with intact cells, these two antibodies did not possess appreciable virus-neutralizing activity. These results indicate that a form of p17 is expressed on the surfaces of live HIV-infected cells which is accessible to some, but not all, antibodies against p17. These cell surface molecules may play a role in the generation of antibodies against p17gag that are characteristic of early stages of HIV infection, and they may act as natural targets for the immune system and as potential targets for immunotherapy of HIV-infected cells.  相似文献   

5.
Virus-specific cytotoxic T lymphocytes (CTL) exert intense selection pressure on replicating simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) in infected individuals. The immunodominant Mamu-A(*)01-restricted Gag p11C, C-M epitope is highly conserved among all sequenced isolates of SIV and therefore likely is structurally constrained. The strategies used by virus isolates to mutate away from an immunodominant epitope-specific CTL response are not well defined. Here we demonstrate that the emergence of a position 2 p11C, C-M epitope substitution (T47I) in a simian-human immunodeficiency virus (SHIV) strain 89.6P-infected Mamu-A(*)01(+) monkey is temporally correlated with the emergence of a flanking isoleucine-to-valine substitution at position 71 (I71V) of the capsid protein. An analysis of the SIV and HIV-2 sequences from the Los Alamos HIV Sequence Database revealed a significant association between any position 2 p11C, C-M epitope mutation and the I71V mutation. The T47I mutation alone is associated with significant decreases in viral protein expression, infectivity, and replication, and these deficiencies are restored to wild-type levels with the introduction of the flanking I71V mutation. Together, these data suggest that a compensatory mutation is selected for in SHIV strain 89.6P to facilitate the escape of that virus from CTL recognition of the dominant p11C, C-M epitope.  相似文献   

6.
Although maternal human immunodeficiency virus type 1 (HIV-1) transmission occurs during gestation, intrapartum and postpartum (by breast-feeding), 50-70% of all infected children seem to acquire HIV-1 shortly before or during delivery. Epidemiological evidence indicates that mucosal exposure is an important aspect of intrapartum HIV transmission. A simian immunodeficiency virus (SIV) macaque model has been developed that mimics the mucosal exposure that can occur during intrapartum HIV-1 transmission. To develop immunoprophylaxis against intrapartum HIV-1 transmission, we used SHIV-vpu+ (refs. 5,6), a chimeric simian-human virus that encodes the env gene of HIV-IIIB. Several combinations of human monoclonal antibodies against HIV-1 have been identified that neutralize SHIV-vpu+ completely in vitro through synergistic interaction. Here, we treated four pregnant macaques with a triple combination of the human IgG1 monoclonal antibodies F105, 2G12 and 2F5. All four macaques were protected against intravenous SHIV-vpu+ challenge after delivery. The infants received monoclonal antibodies after birth and were challenged orally with SHIV-vpu+ shortly thereafter. We found no evidence of infection in any infant during 6 months of follow-up. This demonstrates that IgG1 monoclonal antibodies protect against mucosal lentivirus challenge in neonates. We conclude that epitopes recognized by the three monoclonal antibodies are important determinants for achieving substantial protection, thus providing a rational basis for AIDS vaccine development.  相似文献   

7.
To date, only a small number of anti-human immunodeficiency virus type 1 (HIV-1) monoclonal antibodies (MAbs) with relatively broad neutralizing activity have been isolated from infected individuals. Adequate techniques for defining how frequently antibodies of these specificities arise in HIV-infected people have been lacking, although it is generally assumed that such antibodies are rare. In order to create an epitope-specific neutralization assay, we introduced well-characterized HIV-1 epitopes into the heterologous context of simian immunodeficiency virus (SIV). Specifically, epitope recognition sequences for the 2F5, 4E10, and 447-52D anti-HIV-1 neutralizing monoclonal antibodies were introduced into the corresponding regions of SIVmac239 by site-directed mutagenesis. Variants with 2F5 or 4E10 recognition sequences in gp41 retained replication competence and were used for neutralization assays. The parental SIVmac239 and the neutralization-sensitive SIVmac316 were not neutralized by the 2F5 and 4E10 MAbs, nor were they neutralized significantly by any of the 96 HIV-1-positive human plasma samples that were tested. The SIV239-2F5 and SIV239-4E10 variants were specifically neutralized by the 2F5 and 4E10 MAbs, respectively, at concentrations within the range of what has been reported previously for HIV-1 primary isolates (J. M. Binley et al., J. Virol. 78:13232-13252, 2004). The SIV239-2F5 and SIV239-4E10 epitope-engrafted variants were used as biological screens for the presence of neutralizing activity of these specificities. None of the 92 HIV-1-positive human plasma samples that were tested exhibited significant neutralization of SIV239-2F5. One plasma sample exhibited >90% neutralization of SIV239-4E10, but this activity was not competed by a 4E10 target peptide and was not present in concentrated immunoglobulin G (IgG) or IgA fractions. We thus confirm by direct analysis that neutralizing activities of the 2F5 and 4E10 specificities are either rare among HIV-1-positive individuals or, if present, represent only a very small fraction of the total neutralizing activity in any given plasma sample. We further conclude that the structures of gp41 from SIVmac239 and HIV-1 are sufficiently similar such that epitopes engrafted into SIVmac239 can be readily recognized by the cognate anti-HIV-1 monoclonal antibodies.  相似文献   

8.
The simian immunodeficiency virus (SIV) challenge model of lentiviral infection is often used as a model to human immunodeficiency virus type 1 (HIV-1) for studying vaccine mediated and immune correlates of protection. However, knowledge of the structure of the SIV envelope (Env) glycoprotein is limited, as is knowledge of binding specificity, function and potential efficacy of SIV antibody responses. In this study we describe the use of a competitive probe binding sort strategy as well as scaffolded probes for targeted isolation of SIV Env-specific monoclonal antibodies (mAbs). We isolated nearly 70 SIV-specific mAbs directed against major sites of SIV Env vulnerability analogous to broadly neutralizing antibody (bnAb) targets of HIV-1, namely, the CD4 binding site (CD4bs), CD4-induced (CD4i)-site, peptide epitopes in variable loops 1, 2 and 3 (V1, V2, V3) and potentially glycan targets of SIV Env. The range of SIV mAbs isolated includes those exhibiting varying degrees of neutralization breadth and potency as well as others that demonstrated binding but not neutralization. Several SIV mAbs displayed broad and potent neutralization of a diverse panel of 20 SIV viral isolates with some also neutralizing HIV-27312A. This extensive panel of SIV mAbs will facilitate more effective use of the SIV non-human primate (NHP) model for understanding the variables in development of a HIV vaccine or immunotherapy.  相似文献   

9.
M G Windheuser  C Wood 《Gene》1988,64(1):107-119
We have identified several immunoreactive epitopes on the human immunodeficiency virus (HIV) type 1 transmembrane envelope protein by synthesizing various regions of the protein as fusions to the trpE gene in Escherichia coli. Ten fusion clones which expressed overlapping peptides were found to contain epitopes reactive with antibodies in sera of North American (NAm) and West African (WAf) patients with acquired immune deficiency syndrome (AIDS). An immunodominant epitope which reacted with all HIV-infected patients' sera was mapped to a 51-amino acid sequence in the N terminus of p41. A novel epitope was also identified in the C terminus of p41 which was reactive with 41% and 48% of the sera tested from NAm and WAf, respectively. In addition, several minor epitopes were identified. We observed that sera from WAf reacted more strongly to minor HIV-1 p41 epitopes than did sera from similarly infected individuals in NAm. We also report on the detection of antibodies from patients with HIV-2 infection in WAf which cross react with HIV-1 p41 recombinant envelope antigens.  相似文献   

10.
The broadly neutralizing monoclonal antibodies (MAbs) 4E10, 2F5, and Z13e1 target membrane-proximal external region (MPER) epitopes of HIV-1 gp41 in a manner that remains controversial. The requirements for initial lipid bilayer binding and/or CD4 ligation have been proposed. To further investigate these issues, we probed for binding of these MAbs to human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) virions with protein A-conjugated gold (PAG) nanoparticles using negative-stain electron microscopy. We found moderate levels of PAG associated with unliganded HIV-1 and SIV virions incubated with the three MAbs. Significantly higher levels of PAG were associated with CD4-liganded HIV-1 (epitope-positive) but not SIV (epitope-negative) virions. A chimeric SIV virion displaying the HIV-1 4E10 epitope also showed significantly higher PAG association after CD4 ligation and incubation with 4E10. MAbs accumulated rapidly on CD4-liganded virions and slowly on unliganded virions, although both reached similar levels in time. Anti-MPER epitope-specific binding was stable to washout. Virions incubated with an irrelevant MAb or CD4-only (no MAb) showed negligible PAG association, as did a vesicle-rich fraction devoid of virions. Preincubation with Fab 4E10 inhibited both specific and nonspecific 4E10 IgG binding. Our data provide evidence for moderate association of anti-MPER MAbs to viral surfaces but not lipid vesicles, even in the absence of cognate epitopes. Significantly greater MAb interaction occurs in epitope-positive virions following long incubation or CD4 ligation. These findings are consistent with a two-stage binding model where these anti-MPER MAbs bind first to the viral lipid bilayer and then to the MPER epitopes following spontaneous or induced exposure.  相似文献   

11.
It has been shown previously that the major neutralizing epitopes in simian immunodeficiency virus (SIV) are discontinuous and conformation dependent and that the V3 loop, in contrast to that of human immunodeficiency virus (HIV) type 1, does not by itself elicit neutralizing antibodies (K. Javaherian et al., Proc. Natl. Acad. Sci. USA 89:1418-1422, 1992). We now present data showing that on the basis of fractionation of infected macaque sera, protease digestion of the envelope, and binding properties of two neutralizing monoclonal antibodies to SIV and SIV-HIV chimeric envelope proteins, changes in V3 can disrupt the conformation-dependent neutralization region. The chimeric protein did not produce significant neutralizing antibodies against either SIV or HIV. We also report that neutralizing antibodies elicited by recombinant SIV envelope proteins of mac251 and B670 isolates cross-neutralize. Finally, we show that deglycosylation of the SIV envelope results in a molecule which binds neither soluble CD4 nor the neutralizing monoclonal antibodies being investigated here and does not elicit sera with a significant neutralizing titer.  相似文献   

12.
Five monoclonal antibodies (MoAbs) to gag proteins of HIV-1 were prepared in mice. Western blot analyses showed that three clones recognized p24 and the other two p17. Among the three MoAbs recognizing p24, all recognized two of three strains of HIV-2. The spectra of reactions to SIV[AGM] of these MoAbs against p24 were different from one to another; K3-24 recognized all four strains of SIV[AGM], L6-24 three of them, and K5-24 none of them. Of the two MoAbs recognizing p17, K7-17 recognized two of the three strains of HIV-2 but not any SIV[AGM] strain, and the other clone, L14-17 recognized none of analogous proteins of HIV-2 nor of SIV[AGM]. These results demonstrate that the gag proteins of HIV-2 and SIV[AGM] share some common epitopes with those of HIV-1 which are heterogenic in some degree among the different isolates.  相似文献   

13.
To evaluate antibody specificities induced by simian immunodeficiency virus (SIV) versus human immunodeficiency virus type 1 (HIV-1) envelope antigens in nonhuman primate (NHP), we profiled binding antibody responses to linear epitopes in NHP studies with HIV-1 or SIV immunogens. We found that, overall, HIV-1 Env IgG responses were dominated by V3, with the notable exception of the responses to the vaccine strain A244 Env that were dominated by V2, whereas the anti-SIVmac239 Env responses were dominated by V2 regardless of the vaccine regimen.  相似文献   

14.
To evaluate the impact of the diversity of antigen recognition by T lymphocytes on disease pathogenesis, we must be able to identify and analyze simultaneously cytotoxic T-lymphocyte (CTL) responses specific for multiple viral epitopes. Many of the studies of the role of CD8(+) CTLs in AIDS pathogenesis have been done with simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys. These studies have frequently made use of the well-defined SIV Gag CTL epitope p11C,C-M presented to CTL by the HLA-A homologue molecule Mamu-A*01. In the present study we identified and fine mapped two novel Mamu-A*01-restricted CTL epitopes: the SIVmac Pol-derived epitope p68A (STPPLVRLV) and the human immunodeficiency virus type 1 (HIV-1) Env-derived p41A epitope (YAPPISGQI). The frequency of CD8(+) CTLs specific for the p11C,C-M, p68A, and p41A epitopes was quantitated in the same animals with a panel of tetrameric Mamu-A*01/peptide/beta2m complexes. All SHIV-infected Mamu-A*01(+) rhesus monkeys tested had a high frequency of SIVmac Gag-specific CTLs to the p11C,C-M epitope. In contrast, only a fraction of the monkeys tested had detectable CTLs specific for the SIVmac Pol p68A and HIV-1 Env p41A epitopes, and these responses were detected at very low frequencies. Thus, the p11C,C-M-specific CD8(+) CTL response is dominant and the p41A- and p68A-specific CD8(+) CTL responses are nondominant. These results indicate that CD8(+) CTL responses to dominant CTL epitopes can be readily quantitated with the tetramer technology; however, CD8(+) CTL responses to nondominant epitopes, due to the low frequency of these epitope-specific cells, may be difficult to detect and quantitate by this approach.  相似文献   

15.
Structure of Equine Infectious Anemia Virus Matrix Protein   总被引:3,自引:0,他引:3       下载免费PDF全文
The Gag polyprotein is key to the budding of retroviruses from host cells and is cleaved upon virion maturation, the N-terminal membrane-binding domain forming the matrix protein (MA). The 2.8-A resolution crystal structure of MA of equine infectious anemia virus (EIAV), a lentivirus, reveals that, despite showing no sequence similarity, more than half of the molecule can be superimposed on the MAs of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV). However, unlike the structures formed by HIV-1 and SIV MAs, the oligomerization state observed is not trimeric. We discuss the potential of this molecule for membrane binding in the light of conformational differences between EIAV MA and HIV or SIV MA.  相似文献   

16.
In contrast to infrequent and low-titer cross-neutralization of human immunodeficiency virus type 1 (HIV-1) isolates by HIV-2- and simian immunodeficiency virus (SIV)-positive sera, extensive cross-neutralization of HIV-2NIH-Z, SIVMAC251, and SIVAGM208K occurs with high titer, suggesting conservation of epitopes and mechanism(s) of neutralization. The V3 regions of HIV-2 and SIV isolates, minimally related to the HIV-1 homolog, share significant sequence homology and are immunogenic in monkeys as well as in humans. Whereas the crown of the V3 loop is cross-reactive among HIV-1 isolates and elicits neutralizing antibodies of broad specificity, the SIV and especially HIV-2 crown peptides were not well recognized by cross-neutralizing antisera. V3 loop peptides of HIV-2 isolates did not elicit neutralizing antibodies in mice, guinea pigs, or a goat and together with SIV V3 peptides did not inhibit serum neutralization of HIV-2 and SIV. Thus, the V3 loops of HIV-2 and SIV do not appear to constitute simple linear neutralizing epitopes. In view of the immunogenicity of V3 peptides, the failure of conserved crown peptides to react with natural sera implies a significant role of loop conformation in antibody recognition. Our studies suggest that in addition to their grouping by envelope genetic relatedness, HIV-2 and SIV are neutralized similarly to each other but differently from HIV-1. The use of linear peptides of HIV-2 and SIV as immunogens may require greater attention to microconformation, and alternate subunit approaches may be needed in exploiting these viruses as vaccine models. Such approaches may also be applicable to the HIV-1 system in which conformational epitopes, in addition to the V3 loop, participate in virus neutralization.  相似文献   

17.
The external domain of the envelope glycoprotein, gp120, of simian immunodeficiency virus (SIV) has been expressed as a mature secreted product using recombinant baculoviruses and the expressed protein, which has an observed molecular mass of 110 kDa, was purified by monoclonal antibody (MAb) affinity chromatography. N-terminal sequence analysis showed a signal sequence cleavage identity similar to that of the gp120s of both human immunodeficiency virus type 1 (HIV-1) and HIV type 2. The expressed molecule bound to soluble CD4 with an affinity that was approximately 10-fold lower than that of gp120 from HIV-1. A screening of the ability of SIV envelope MAbs to inhibit CD4 binding revealed two groups of inhibitory MAbs. One group is dependent on conformation, while the second group maps to a discrete epitope near the amino terminus. The particular role of the V3 loop region of the molecule in CD4 binding was investigated by the construction of an SIV-HIV hybrid in which the V3 loop of SIV was precisely replaced with the equivalent domain from HIV-1 MN. The hybrid glycoprotein bound HIV-1 V3 loop MAbs and not SIV V3 MAbs but continued to bind conformational SIV MAbs and soluble CD4 as well as the parent molecule.  相似文献   

18.
Increasing evidence suggests that an effective AIDS vaccine will need to elicit both broadly reactive humoral and cellular immune responses. Potent and cross-reactive neutralization of simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) by polyclonal and monoclonal antibodies is well documented. However, the mechanisms of antibody-mediated neutralization have not been defined. The current study was designed to determine whether the specificity and quantitative properties of antibody binding to SIV envelope proteins correlate with neutralization. Using a panel of rhesus monoclonal antibodies previously characterized for their ability to bind and neutralize variant SIVs, we compared the kinetic rates and affinity of antibody binding to soluble envelope trimers by using surface plasmon resonance. We identified significant differences in the kinetic rates but not the affinity of monoclonal antibody binding to the neutralization-sensitive SIV/17E-CL and neutralization-resistant SIVmac239 envelope proteins that correlated with the neutralization sensitivities of the corresponding virus strains. These results suggest for the first time that neutralization resistance may be related to quantitative differences in the rates but not the affinity of the antibody-envelope interaction and may provide one mechanism for the inherent resistance of SIVmac239 to neutralization in vitro. Further, we provide evidence that factors in addition to antibody binding, such as epitope specificity, contribute to the mechanisms of neutralization of SIV/17E-CL in vitro. This study will impact the method by which HIV/SIV vaccines are evaluated and will influence the design of candidate AIDS vaccines capable of eliciting effective neutralizing antibody responses.  相似文献   

19.
The selection of human monoclonal antibodies (MAbs) specific for human immunodeficiency virus (HIV) type 1 by binding assays may fail to identify Abs to quaternary epitopes on the intact virions. The HIV neutralization assay was used for the selection of human MAb 2909, which potently neutralizes SF162 and recognizes an epitope on the virus surface but not on soluble proteins. Three regions of gp120, the V2 and V3 loops and the CD4 binding domain, contribute to the epitope recognized by MAb 2909. The existence of such a unique MAb, which defines a complex epitope formed by a quaternary structure, suggests that there may be other new neutralizing HIV epitopes to target with vaccines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号