首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
One approach for a safer smallpox vaccine is to utilize recombinant subunits rather than live vaccinia virus (VACV). The products of the VACV envelope genes A27L, L1R, B5R, and A33R induce protective antibodies in animal models. We propose that proteins that elicit T-cell responses, as well as neutralizing antibodies, will be important to include in a molecular vaccine. To evaluate VACV-specific memory T-cell responses, peripheral blood mononuclear cells (PBMC) from four VACV vaccinees were tested against whole VACV and the individual envelope proteins A27, B5, L1, and A33, using gamma interferon enzyme-linked immunospot and cytokine flow cytometry assays. PBMC were stimulated with autologous dendritic cells infected with VACV or electroporated with individual VACV protein mRNAs. T-cell lines from all donors, vaccinated from 1 month to over 20 years ago, recognized all four VACV envelope proteins. Both CD4(+) and CD8(+) T-cell responses to each protein were detected. Further analysis focused on representative proteins B5 and A27. PBMC from a recent vaccinee exhibited high frequencies of CD4(+) and CD8(+) T-cell precursors to both B5 (19.8 and 20%, respectively) and A27 (6.8 and 3.7%). In comparison, B5- and A27-specific T-cell frequencies ranged from 0.4 to 1.3% in a donor vaccinated 3 years ago. Multiple CD4(+) and CD8(+) T-cell epitopes were identified from both A27 and B5, using overlapping 15-mer peptides. These data suggest that all four VACV envelope proteins may contribute to protective immunity, not only by inducing antibody responses, but also by eliciting T-cell responses.  相似文献   

3.
4.
A problem associated with the use of vaccinia virus recombinants as vaccines is the existence of a large human population with preexisting immunity to the vector. Here we showed that after a booster with attenuated recombinant modified vaccinia virus Ankara (rMVA), higher humoral and cellular immune responses to foreign antigens (human immunodeficiency virus type 1 Env and beta-galactosidase) were found in mice preimmunized with rMVA than in mice primed with the virulent Western Reserve strain and boosted with rMVA. This enhancement correlated with higher levels of expression of foreign antigens after the booster.  相似文献   

5.
6.
Vaccinia viruses defective in the essential gene coding for the enzyme uracil DNA glycosylase (UDG) do not undergo DNA replication and do not express late genes in wild-type cells. A UDG-deficient vaccinia virus vector carrying the tick-borne encephalitis (TBE) virus prM/E gene, termed vD4-prME, was constructed, and its potential as a vaccine vector was evaluated. High-level expression of the prM/E antigens could be demonstrated in infected complementing cells, and moderate levels were found under noncomplementing conditions. The vD4-prME vector was used to vaccinate mice; animals receiving single vaccination doses as low as 10(4) PFU were fully protected against challenge with high doses of virulent TBE virus. Single vaccination doses of 10(3) PFU were sufficient to induce significant neutralizing antibody titers. With the corresponding replicating virus, doses at least 10-fold higher were needed to achieve protection. The data indicate that late gene expression of the vaccine vector is not required for successful vaccination; early vaccinia virus gene expression induces a potent protective immune response. The new vaccinia virus-based defective vectors are therefore promising live vaccines for prophylaxis and cancer immunotherapy.  相似文献   

7.
Heat shock response to vaccinia virus infection.   总被引:13,自引:2,他引:11       下载免费PDF全文
L Sedger  J Ruby 《Journal of virology》1994,68(7):4685-4689
We have investigated the induction of heat shock proteins (HSPs) in mice infected with vaccinia virus. Vaccinia virus replicates to high levels in the ovaries of infected mice and causes a significant inhibition of host cell DNA, RNA, and protein synthesis. Many HSPs are constitutively expressed in murine ovarian tissue at low levels, consistent with their obligatory role in normal physiological events. In contrast with these events, HSP expression was augmented in virus-infected mouse ovaries 6 days postinfection. In particular, there was a dramatic increase in the expression of a protein identified as the inducible 72-kDa HSP. Analysis of cellular mRNA confirmed this protein to be the major mouse inducible HSP70 and demonstrated its presence within virus-infected cells. Hence, we have demonstrated the expression of stress proteins during poxvirus infection in vivo.  相似文献   

8.
9.
CD4 T cells are required for the maintenance and recall of antiviral CD8 T cells and for antibody responses. Little is known concerning the overall architecture of the CD4 response to complex microbial pathogens. In a whole-proteome approach, 180 predicted open reading frames (ORFs) in the vaccinia virus genome were expressed and tested using responder cells from 20 blood samples from 11 vaccinees. Validation assays established the sensitivity and specificity of the system. Overall, CD4 responses were detected for 122 ORFs (68%). A mean of 39 ORFs were recognized per person (range, 13 to 63). The most frequently recognized ORFS were present in virions, including A3L and A10L (core proteins), WR148 (a fragmented homolog of an orthopoxvirus protein that forms inclusions in cells), H3L (a membrane protein), D13L (a membrane scaffold protein), and L4R (a nucleic acid binding protein). Serum immunoglobulin G profiling by proteome microarray detected responses to 45 (25%) of the ORFs and confirmed recent studies showing a diverse response directed to membrane and nonmembrane antigens. Our results provide the first empirical whole-proteome data set regarding the global CD4 response to full-length proteins in a complex virus and are consistent with the theory that abundant structural proteins are immunodominant.  相似文献   

10.
1982年,文献首次报道外源基因成功在痘苗病毒WR株(小鼠嗜神经毒株)中获得表达,引起了中国科学家的极大关注。1984年,中国医学科学院病毒学研究所在朱既明院士的组织下成立了痘苗病毒基因表达载体研究协作组,提出使用天坛痘苗病毒疫苗株开发可用于人体的痘苗病毒基因表达载体的新思路。该研究历时10余年,成功构建了痘苗病毒天坛株高效表达载体,并广泛用于外源基因表达、基因工程疫苗研究、单克隆抗体研制和诊断试剂开发。本文简单介绍了该载体的研究及应用,并对载体疫苗存在的问题及发展前景进行了讨论。  相似文献   

11.
Protective immunity against Mycobacterium tuberculosis depends on the generation of a T(H)1-type cellular immune response, characterized by the secretion of interferon-gamma (IFN-gamma) from antigen-specific T cells. The induction of potent cellular immune responses by vaccination in humans has proven difficult. Recombinant viral vectors, especially poxviruses and adenoviruses, are particularly effective at boosting previously primed CD4(+) and CD8(+) T-cell responses against a number of intracellular pathogens in animal studies. In the first phase 1 study of any candidate subunit vaccine against tuberculosis, recombinant modified vaccinia virus Ankara (MVA) expressing antigen 85A (MVA85A) was found to induce high levels of antigen-specific IFN-gamma-secreting T cells when used alone in bacille Calmette-Guerin (BCG)-naive healthy volunteers. In volunteers who had been vaccinated 0.5-38 years previously with BCG, substantially higher levels of antigen-specific IFN-gamma-secreting T cells were induced, and at 24 weeks after vaccination these levels were 5-30 times greater than in vaccinees administered a single BCG vaccination. Boosting vaccinations with MVA85A could offer a practical and efficient strategy for enhancing and prolonging antimycobacterial immunity in tuberculosis-endemic areas.  相似文献   

12.
Plasmodium falciparum: Sporozoite boosting of immunity due to a T-cell epitope on a sporozoite vaccine. Experimental Parasitology 64, 64-70. The impact of a malaria sporozoite vaccine may be enhanced if protective immunity elicited by the vaccine is boosted by natural exposure to sporozoites. For this to occur, a helper T lymphocyte epitope present on the vaccine must be shared by sporozoites. These studies show that T cells from mice immunized with R32tet32, the Plasmodium falciparum sporozoite vaccine candidate, recognize an epitope of less than or equal to 7 amino acids derived from the circumsporozoite protein repeat region of R32tet32, as well as an epitope on the tet32 fusion protein tail of R32tet32. Exposure of R32tet32 immunized animals to P. falciparum sporozoites elicits a significant secondary antibody response which suggests that humans who are immunized and respond to this vaccine may be boosted by field exposure to sporozoite infected mosquitoes.  相似文献   

13.
Cellular and humoral immunity against vaccinia virus infection of mice   总被引:8,自引:0,他引:8  
Despite the widespread use of vaccinia virus (VV) as a vector for other Ags and as the smallpox vaccine, there is little information available about the protective components of the immune response following VV infection. In this study, protection against wild-type VV was evaluated in mice with respect to the relative contributions of CD8(+) T cells vs that of CD4(+) T cells and Ab. C57BL/6 mice primed with the Western Reserve strain of VV mount significant IgM and IgG Ab responses, specific cytotoxic T cell responses, IFN-gamma responses in CD4(+) and CD8(+) T cells, and effectively clear the virus. This protection was abrogated by in vivo depletion of CD4(+) T cells or B cells in IgH(-/-) mice, but was not sensitive to CD8(+) T cell depletion alone. However, a role for CD8(+) T cells in primary protection was demonstrated in MHC class II(-/-) mice, where depleting CD8(+) T cells lead to increase severity of disease. Unlike control MHC class II(-/-) mice, the group depleted of CD8(+) T cells developed skin lesions on the tail and feet and had adrenal necrosis. Adoptive transfer experiments also show CD8(+) T cells can mediate protective memory. These results collectively show that both CD4(+) and CD8(+) T cell-mediated immunity can contribute to protection against VV infection. However, CD4(+) T cell-dependent anti-virus Ab production plays a more important role in clearing virus following acute infection, while in the absence of Ab, CD8(+) T cells can contribute to protection against disease.  相似文献   

14.
CD8(+) T lymphocytes have been shown to be involved in controlling poxvirus infection, but no protective cytotoxic T-lymphocyte (CTL) epitopes are defined for variola virus, the causative agent of smallpox, or for vaccinia virus. Of several peptides in vaccinia virus predicted to bind HLA-A2.1, three, VETFsm(498-506), A26L(6-14), and HRP2(74-82), were found to bind HLA-A2.1. Splenocytes from HLA-A2.1 transgenic mice immunized with vaccinia virus responded only to HRP2(74-82) at 1 week and to all three epitopes by ex vivo enzyme-linked immunosorbent spot (ELISPOT) assay at 4 weeks postimmunization. To determine if these epitopes could elicit a protective CD8(+) T-cell response, we challenged peptide-immunized HLA-A2.1 transgenic mice intranasally with a lethal dose of the WR strain of vaccinia virus. HRP2(74-82) peptide-immunized mice recovered from infection, while na?ve mice died. Depletion of CD8(+) T cells eliminated protection. Protection of HHD-2 mice, lacking mouse class I major histocompatibility complex molecules, implicates CTLs restricted by human HLA-A2.1 as mediators of protection. These results suggest that HRP2(74-82), which is shared between vaccinia and variola viruses, may be a CD8(+) T-cell epitope of vaccinia virus that will provide cross-protection against smallpox in HLA-A2.1-positive individuals, representing almost half the population.  相似文献   

15.
16.
17.
Mice inoculated intracerebrally with 10(3) PFU of vaccinia virus developed a nonfatal meningitis which was maximal 7 days after challenge. Intravenous administration of an interferon (IFN) inducer, polyinosinic-polycytidilic polyribonucleotide [poly(I)-poly(C)], on days 4 and 6 postinjection was associated with a three- to fourfold decrease in the number of T lymphocytes present in cerebrospinal fluid, reflected primarily by a decreased number of vaccinia virus-specific cytotoxic T-lymphocyte precursors. The lack of a concomitant reduction in the overall cytotoxic activity of cerebrospinal fluid cells directed against virus-infected target cells seemed to be largely due to an increase in natural killer cell activity. IFN was implicated as mediating the effect of poly(I)-poly(C) because high systemic levels of IFN were evident after injection, and neither the magnitude of the inflammatory response nor the T-cell levels were affected when poly(I)-poly(C)-treated mice were also given anti-IFN antiserum. However, the poly(I)-poly(C)-induced IFN did not seem to reduce the localized inflammatory response by affecting viral replication in brain tissue because the vaccinia virus titers present on days 6 through 8 of infection were similar to the titers in phosphate-buffered saline controls. These findings are consistent with either an effect of IFN on T-cell recruitment to the central nervous system or an inhibition of proliferation of cells participating in the response. These findings suggest that there is a potential source of complications for clinical protocols that use IFN or inducers to enhance T-cell function in various disease situations, and this effect of IFN may be a contributing factor to the immunosuppression often associated with many viral infections.  相似文献   

18.
19.
The existence of gammadelta T cells has been known for over 15 years, but their significance in innate immunity to virus infections has not been determined. We show here that gammadelta T cells are well suited to provide a rapid response to virus infection and demonstrate their role in innate resistance to vaccinia virus (VV) infection in both normal C57BL/6 and beta TCR knockout (KO) mice. VV-infected mice deficient in gammadelta T cells had significantly higher VV titers early postinfection (PI) and increased mortality when compared with control mice. There was a rapid and profound VV-induced increase in IFN-gamma-producing gammadelta T cells in the peritoneal cavity and spleen of VV-infected mice beginning as early as day 2 PI. This rapid response occurred in the absence of priming, as there was constitutively a significant frequency of VV-specific gammadelta T cells in the spleen in uninfected beta TCR KO mice, as demonstrated by limiting dilution assay. Also, like NK cells, another mediator of innate immunity to viruses, gammadelta T cells in uninfected beta TCR KO mice expressed constitutive cytolytic activity. This cytotoxicity was enhanced and included a broader range of targets after VV infection. VV-infected beta TCR KO mice cleared most of the virus by day 8 PI, the peak of the gammadelta T cell response, but thereafter the gammadelta T cell number declined and the virus recrudesced. Thus, gammadelta T cells can be mediators of innate immunity to viruses, having a significant impact on virus replication early in infection in the presence or absence of the adaptive immune response.  相似文献   

20.
Understanding immunity to vaccinia virus (VACV) is important for the development of safer vaccines for smallpox- and poxvirus-vectored recombinant vaccines. VACV is also emerging as an outstanding model for studying CD8(+) T cell immunodominance because of the large number of CD8(+) T cell epitopes known for this virus in both mice and humans. In this study, we characterize the CD8(+) T cell response in vaccinated BALB/c mice by a genome-wide mapping approach. Responses to each of 54 newly identified H-2(d)-restricted T cell epitopes could be detected after i.p. and dermal vaccination routes. Analysis of these new epitopes in the context of those already known for VACV in mice and humans revealed two important findings. First, CD8(+) T cell epitopes are not randomly distributed across the VACV proteome, with some proteins being poorly or nonimmunogenic, while others are immunoprevalent, being frequently recognized across diverse MHC haplotypes. Second, some proteins constituted the major targets of the immune response by a specific haplotype as they recruited the majority of the specific CD8(+) T cells but these proteins did not correspond to the immunoprevalent Ags. Thus, we found a dissociation between immunoprevalence and immunodominance, implying that different sets of rules govern these two phenomena. Together, these findings have clear implications for the design of CD8(+) T cell subunit vaccines and in particular raise the exciting prospect of being able to choose subunits without reference to MHC restriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号