首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyzed the influence of oxidative stress and agents that modify its effect in human umbilical vein endothelial cell cultures (HUVEC). The parameters analyzed were PGI2, TXA2, PGI2/TXA2 ratio, lipid peroxidation and cell viability. Oxidative stress was induced by H2O2. The agents (treatments) that were tested are: antioxidant enzymes (superoxide dismutase and catalase), oxygen free radical scavenger (vitamin E) and eicosanoids of the series 2 and 3 (Arachidonic acid, Eicosapentanoic acid). In this study we show, in long term endothelial cell cultures, the effects of different levels of oxidative stress alone or in combination with the different treatment agents, over the analyzed parameters. With induced oxidative stress alone the results obtained indicate that it has a harmful effect over cell function and viability, and that this effect is dose and time dependent. In absence of oxidative stress in basal situation, none of the treatments assayed showed significant differences compared to control cultures in the different analyzed parameters. When oxidative stress increased, antioxidant enzymes reduced cell damage and had a protective function, whereas Eicosapentanoic acid and vitamin E presented a lower level of protection. No beneficial effect was observed with arachidonic acid treatments. A significant increase in cell survival was observed in culture cells with oxidative stress when they were treated with antioxidant enzymes.  相似文献   

2.
The aim of the present study was to investigate the effects of treatment with antioxidant stobadine (ST) on the activities of enzymes related with pentose phosphate pathway and glutathione-dependent metabolism and the other markers of oxidative stress in brain and peripheral organs of diabetic rats, and to compare the effects of ST treatment alone with the effects of treatments with another antioxidant vitamin E and ST plus vitamin E. Rats were made diabetic by the injection of streptozotocin (STZ; 55 mg/kg IP), and, 2 days later, some control and diabetic rats were left untreated or treated with ST (24.7 mg/kg/day, orally), vitamin E (400–500 U/kg/day, orally), or both substances together. In the brain, although 6-phosphogluconate dehydrogenase activity (6-PGD) did not change, glucose-6-phosphate dehydrogenase activity (G-6PD) was markedly increased in diabetic rats compared with controls; only combined treatment with ST and vitamin E produced a partial prevention on this alteration. The aorta G-6PD and 6-PGD of diabetic rats were 52% and 36% of control values, respectively. Neither single treatments with each antioxidant nor their combination altered the G-6PD and 6-PGD in aorta of diabetic rats. Glutathione peroxidase (GSHPx) activity was increased by STZ-diabetes in brain, heart, and kidney. In diabetic brain, vitamin E alone or combination with ST kept GSHPx at normal levels. Diabetes-induced stimulation in GSHPx did not decrease in response to the treatment with vitamin E in heart and kidney, but was greatly prevented by ST alone. The activity of glutathione reductase (GR) was decreased in brain and heart of diabetic rats. The treatment with each antioxidant or with a combination of both agents completely prevented this deficiency and resulted in further activation of GR in diabetic tissues. Glutathione S-transferase (GST) activity did not significantly change in diabetic brain and aorta. GST was stimulated by all treatment protocols in the brain of diabetic rats and was depressed in aorta of control rats. Catalase (CAT) was activated in diabetic heart but depressed in diabetic kidney. Diabetes-induced abnormalities in CAT activity did not respond to vitamin E alone in heart, was moderately ameliorated by the treatment with this vitamin in kidney, and was completely prevented by ST alone in both tissues. Superoxide dismutase (SOD) activity of brain and heart was unchanged by the diabetes but inhibited in diabetic kidney after the treatment ST alone or ST plus vitamin E. The lipid peroxidation (MDA) was increased in diabetic brain and heart. ST or vitamin E alone partly prevented diabetes-induced increase in MDA in brain and heart; however, antioxidant combination achieved a completely amelioration in MDA of these tissues of diabetic rats. Kidney MDA levels were similar in control and untreated diabetic animals. ST and vitamin E treatments, when applied separately or together, significantly reduced kidney MDA in both control and diabetic rats; and the combined effect of antioxidants was greater than that of each alone. These results are consistent with the degenerative role of hyperglycemia on cellular reducing equivalent homeostasis and antioxidant defense, and provide further evidence that pharmacological intervention of different antioxidants may have significant implications in the prevention of the prooxidant feature of diabetes and protects redox status of the cells.  相似文献   

3.
Ferric nitrilotriacetate (Fe-NTA) is a potent renal and hepatic tumor promoter, which acts through a mechanism involving oxidative stress. Fe-NTA when injected intraperitoneally into rats induces hepatic ornithine decarboxylase activity as well as hepatic DNA synthesis. Vitamin E is a well-known, lipid-soluble and chain-breaking antioxidant which protects cell membranes from peroxidative damage. In this study, we investigated the protective effect of vitamin E, a major fat-soluble antioxidant, against Fe-NTA-mediated hepatic oxidative stress, toxicity and hyperproliferation in Wistar rats. Animals were treated with two different doses of vitamin E for 1 week prior to Fe-NTA treatment. Vitamin E at a higher dose of 2.0 mg/animal/day showed significant reduction in Fe-NTA-induced hepatic ornithine decarboxylase activity, DNA synthesis, microsomal lipid peroxidation and hydrogen peroxide generation. Fe-NTA treatment alone caused depletion of glutathione, glutathione metabolizing and antioxidant enzymes in rat liver, whereas pretreatment of animals with vitamin E reversed these changes in a dose-dependent manner. Taken together, our results suggest that vitamin E may afford substantial protection against the damage caused by Fe-NTA exposure and can serve as a potent preventive agent to suppress oxidant-induced tissue injury.  相似文献   

4.
This study was designed to evaluate and compare the effect of melatonin, vitamin E and L-carnitine on brain and liver oxidative stress and liver damage. Oxidative stress and hepatic failure were produced by a single dose of thioacetamide (TAA) (150 mg kg(-1)) in Wistar rats. A dose of either melatonin (3 mg kg(-1)) vitamin E (20 mg kg(-1) ) or L-carnitine (100 mg kg(-1)) was used. Blood samples were taken from the neck vasculature in order to determine ammonium, blood urea nitrogen (BUN) and liver enzymes. Lipid peroxidation products, glutathione (GSH) content and antioxidative enzymes were determined in cerebral and hepatic homogenates. The results showed a decrease in BUN and in the antioxidant enzymes activities and GSH in the brain and liver. Likewise, TAA induced significant enhancement of lipid peroxidation products levels in both liver and brain, as well as in ammonia values. Melatonin, vitamin E and L-carnitine, although melatonin more significantly, decreased the intensity of the changes produced by the administration of TAA alone. Furthermore melatonin combined with TAA, decreased the ammonia levels and increased the BUN values compared with TAA animals. Also it was more effective than vitamin E or L-carnitine in these actions. These data show the protective effect of these agents, especially melatonin, against oxidative stress and hepatic damage present in fulminant hepatic failure.  相似文献   

5.
Abstract

Ferric nitrilotriacetate (Fe-NTA) is a potent renal and hepatic tumor promoter, which acts through a mechanism involving oxidative stress. Fe-NTA when injected intraperitoneally into rats induces hepatic ornithine decarboxylase activity as well as hepatic DNA synthesis. Vitamin E is a well-known, lipid-soluble and chain-breaking antioxidant which protects cell membranes from peroxidative damage. In this study, we investigated the protective effect of vitamin E, a major fat-soluble antioxidant, against Fe-NTA-mediated hepatic oxidative stress, toxicity and hyperproliferation in Wistar rats. Animals were treated with two different doses of vitamin E for 1 week prior to Fe-NTA treatment. Vitamin E at a higher dose of 2.0 mg/animal/day showed significant reduction in Fe-NTA-induced hepatic ornithine decarboxylase activity, DNA synthesis, microsomal lipid peroxidation and hydrogen peroxide generation. Fe-NTA treatment alone caused depletion of glutathione, glutathione metabolizing and antioxidant enzymes in rat liver, whereas pretreatment of animals with vitamin E reversed these changes in a dose-dependent manner. Taken together, our results suggest that vitamin E may afford substantial protection against the damage caused by Fe-NTA exposure and can serve as a potent preventive agent to suppress oxidant-induced tissue injury.  相似文献   

6.
Exposure of cells to ionizing radiation leads to the formation of reactive oxygen species (ROS) that are associated with radiation-induced cytotoxicity. Because of the serious damaging potential of ROS, cells depend on the elaboration of the antioxidant defense system (AODS), both enzymatic and nonenzymatic oxidant defense mechanisms. The deficiency in important components of the endogenous AODS leads to the accumulation of oxidative stress inducing oxidative damage. The antioxidant enzymes superoxide dismutase and glutathione peroxidase are key intracellular antioxidants in the metabolism of ROS. In the current study, we investigated the potential role of these antioxidant enzymes in radioresistance during the evaluation of the compensatory role of some exogenous micronutrients against oxidative stress Animals were categorized into eight groups, receiving vitamin E (α-tocopherol) and/or selenium (Se) with or without whole-body γ-irradiation (6.5 Gy). The results indicate that antioxidant pretreatments before irradiation may have some beneficial effects against irradiation-induced injury. The results also indicate that selenium and vitamin E act alone and in an additive fashion as radioprotecting agents. The results further suggest that selenium confers protection in part by inducing or activating cellular free-radical scavenging systems and by enhancing peroxide breakdown, whereas vitamin E appears to confer its protection by an alternate complementary mechanism.  相似文献   

7.
Chronic smoking is associated with endothelial dysfunction and inflammation, with oxidative stress contributing to both these processes. In this study, we investigated the effect of combined antioxidant treatment with Enzogenol, a flavonoid extract from the bark of Pinus radiata and vitamin C, over and above vitamin C alone, on endothelial function, plasma markers of inflammation and oxidative stress, blood pressure (BP) and anthropometrics. Forty-four chronic smokers without established cardiovascular disease were assigned randomly to receive either 480 mg Enzogenol and 60 mg vitamin C, or 60 mg vitamin C alone daily for 12 weeks. Endothelial function in the brachial artery was assessed by flow-mediated vasodilation (FMD). FMD improved in both treatment groups (p < 0.001), with no significant difference between the two groups (p = 0.84). In the group receiving Enzogenol and vitamin C, protein carbonyl levels were significantly reduced compared to the group taking vitamin C alone (p = 0.03). Enzogenol and vitamin C resulted in a significant reduction in fibrinogen levels in heavy smokers compared with vitamin C alone (p < 0.009). These findings demonstrated that co-supplementation with Enzogenol and vitamin C in smokers conferred no additional beneficial effect on macrovascular endothelial function over and above that seen in the vitamin C alone group. However, Enzogenol did demonstrate additional favourable effects on protein oxidative damage and fibrinogen levels.  相似文献   

8.
In the present study we examined immobilization stress-induced antioxidant defense changes in rat plasma and also observed the antioxidant effects of pre and post vitamins A, E and C administration (15 mg/Kg of body weight) individually and in combination (vit E + C) on these alterations.Following immobilization stress the circulating activities of superoxide dismutase, catalase and glutathione-S-transferase were decreased, while the level of thiobarbituric acid reactive substances (TBARS) was increased as compared to non-stressed control rats.Post treatment with individual vitamins A, E and C (after exposure to stress) resulted in a less marked alteration of plasma TBARS levels and activities of SOD, GST and catalase as compared to pre vitamin stress or stress alone treatments. Both pre and post vitamin treatments were effective in preventing stress induced derangement of free radical metabolism with a relative dominance by latter. The combined treatment with vitamin E and C did not show any additive antioxidant effect on restraint stress induced altered free radical metabolism, rather a predominant effect similar to vitamin E alone was observed. The prevention of oxidative stress generated in response to restraint stress by the vitamins can be summarized as: vitamin (E + C) i.e. vit E > vit C > vit A, thus combined vitamin (E + C) treatment though showed maximum preventive effect, but was similar to vitamin E treatment alone, in terms of the circulating activities of SOD, GST, catalase and TBARS levels.  相似文献   

9.
Since experiments with freshly isolated rat hepatocytes have shown that cellular vitamin E is consumed in response to insult by compounds that induce an oxidative stress only after cellular glutathione (GSH) concentrations have been substantially depleted, experiments were performed to determine whether this sequence of events occurred in response to oxidative insult in vivo. The role that plasma vitamin E plays in the response to chemically induced oxidative injury in vivo was also assessed. Treatments with 40 mg/kg of methyl ethyl ketone peroxide (MEKP) quickly induced lipid peroxidation in vivo and from one to 4 h after treatment caused a depression in the plasma content of vitamin E and the liver content of GSH, as well as signs of toxicity (elevations in serum activities of alanine and aspartate aminotransferases). At these time points however, the liver content of vitamin E was either indistinguishable from or slightly elevated from controls. By 12 to 24 h after treatment the liver content of vitamin E was reduced by 20-25% whereas values for all other indicators had returned toward control levels. Pretreatment of rats with L-buthionine-S,R-sulfoximine, an inhibitor of GSH by 4 or 24 h after treatment, did not alter the time course or extent of hepatic vitamin E depletion that was observed after treatment with MEKP. Other compounds that induce oxidative stress and lipid peroxidation to the liver, carbon tetrachloride and menadione, did not provoke an alteration in hepatic vitamin E levels as compared to controls 1 day after treatment. These findings indicate that depletion of hepatic vitamin E may not occur as an immediate consequence of oxidative insult to the liver and that the depletion of hepatic vitamin E levels may not be related to the extent of prior GSH depletion. Moreover, these findings suggest that alterations in the plasma concentration of vitamin E may not reflect concurrent alterations in hepatic vitamin E levels. A mechanism whereby liver vitamin E stores are mobilized for the maintenance of plasma vitamin E levels is proposed.  相似文献   

10.
In the companion paper we demonstrated that hepatic vitamin E in rats becomes depleted and extrahepatic pools of vitamin E are altered by treatment with 1,2-dibromoethane (DBE). Vitamin E depletion may be dependent upon initial steps of DBE metabolism that are either oxidative (cytochrome P450 dependent) or conjugative (glutathione transferase dependent). That the liver content of glutathione (GSH) and vitamin E, the plasma concentration of vitamin E, and the serum activities of AST and ALT may be influenced by cytosolic metabolism of DBE was assessed by comparison of findings from rats treated with either 1,2-dichloroethane (DCE) or 1-bromo-2-chloroethane (BCE). The extent of oxidative metabolism was diminished by the use of tetradeutero-DBE (d4-DBE), and the availability of GSH for conjugative metabolism was diminished by pretreatment of rats with L-buthionine-S,R-sulfoximine (BSO) prior to treatment with DBE. Our results indicate that neither DCE nor BCE provokes a liver vitamin E depletion in rats, that d4-DBE treatment hastens but does not enhance the observed hepatic vitamin E depletion by comparison to animals treated with an equimolar dose of DBE, and that BSO pretreatment prevented the hepatic vitamin E depletion observed from animals treated with DBE alone. These results indicate that hepatic vitamin E depletion is the unique sequelae to conjugation of GSH with DBE, and we suggest the reactive episulfonium ion intermediate or a macromolecular adduct of this ion derived from DBE may play a role in liver vitamin E depletion associated with exposure to DBE.  相似文献   

11.
12.
Cell calcium, vitamin E, and the thiol redox system in cytotoxicity   总被引:4,自引:0,他引:4  
The controversial role of extracellular Ca2+ in toxicity to in vitro hepatocyte systems is reviewed. Recent reports demonstrate that extracellular Ca2+-related cytotoxicity is dependent on Ca2+-influenced vitamin E (alpha-tocopherol) content of isolated hepatocytes. Based on a Ca2+-omission model of in vitro oxidative stress, the role of vitamin E in cytotoxicity is further explored. This model demonstrates the interdependence of the GSH redox system and vitamin E as protective agents during oxidative stress. Following chemical oxidant-induced depletion of intracellular GSH, cell morphology and viability are maintained by the continuous presence of cellular alpha-tocopherol above a threshold level of 0.6-1.0 nmol/10(6) cells. alpha-Tocopherol threshold-dependent cell viability is directly correlated with the prevention of the loss of cellular protein thiols in the absence of intracellular GSH. Potential mechanisms for this phenomenon are explored and include a direct reductive action of alpha-tocopherol on protein thiyl radicals, and the prevention of oxidation of protein thiols by scavenging of lipid peroxyl radicals by alpha-tocopherol. It is suggested that in light of the threshold phenomenon of vitamin E prevention of potentially severe oxidative stress-induced cytotoxicity, its use as a protective agent against an oxidative challenge in vivo should be reassessed.  相似文献   

13.
We have investigated the effects of a smokeless tobacco extract (STE) on lipid peroxidation, cytochrome c reduction, DNA fragmentation and apoptotic cell death in normal human oral keratinocyte cells, and assessed the protective abilities of selected antioxidants. The cells, isolated and cultured from human oral tissues, were treated with STE (0-300 microl;g/ml) for 24 h. Superoxide anion production was determined by cytochrome c reductase. Oxidative tissue damage was determined by lipid peroxidation and DNA fragmentation, whereas apoptotic cell death was assessed by flow cytometry. STE-induced fragmentation of genomic DNA was also determined by gel electrophoresis. The comparative protective abilities of vitamin C (75 microM), vitamin E (75 microM), a combination of vitamins C & E (75 microM each), and a novel grape seed proanthocyanidin (IH636) extract (GSPE) (100 microg/ml) against STE induced oxidative stress and tissue damage were also determined. Following treatment of the cells with 300 microg STE/ml 1.5-7.6-fold increases in lipid peroxidation, cytochrome c reduction and DNA fragmentation were observed. The addition of the antioxidants to cells treated with STE provided 10-54% decreases in these parameters. Approximately 9, 29, and 35% increases in apoptotic cell death were observed following treatment with 100, 200, and 300 microg STE/ml, respectively, and 51-85% decreases in apoptotic cell death were observed with the antioxidants. The results demonstrate that STE produces oxidative tissue damage and apoptosis, which can be attenuated by antioxidants including vitamin C, vitamin E, a combination of vitamins C plus E and GSPE. GSPE exhibited better protection against STE than vitamins C and E, singly and in combination.  相似文献   

14.
This study investigated effects of dietary supplementation with vitamin C, vitamin E on performance, biochemical parameters, and oxidative stress induced by copper toxicity in broilers. A total of 240, 1-day-old, broilers were assigned to eight groups with three replicates of 10 chicks each. The groups were fed on the following diets: control (basal diet), vitamin C (250 mg/kg diet), vitamin E (250 mg/kg diet), vitamin C + vitamin E (250 mg/kg?+?250 mg/kg diet), and copper (300 mg/kg diet) alone or in combination with the corresponding vitamins. At the 6th week, the body weights of broilers were decreased in copper, copper + vitamin E, and copper + vitamin C + vitamin E groups compared to control. The feed conversion ratio was poor in copper group. Plasma aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase activities, iron, copper concentrations, and erythrocyte malondialdehyde were increased; plasma vitamin A and C concentrations and erythrocyte superoxide dismutase were decreased in copper group compared to control. Glutathione peroxidase, vitamin C, and iron levels were increased; aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and copper levels were decreased in copper + vitamin C group, while superoxide dismutase, glutathione peroxidase, and vitamin E concentrations were increased; aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase were decreased in copper with vitamin E group compared to copper group. The vitamin C concentrations were increased; copper, uric acid, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and malondialdehyde were decreased in copper + vitamin C + vitamin E group compared to copper group. To conclude, copper caused oxidative stress in broilers. The combination of vitamin C and vitamin E addition might alleviate the harmful effects of copper as demonstrated by decreased lipid peroxidation and hepatic enzymes.  相似文献   

15.
Numerous in vitro studies attest to the enhanced ability of vitamin E succinate (TS), as compared with conventional vitamin E compounds such as unesterified d-alpha-tocopherol (T) and d-alpha-tocopheryl acetate (TA), to protect hepatocytes from toxic oxidative stress. In the present study we tested the hypothesis that this unique protective ability is related to an enhanced cellular accumulation of TS. The results of this study indicate, using both in vitro and in vivo model systems, that acute TS administration results in a rapid increase in T and TS content and antioxidant protection of hepatocytes and mitochondria. In contrast, conventional vitamin E compounds such as T and TA lack these same protective properties. We suggest that TS acts as a unique delivery system for T, rapidly accumulating in cellular and mitochondrial membranes and gradually releasing active T to prevent membrane oxidative damage. We propose that TS administration may prove useful for the prevention and treatment of oxidative stress-mediated diseases, especially those of mitochondrial origin.  相似文献   

16.
Previous studies with methyl ethyl ketone peroxide (MEKP), a radical generator, showed depletion of plasma vitamin E and liver glutathione (GSH) levels prior to a decrease of liver vitamin E levels. Since hepatic pools of this vitamin may serve to maintain circulating levels of vitamin E under conditions of oxidative challenge, we have evaluated the similarity of response after treatment with 1,2-dibromoethane (DBE), a compound that is not known to generate oxyradicals or to induce lipid peroxidation in vivo. Treatment of normal rats with DBE caused a depletion in hepatic vitamin E levels 1 day after treatment; however, in contrast to our prior findings with MEKP this depletion after DBE treatment was observed in tandem with elevations in the plasma content of vitamin E. Liver vitamin E depletion was neither dependent upon a sustained liver GSH depletion nor upon hepatocellular death. Mobilization and export of hepatic vitamin E did not result in an immediate whole body redistribution of this vitamin in that pulmonary and renal levels of vitamin E remained normal under conditions of liver vitamin E depletion. Moreover, the stimulus that resulted in exportation of liver vitamin E was maintained by daily treatments with DBE. DBE caused a substantial elevation above control values in liver GSH content and these elevations were also maintained by daily DBE treatments. In experiments to assess the influence of prandial replacement of vitamin E on the extent of depletion in response to DBE treatment, rats were fed a vitamin E-deficient diet for 2 days prior to treatment. This short pulse of a vitamin E-deficient diet delayed (to 2 days) both the elevation in liver GSH content and the depletion of liver vitamin E and hastened (to 1 day) the elevation in plasma vitamin E concentration. These observations suggest the presence of at least two pools of liver vitamin E and that one of these pools, which comprises at least 30% of the total hepatic vitamin E content, is able to be mobilized and exported in response to chemical challenge. The stimulus that resulted in liver vitamin E exportation in response to DBE treatment seems to result from wholly intrahepatic processes and may not be a direct response to lipid peroxidation. Moreover, the similarity between the time-course and the extent of hepatic vitamin E depletion observed after treatment with either MEKP or DBE suggests a similarity in physiochemical processes that function to mobilize hepatic vitamin E stores.  相似文献   

17.
Hyperglycemia leads to excess production of reactive oxygen species (ROS), lipid peroxidation and protein glycation that may impair cellular calcium homeostasis and results in calcium sequestration and dysfunction in diabetic tissues. Stobadine (ST) is a pyridoindole antioxidant has been postulated as a new cardio- and neuroprotectant. This study was undertaken to test the hypothesis that the treatment with ST inhibits calcium accumulation, reduces lipid peroxidation and protein glycation and can change Ca2+,Mg2+-ATPase activity in diabetic animals. The effects of vitamin E treatment were also evaluated and compared with the effects of combined treatment with ST. Diabetes was induced by streptozotocin (STZ, 55 mg/kg i.p.). Some of diabetic rats and their age-matched controls were treated orally with a low dose of ST (24.7 mg/kg/day), vitamin E (400-500 IU/kg/day) or ST plus vitamin E for 10 weeks. ST and vitamin E separately produced, in a similar degree, reduction in diabetes-induced hyperglycemia. Each antioxidant alone significantly lowered the levels of plasma lipid peroxidation, cardiac and hepatic protein glycation in diabetic rats but vitamin E treatment was found to be more effective than ST treatment alone. Diabetes-induced increase in plasma triacylglycerol levels was not significantly altered by vitamin E treatment but markedly reduced by ST alone. The treatment with each antioxidant completely prevented calcium accumulation in diabetic heart and liver. Microsomal Ca2+,Mg2+-ATPase activity significantly decreased in both tissues of untreated diabetic rats. ST alone significantly increased microsomal Ca2+,Mg2+-ATPase activity in the heart of normal rats. However, neither treatment with ST nor vitamin E alone, nor their combination did change cardiac Ca2+,Mg2+-ATPase activity in diabetic heart. In normal rats, neither antioxidant had a significant effect on hepatic Ca2+,Mg2+-ATPase activity. Hepatic Ca2+,Mg2+-ATPase activity of diabetic rats was not changed by single treatment with ST, while vitamin E alone completely prevented diabetes-induced inhibition in microsomal Ca2+,Mg2+-ATPase activity in liver. Combined treatment with ST and vitamin E provided more benefits in the reduction of hyperglycemia and lipid peroxidation in diabetic animals. This study describes potential mechanisms on cellular effects of ST in the presence of diabetes-induced hyperglycemia that may delay or inhibit the development of diabetic complications. The use of ST together with vitamin E can better control hyperglycemia-induced oxidative stress.  相似文献   

18.
The regional accumulation of aluminium in the brain of male albino Wistar rats was investigated following 4 weeks of administration by intraperitoneal injection of aluminium lactate (10mg aluminium/kg body weight). The consequences of concomitant dietary vitamin E (5, 15, or 20 mg vitamin E/g of food) were also studied. Rat brains were dissected into functional regions, for the measurement of aluminium and markers of oxidative stress. Plasma aluminium levels were increased in all groups of animals receiving aluminium lactate (p < 0.01), and these levels were significantly reduced in rats receiving concomitant vitamin E (p < 0.05). In the group of rats receiving aluminium alone, levels of brain tissue aluminium were increased in all regions of brain examined (p< 0.01). Brain tissue aluminium levels were reduced by concomitant dietary vitamin E. Catalase and reduced glutathione levels were both reduced in several regions of brain in animals treated with aluminium (p < 0.05). Aluminium treatment was not associated with a significant increase in reactive oxygen species (ROS) generation (p > 0.05), although ROS production was attenuated by dietary vitamin E (p < 0.05) in some regions.  相似文献   

19.
Ameliorative effects of few naturally occurring antioxidants like ascorbic acid (vitamin C), alpha-tocopherol (vitamin E) either alone or in combination with meso-2,3-dimercaptosuccinic acid (DMSA) or monoisoamyl DMSA (MiADMSA), on parameters indicative of oxidative stress in the liver, kidney, brain and blood of lead-exposed rats were studied. Male Wistar rats were exposed to 0.1% lead acetate in drinking water for 3 months and treated thereafter with DMSA or its analogue MiADMSA (50 mg/kg, intraperitoneally), either individually or in combination with vitamin E (5 mg/kg, intramuscularly) or vitamin C (25 mg/kg, orally) once daily for 5 days. The effects of these treatments in influencing the lead-induced alterations in haem synthesis pathway, hepatic, renal and brain oxidative stress and lead concentration from the soft tissues were investigated. Exposure to lead produced a significant inhibition of delta-aminolevulinic acid dehydratase (ALAD) activity from 8.44+/-0.26 in control animals to 1.76+/-0.32 in lead control, reduction in glutathione (GSH) from 3.56+/-0.14 to 2.57+/-0.25 and an increase in zinc protoporphyrin level from 62.0+/-3.9 to 170+/-10.7 in blood, suggesting altered haem synthesis pathway. Both the thiol chelators and the two vitamins were able to increase blood ALAD activity towards normal, however, GSH level responded favorably only to the two thiol chelators. The most prominent effect on blood ALAD activity was, however, observed when MiADMSA was co-administered with vitamin C (7.51+/-0.17). Lead exposure produced a significant depletion of hepatic GSH from 4.59+/-0.78 in control animals to 2.27+/-0.47 in lead controls and catalase activity from 100+/-3.4 to 22.1+/-0.25, while oxidized glutathione (GSSG; 0.34+/-0.05 to 2.05+/-0.25), thiobarbituric acid reactive substance (TBARS; 1.70+/-0.45 to 5.22+/-0.50) and glutathione peroxidase (GPx) levels (3.41+/-0.09 to 6.17+/-0.65) increased significantly, pointing to hepatic oxidative stress. Altered, reduced and oxidized GSH levels showed significant recovery after MiADMSA and DMSA administration while, vitamins E and C were effective in reducing GSSG and TBARS levels and increasing catalase activity. Administration of MiADMSA alone and the combined administration of vitamin C along with DMSA and MiADMSA were most effective in increasing hepatic GSH levels to 4.88+/-0.14, 4.09+/-0.12 and 4.30+/-0.06, respectively. Hepatic catalase also reached near normal level in animals co-administered vitamin C with DMSA or MiADMSA (82.5+/-4.5 and 84.2+/-3.5, respectively). Combined treatments with vitamins and the thiol chelators were also able to effectively reduce lead-induced decrease in renal catalase activity and increase in TBARS and GPx level. Combination therapy, however, was unable to provide an effective reversal in the altered parameters indicative of oxidative stress in different brain regions, except in catalase activity. The result also suggests a beneficial role of vitamin E when administered along with the thiol chelators (particularly with MiADMSA) in reducing body lead burden. Blood lead concentration was reduced from 13.3+/-0.11 in lead control to 0.3+/-0.01 in MiADMSA plus vitamin E-treated rats. Liver and kidney lead concentration also showed a most prominent decrease in MiADMSA plus vitamin E co-administered rats (5.29+/-0.16 to 0.63+/-0.02 and 14.1+/-0.21 to 1.51+/-0.13 in liver and kidney, respectively). These results thus suggest that vitamin C administration during chelation with DMSA/MiADMSA was significantly beneficial in reducing oxidative stress however, it had little or no additive effect on the depletion of lead compared with the effect of chelators alone. Thus, the co-administration of vitamin E during chelation treatment with DMSA or MiADMSA could be recommended for achieving optimum effects of chelation therapy.  相似文献   

20.
Few, if any, studies have examined the effect of vitamin E deficiency on brain mitochondrial oxidative phosphorylation. The latter was studied using brain mitochondria isolated from control and vitamin E-deficient rats (13 months of deficiency) after exposure to iron, an inducer of oxidative stress. Mitochondria were treated with iron (2 to 50 microM) added as ferrous ammonium sulfate. Rates of state 3 and state 4 respiration, respiratory control ratios, and ADP/O ratios were not affected by vitamin E deficiency alone. However, iron uncoupled oxidative phosphorylation in vitamin E-deficient mitochondria, but not in controls. In vitamin E-deficient mitochondria, iron decreased ADP/O ratios and markedly stimulated state 4 respiration; iron had only a modest effect on these parameters in control mitochondria. Thus, vitamin E may have an important role in sustaining oxidative phosphorylation. Low concentrations of iron (2 to 5 microM) oxidized mitochondrial tocopherol that exists in two pools. The release of iron in brain may impair oxidative phosphorylation, which would be exacerbated by vitamin E deficiency. The results are important for understanding the pathogenesis of human brain disorders known to be associated with abnormalities in mitochondrial function as well as iron homeostasis (e.g., Parkinson's disease).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号