首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Interferon-treated HeLa cells were incubated with [3H]uridine to label mRNA and were then exposed to the double-stranded RNA poly(inosinic acid).poly(cytidylic acid) (In.Cn). The incubation with In.Cn greatly enhanced the decay of mRNA. When the cells were incubated in this way in the presence of cycloheximide, which blocks ribosome movement along mRNA, extensive polysome degradation was detected in interferon-treated cells. Products of degradation of mRNA were recovered from monosomes which were presumably formed as a result of endonucleolytic breaks of mRNA. This endonucleolytic activity was correlated with the formation of 2',5'-oligo(A) by an enzyme induced by interferon and activated by double-stranded RNA; the 2',5'-oligo(A) was previously shown to activate an endonuclease in cell extracts. The 2',5'-oligo(A) levels in cells were measured by a competition-binding assay. Details of the procedure used are described, including synthesis of highly radioactive (2'-5')pppA3[32P]cytidine 3',5'-diphosphate, separation of 2',5'-oligo(A) binding from degrading activities, and specificity of the assay.  相似文献   

2.
Antibodies against synthetic peptides derived from the cDNA sequence of interferon-induced 2',5'-oligo(A) synthetase, and which immunoprecipitate the native enzyme activity, were found to detect multiple enzyme forms in denaturing electrophoretic immunoblots. In some human cell lines, four different interferon-induced proteins of 40, 46, 67, and 100 kDa were found to react with the same peptide antibodies. Each isolated form was shown to have 2',5'-oligo(A) synthetase activity, but the dependence on double-stranded RNA was markedly different for activation of the individual enzymes. The four enzyme forms also differ in their intracellular localization, on microsomes (100 kDa), in nuclei (67, 46, 40 kDa), and on membrane structures (67 kDa). Plasma membranes from interferon-treated Daudi lymphoblastoid cells are highly enriched in the 67-kDa 2',5'-oligo(A) synthetase form. The 2',5'-oligo(A) synthetase activity induced by interferons in human cells appears, therefore, as a complex multienzyme system.  相似文献   

3.
4.
RNA covalently linked to double-stranded RNA (dsRNA) is preferentially degraded in extracts of interferon-treated HeLa cells [Nilsen, T. W., & Baglioni, C. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 2600-2604]. The size of the dsRNA required for this preferential degradation has been determined by annealing poly(I) of known length to the poly(C) tract of encephalomyocarditis virus (EMCV) RNA or by annealing poly(U) to poly(A) of known length of vesicular stomatitis virus mRNA. The dsRNA must be longer than about 60 base pairs to observe the preferential degradation of RNA. Moreover, triple-stranded regions that do not activate synthesis of 2',5'-oligo(A) and ethidium bromide, which intercalates in dsRNA and blocks 2',5'-olido(A) polymerase activation, prevent this degradation. Ethidium also blocks the degradation of the replicative intermediate of EMCV by extracts of interferon-treated cells. These experiments indicate that synthesis of 2',5'-oligo(A) is required for the degradation of RNA linked to dsRNA. The 2',5'-oligo(A)-dependent endonuclease does not cleave single- or double-stranded DNA, nor does it cleave homopolyribonucleotides. The potential role of the 2',5'-oligo(A) polymerase/endonuclease system in the inhibition of viral RNA replication is discussed.  相似文献   

5.
After binding to specific cell surface receptors, interferon-alpha (IFN-alpha) along with its receptor is internalized by the cells. However, the physiological significance of the internalization of IFN is not known. We have found that the lectin concanavalin A (ConA), which does not inhibit the binding of 125I-rIFN-alpha A, inhibits both the internalization of 125I-rIFN-alpha A and the rIFN-alpha A-induced increase in the levels of 2',5'-oligo(A) synthetase mRNA and enzymatic activity in the B lymphoblastoid cell line Daudi. The reduced level of IFN-induced 2',5'-oligo(A) synthetase in ConA-treated cells was due neither to direct inhibition of the enzymatic activity nor to generalized inhibition of protein or RNA synthesis. The dose-response curves were similar for the effect of ConA to inhibit 125I-rIFN-alpha A internalization and 2',5'-oligo(A) synthetase induction. The correlation between the ConA-mediated inhibition of both 125I-rIFN-alpha A internalization and 2',5'-oligo(A) synthetase induction suggests that internalization of rIFN-alpha A plays a role in the responses to rIFN-alpha A. However, since ConA inhibits protein mobility in the plasma membrane, it is possible that ConA is also preventing aggregation of IFN receptors or interactions between IFN receptors and signal transducing proteins in the plasma membrane that may be necessary for responses to IFN.  相似文献   

6.
Synthesis of 2',5'-oligoadenylate by rat liver nuclear matrix protein   总被引:1,自引:0,他引:1  
Nuclear matrix was prepared from unstimulated rat liver by treatment of nuclei with DNAse and 0.4 M NaCl and was further extracted with 2.0 M NaCl. Proteins were bound to poly(rI):(rC)-agarose, incubated with (alpha-32P) adenosine 5'-triphosphate and 2',5'-linked oligoadenylate was isolated from the supernatant. The substance inhibited amino acid incorporation in a reticulocyte translation system and was identified after enzymatic treatment followed by thin-layer chromatography on PEI-cellulose. The possible function of 2',5'-oligo(A) synthetase in the maturation of pre-mRNA associated with nuclear matrix is discussed.  相似文献   

7.
8.
pppA2'pA2'pA appears to be a potent natural noncompetitive inhibitor of poly (ADP-ribose) transferase activity in the histone dependent reaction of ADP-ribosylation with Ki=5 microM. Moreover, it is a noncompetitive inhibitor of the Mg2+ dependent reaction of autoADPRT-ribosylation with Ki=20 microM. The activity of ADPRT falls down abruptly both in the cytoplasm and nuclei of mouse L-cells treated with interferon. In contrast, the activities of 2',5'-oligo (A) polymerase and 2'-phosphodiesterase remain virtually unchanged after the treatment with ADPRT preparation. The regulation of ADPRT activity and active form of ADPRT by 2',5-oligoadenylates is presumed to be one of the factors responsible for inducing the antiviral and/or antiproliferative effects of interferon.  相似文献   

9.
Treatment of HeLa cells with interferon results in the induction of an enzymatic activity designated 2'5'oligo(A) polymerase. The polymerase requires continuous presence of double-stranded RNA (dsRNA) for activity, since degradation of dsRNA abolishes synthesis of the oligomeric series pppA(2'p5'A)n. These oligonucleotides are formed initially at a constant rate with dimer synthesized faster than trimer, and the latter faster than tetramer. After 45 min, accumulation of the dimer declines whereas that of other oligomers still proceeds at a linear rate. These results suggest that an oligomer remains associated with the enzyme for possible consecutive additions of adenylate, since no significant accumulation of dimer precedes synthesis of trimer. The relative amounts of the different oligomers found at the end of a reaction may reflect an increasing probability of release as the oligomers are elongated. The accumulation of dimer, however, decreases when it becomes a substrate for adenylate addition; incorporation of isolated dimer into 2'5'-oligo(A) was directly shown. Other nucleotides with a blocked p5'A terminus, like A5'ppppp5'A and NADH, can serve as adenylate acceptors in the presence of dsRNA. The adenosine triphosphates 2'-dATP and 3'-dATP are not incorporated efficiently into 2'5'-oligo(A) and inhibit its synthesis.  相似文献   

10.
Theophylline, an inhibitor of cAMP phosphodiesterase, induces in human ovary carcinoma cells (CaOv) a 2-2.5-fold elevation of intracellular cAMP. This rise in the cAMP level is followed by an increase of the activity of 2',5'-oligo(A) synthetase in CaOv cells -insignificant (1.5-fold) after 16 hr incubation, and substantial (3.7-fold) after 30 hr incubation, as well as the development of antiviral resistance. Once CaOv cells have been incubated with the mixtures containing theophylline (2 mM) and lambda-, beta-, and gamma-interferon preparations (0.5-13 IU/ml), the total antiviral effect of the mixtures exceeds that generated by interferon or theophylline separately; the action of the above agents being additive. These data agree with the previously obtained results and support the suggestion that cAMP phosphodiesterase inhibitors partially mimic the antiviral action of interferon.  相似文献   

11.
We have previously identified a HeLa cell 3' exonuclease specific for degrading poly(A) tails of mRNAs. Here we report on the purification and identification of a calf thymus 54-kDa polypeptide associated with a similar 3' exonuclease activity. The 54-kDa polypeptide was shown to be a fragment of the poly(A)-specific ribonuclease 74-kDa polypeptide. The native molecular mass of the nuclease activity was estimated to be 180-220 kDa. Protein/protein cross-linking revealed an oligomeric structure, most likely consisting of three subunits. The purified nuclease activity released 5'-AMP as the reaction product and degraded poly(A) in a highly processive fashion. The activity required monovalent cations and was dependent on divalent metal ions. The RNA substrate requirement was investigated, and it was found that the nuclease was highly poly(A)-specific and that only 3' end-located poly(A) was degraded by the activity. RNA substrates capped with m(7)G(5')ppp(5')G were more efficiently degraded than noncapped RNA substrates. Addition of free m(7)G(5')ppp(5')G cap analogue inhibited poly(A) degradation in vitro, suggesting a functional link between the RNA 5' end cap structure and poly(A) degradation at the 3' end of the RNA.  相似文献   

12.
Oligoribonucleotides containing 2',5'-phosphodiester linkages have been synthesized on a solid support by the 'silyl-phosphoramidite' method. The stability of complexes formed between these oligonucleotides and complementary 3',5'-RNA strands have been studied using oligoadenylates and a variety of oligonucleotides of mixed base sequences including phosphorothioate backbones. In many cases, particularly for 2',5'-linked adenylates, the UV melting profiles are quite sharp and exhibit large hyperchromic changes. Substituting a few 3',5'-linkages with the 2',5'-linkage within an oligomer lowers the Tm of the complex and the degree of destabilization depends on the neighboring residues and neighboring linkages. The 2',5'-linked oligoribonucleotides prepared in this study exhibited remarkable selectivity for complementary single stranded RNA over DNA. For example, in 0.01 M phosphate buffer--0.10 M NaCl (pH 7.0), no association was observed between 2',5'-r(CCC UCU CCC UUC U) and its Watson-Crick DNA complement 3',5'-d(AGAAGGGAGAGGG). However, 2',5'-r(CCC UCU CCC UUC U) with its RNA complement 3',5'-r(AGAAGGGAGAGGG) forms a duplex which melts at 40 degrees C. The decamer 2',5'-r(Ap)9A forms a complex with both poly dT and poly rU but the complex [2',5'-r(Ap)9A]:[poly dT] is unstable (Tm, -1 degree C) and is seen only at high salt concentrations. In view of their unnatural character and remarkable selectivity for single stranded RNA, 2',5'-oligo-RNAs and their derivatives may find use as selective inhibitors of viral mRNA translation, and as affinity ligands for the purification of cellular RNA.  相似文献   

13.
Two 5'-modified (2'-5')(A)4 oligomers with an increased resistance to phosphatase degradation were synthesized and evaluated for their ability to develop an antiviral response when introduced into intact cells by microinjection or by chemical conjugation to poly(L-lysine). The enzymatic synthesis of 5'-gamma-phosphorothioate and beta,gamma-difluoromethylene (2'-5')(A)4 from adenosine 5'-O-(3-thiotriphosphate) and adenosine beta,gamma-difluoromethylenetriphosphate by (2'-5')-oligoadenylate synthetase is described. The isolation and characterization of these (2'-5')(A)4 analogues were achieved by high-performance liquid chromatography. The structures of 5'-modified tetramers were corroborated by enzyme digestion. These two 5'-modified tetramers compete as efficiently as natural (2'-5')(A)4 for the binding of a radiolabeled (2'-5')(A)4 probe to ribonuclease (RNase) L. Nevertheless, at the opposite to 5'-gamma-phosphorothioate (2'-5')(A)4, beta,gamma-difluoromethylene (2'-5')(A)4 failed to induce an antiviral response after microinjection in HeLa cells. In addition, it behaves as an antagonist of RNase L as demonstrated by its ability to inhibit the antiviral properties of 5'-gamma-phosphorothioate (2'-5')(A)4 when both are microinjected in HeLa cells. The increased metabolic stability of 5'-gamma-phosphorothioate (2'-5')(A)4 as compared to that of (2'-5')(A)4 was first demonstrated in cell-free extracts and then confirmed in intact cells after introduction in the form of a conjugate to poly(L-lysine). Indeed, 5'-gamma-phosphorothioate (2'-5')(A)4-poly(L-lysine) conjugate induces protein synthesis inhibition and characteristic ribosomal RNA cleavages for longer times than unmodified (2'-5')(A)4-poly(L-lysine) in the same cell system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Extracts of interferon-treated HeLa cells adsorbed to poly(I) . poly(C)-agarose have been used to synthesize 2'5'oligo(A). This oligonucleotide has been characterized by enzymatic digestion with alkaline phosphatase, snake venom phosphodiesterase, T2 ribonuclease and chromatography on DEAE, and PEI-cellulose. The oligonucleotide inhibits protein synthesis in vitro and activates an endonuclease present in extracts of control and interferon-treated cells. The metabolic stability of 2'5'oligo(A) has been investigated in these cell extracts. The oligonucleotide undergoes rapid degradation, particularly in the absence of ATP and of an energy regenerating system. Furthermore, the 2'5'oligo(A)-activated endonuclease reverts to an inactive state under these conditions, but can be reactivated upon further addition of 2'5'oligo(A). A possible role for the degradation of 2'5'oligo(A) in the mechanism of interferon action is discussed.  相似文献   

15.
Interferon-like proteins synthesized by conceptuses of domestic ruminants inhibit luteolysis during early pregnancy. Although pig conceptuses secrete trophoblast interferons during the period of CL maintenance, estrogen is involved with maintenance of the CL. The principal purposes of this work were to confirm production of trophoblast interferons by porcine conceptuses and to compare the effect of trophoblast interferons on endometrium of pigs and cattle. When measured using Madin-Darby bovine kidney (MDBK) cells challenged with vesicular stomatitis virus, antiviral activity in uterine flushings from cyclic gilts was not detectable throughout the estrous cycle; however, in pregnant gilts, antiviral activity increased from undetectable amounts to 4-11 x 10(3) U on Days 14, 16, and 18. Porcine embryos in culture produced 1,100 U/embryo/ml/24 h. Porcine conceptus secretory proteins induced 2',5'-oligo(A) synthetase in MDBK cells and in endometrial explants of cows but had no measurable effect on 2',5'-oligo(A) synthetase activity of endometrial explants of pigs. Similarly, endometrial 2',5'-oligo(A) synthetase of pregnant pigs was unaffected in vivo during the period of maximal synthesis of conceptus secretory proteins. Porcine conceptus secretory proteins produced no detectable increase in serum antiviral activity or 2',5'-oligo(A) synthetase activity of blood mononuclear leukocytes in utero-ovarian venous blood. These results suggest that conceptus interferons of pigs play different roles in the establishment of pregnancy compared to their roles in ruminants.  相似文献   

16.
An improved method for purifying 2',5'-oligoadenylate synthetases   总被引:10,自引:0,他引:10  
We describe a new, rapid, and convenient procedure for purifying 2',5'-oligoadenylate synthetases, employing precipitation with ammonium sulfate, fractionation by gel filtration, rapid binding to poly(I) X poly(C) cellulose, and elution with 0.35 M KCl. Unlike previously published methods, the procedure does not require sedimentation of the enzyme at 200,000 X g. Therefore, it is more general and more likely to succeed with synthetases extracted from a variety of cells or tissues, or from different subcellular fractions. We have purified the enzymes from two sources to apparent homogeneity, about 2500-fold from the cytoplasm of HeLa cells in 40% yield and more than 400,000-fold from the cytoplasm of rabbit reticulocytes in 25% yield. The specific activity of the HeLa enzyme is about 4 times higher than reported previously. The physical and functional properties of the pure enzymes are very similar to those reported by others for preparations of 2',5'-oligoadenylate synthetase from rabbit reticulocytes, mouse L cells, and human HeLa cells. A new affinity matrix was prepared by linking periodate-oxidized poly(I) X poly(C) to a hydrazide derivative of finely divided cellulose. Poly(I) X poly(C) cellulose binds about twice as much synthetase as the corresponding amount of poly(I) X poly(C) paper and activates the bound enzyme about three times better.  相似文献   

17.
Heterogeneous nuclear RNA contains double-stranded regions that are not found in mRNA and that may serve as recognition elements for processing enzymes. The double-stranded regions of heterogeneous nuclear RNA prepared from HeLa cells promoted the synthesis of (2',5')oligoadenylate [(2',5')oligo(A) or (2'5')An] when incubated with (2',5')An polymerase. This enzyme is present in elevated levels in interferon-treated cells, and labeled heterogeneous nuclear RNA incubated with extracts of these cells is preferentially cleaved, since mRNA included in the same incubations is not appreciably degraded. The cleavage of heterogenous nuclear RNA is caused by the synthesis of (2'5')An and by a "localized" activation of the (2',5')An-dependent endonuclease, since it was enhanced by ATP, the substrate of the (2',5')An polymerase, and inhibited by 2'-dATP and ethidium bromide. Both of these compounds suppress the synthesis of (2',5')An, the first by competitive inhibition and the latter by intercalating into double-stranded RNA. The possible role of double-stranded regions and of the (2',5')An polymerase-endonuclease system in the processing of heterogeneous nuclear RNA is discussed.  相似文献   

18.
B Bayard  C Bisbal  B Lebleu 《Biochemistry》1986,25(12):3730-3736
Molecular hybrids were synthesized by coupling (2'-5')(A)n oligoadenylates or 2-5A, an intracellular mediator involved in antiviral activity of interferons (IFNs), with poly(L-lysine) used as a membrane carrier. (2'-5')(A)n in its free form was not taken up by cells, probably because of its ionic character. Conjugation with the polypeptide carrier overcame this problem and enabled its pharmacological properties to be developed. The alpha-glycol group of individual (2'-5')(A)n oligomers was oxidized by periodate oxidation and conjugated by an amino reductive reaction to poly(L-lysine), Mr 14 000, in a molar ratio of 5:1. These hybrid molecules left the biologically active 5' end moiety of the (2'-5')(A)n molecule unchanged, and in particular its triphosphate group, and stabilized the molecule by increasing its resistance to phosphodiesterase hydrolysis. A dose-dependent inhibition of virus growth was observed on concomitant incubation of (2'-5')(A)n-poly(L-lysine) conjugates with vesicular stomatitis virus infected L1210 cell cultures. This was a result of the activation of the (2'-5')(A)n-dependent endoribonuclease (RNase L) by intracellularly delivered (2'-5')(A)n as in some IFN-treated virus-infected cells. Indeed, (2'-5')(A)n-poly(L-lysine) conjugates bind RNase L effectively as can be seen from their ability to compete with authentic (2'-5')(A)n in a cell-free radiobinding assay. Moreover, (2'-5')(A)n-poly(L-lysine) conjugates promote transient inhibition of protein synthesis and a characteristic cleavage pattern of ribosomal RNAs in intact cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
An endoribonuclease has been isolated from HeLa cell nuclei. Approximately 70% of the enzyme appears to be nucleolar bound; 30% is in the nucleoplasm. Studies of the purified enzyme reveal that the enzyme is an endonuclease of estimated molecular weight 16,000. It produces oligonucleotides bearing 5'-phosphate end groups. The enzyme degrades poly(C) and poly(U), as well as rRNA and heterogeneous nuclear RNA, Poly(A), double-stranded RNA, and DNA are not cleaved. The enzyme is heat-labile and is inhibited by 10mM Mg2+ and 50 mM NaCl. The enzyme is probably distinct from previously described nuclear endonucleases.  相似文献   

20.
In cell-free systems, 2-5A [ppp(A2'p)nA, n = 2 to greater than or equal to 4] activates a latent endoribonuclease, the 2-5A-dependent RNase, which cleaves rRNA in intact ribosomes into discrete and characteristic products (D. H. Wreschner et al., Nucleic Acids Res. 9:1571-1581, 1981). Here we present Northern blots which have identified the 18S or 28S origins of the cleaved products from rRNA. In addition, identical 3' termini were observed for fragments of 18S rRNA from a HeLa cell-free system incubated with 2-5A and from interferon-treated, encephalomyocarditis virus-infected HeLa cells. The previous assumption of identity of such fragments was based only on comigration on electrophoresis in agarose gels. We conclude that appropriate patterns of cleavage found in RNA isolated from intact cells are an indicator of prior 2-5A-dependent RNase activity. The assay of rRNA cleavage is relatively convenient and unambiguous. Accordingly, in the search for situations in which the 2-5A system may be active, it provides a useful alternative to the direct assay of 2-5A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号