首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Detection, isolation, and identification of individual virus infected cells during long term infection are critical to advance our understanding of mechanisms of pathogenesis for latent/persistent viruses. However, current approaches to study these viruses in vivo have been hampered by low sensitivity and effects of cell-type on expression of viral encoded reporter genes. We have designed a novel Cre recombinase (Cre)-based murine system to overcome these problems, and thereby enable tracking and isolation of individual in vivo infected cells.

Methodology/Principal findings

Murine gammaherpesvirus 68 (MHV-68) was used as a prototypic persistent model virus. A Cre expressing recombinant virus was constructed and characterised. The virus is attenuated both in lytic virus replication, producing ten-fold lower lung virus titres than wild type virus, and in the establishment of latency. However, despite this limitation, when the sEGFP7 mouse line containing a Cre-activated enhanced green fluorescent protein (EGFP) was infected with the Cre expressing virus, sites of latent and persistent virus infection could be identified within B cells and macrophages of the lymphoid system on the basis of EGFP expression. Importantly, the use of the sEGFP7 mouse line which expresses high levels of EGFP allowed individual virus positive cells to be purified by FACSorting. Virus gene expression could be detected in these cells. Low numbers of EGFP positive cells could also be detected in the bone marrow.

Conclusions/Significance

The use of this novel Cre-based virus/mouse system allowed identification of individual latently infected cells in vivo and may be useful for the study and long-term monitoring of other latent/persistent virus infections.  相似文献   

2.
Viruses are obligate intracellular parasites, relying to a major extent on the host cell for replication. An active replication of the viral genome results in a lytic infection characterized by the release of new progeny virus particles, often upon the lysis of the host cell. Another mode of virus infection is the latent phase, where the virus is 'quiescent' (a state in which the virus is not replicating). A combination of these stages, where virus replication involves stages of both silent and productive infection without rapidly killing or even producing excessive damage to the host cells, falls under the umbrella of a persistent infection. Reactivation is the process by which a latent virus switches to a lytic phase of replication. Reactivation may be provoked by a combination of external and/or internal cellular stimuli. Understanding this mechanism is essential in developing future therapeutic agents against viral infection and subsequent disease. This article examines the published literature and current knowledge regarding the viral and cellular proteins that may play a role in viral reactivation. The focus of the article is on those viruses known to cause latent infections, which include herpes simplex virus, varicella zoster virus, Epstein-Barr virus, human cytomegalovirus, human herpesvirus 6, human herpesvirus 7, Kaposi's sarcoma-associated herpesvirus, JC virus, BK virus, parvovirus and adenovirus.  相似文献   

3.
4.
Persistent/latent viral infections of insect cells are a prominent though poorly understood phenomenon. In this study, the long-term association between the Hz-1 virus and insect host cells, conventionally referred to as persistent viral infection, is described. With the aid of a newly developed fluorescent cell-labeling system, we found that productive viral replication occurs by spontaneous viral reactivation in fewer than 0.2% of persistently infected cell lines over a 5-day period. Once viral reactivation takes place, the host cell dies. The persistently infected cells contain various amounts of viral DNA, and, in an extreme case, up to 16% of the total DNA isolated from infected cells could be of viral origin. Both pulsed-field gel electrophoresis and in situ hybridization experiments showed that some of these viral DNA molecules are inserted into the host chromosomes but that the rest of viral DNA copies are free from host chromosomes. Thus, Hz-1 virus is the first nonretroviral insect virus known to insert its genome into the host chromosome during the infection process. These data also suggest that the previously described persistent infection of Hz-1 virus in insect cells should be more accurately referred to as latent viral infection.  相似文献   

5.
Recurrent HSV-1 ocular disease results from reactivation of latent virus in trigeminal ganglia, often following immunosuppression or exposure to a variety of psychological or physical stressors. HSV-specific CD8+ T cells can block HSV-1 reactivation from latency in ex vivo trigeminal ganglia cultures through production of IFN-gamma. In this study, we establish that either CD8+ T cell depletion or exposure to restraint stress permit HSV-1 to transiently escape from latency in vivo. Restraint stress caused a reduction of TG-resident HSV-specific CD8+ T cells and a functional compromise of those cells that survive. Together, these effects of stress resulted in an approximate 65% reduction of cells capable of producing IFN-gamma in response to reactivating virus. Our findings demonstrate persistent in vivo regulation of latent HSV-1 by CD8+ T cells, and strongly support the concept that stress induces HSV-1 reactivation from latency at least in part by compromising CD8+ T cell surveillance of latently infected neurons.  相似文献   

6.
Mal de Rio Cuarto virus (MRCV, Fijivirus) infects maize (Zea mays) and other gramineae, producing significant losses in Argentina. Although MRCV mainly affects maize, other cereals, such as wheat, serve as potential virus reservoirs and hosts for the planthopper vector Delphacodes kuscheli. Aspects of the virus‐vector relationships were elucidated by studying the minimum periods of acquisition access (AAPmin), latency (LPmin) and inoculation access (IAPmin) in wheat (Triticum aestivum L.). Trials were conducted under controlled conditions of temperature (24 ± 1°C), photoperiod (12 h light) and humidity (50 ± 5%). The results show that the AAPmin was 5 h, LPmin was 10 days (even though, the median latent period was between 16 and 17 days) and IAPmin was 30 min. Our experiments have demonstrated, for the first time, a persistent manner of virus transmission. No differences were detected in transmission ability between males and females. The implication of these results on virus taxonomy and epidemiology are discussed.  相似文献   

7.
Abstract. 1. Cyclic population dynamics of forest caterpillars are often associated with epizootics of nucleopolyhedrovirus, but it is not known how these viruses persist between generations or through the fluctuations in host population density. 2. To explore the question of virus persistence at different phases of the population cycle, the nucleopolyhedroviruses of two species of tent caterpillar that co‐occur in British Columbia, Canada, Malacosoma californicum pluviale (western tent caterpillar) and Malacosoma disstria (forest tent caterpillar), were characterised. The cross‐infectivity of the viruses in these two host species was investigated to determine whether there might be a route for virus persistence via the alternative host species. Any virus produced in the cross‐infections was characterised to confirm true cross‐infection or to ascertain whether cross‐inoculation triggered latent virus persisting within the population. 3. The virus associated with forest tent caterpillars (MadiNPV) did not infect western tent caterpillars from low‐density populations, nor did it trigger a latent virus infection; however, inoculation of forest tent caterpillars from high‐density populations with virus from western tent caterpillars (McplNPV) resulted in viral infection, but without a dose–response relationship. 4. Analysis of DNA profiles of virus resulting from cross‐infection of the forest tent caterpillar with McplNPV, revealed that 88% of these infections were caused by MadiNPV rather than McplNPV; however the virus from all 44 infected individuals was identical and differed in DNA profile from the stock MadiNPV used for cross‐infection. This suggests strongly that forest tent caterpillars from high‐density field populations harbour a latent, persistent, or sublethal form of MadiNPV that was triggered by exposure to nucleopolyhedrovirus from the western tent caterpillar. 5. Virus was not activated in western tent caterpillars collected over 2 years of late population decline and the first year of population increase.  相似文献   

8.
9.
More than 50 RNAs expressed by Epstein-Barr virus late in productive infection have been identified. B95-8-infected cells were induced to a relatively high level of permissive infection with the tumor promotor 12-O-tetradecanoylphorbol-13-acetate. Polyadenylated RNAs were extracted from the cell cytoplasm, separated by size on formaldehyde gels, transferred to nitrocellulose, and hybridized to labeled recombinant Epstein-Barr virus DNA fragments. Comparison of RNAs from induced cultures with RNAs from induced cultures also treated with phosphonoacetic acid to inhibit viral DNA synthesis identifies two RNA classes: a persistent early class of RNAs whose abundance is relatively resistant to viral DNA synthesis inhibition and a late class of RNAs whose abundance is relatively sensitive to viral DNA synthesis inhibition. The persistent early and late RNAs are not clustered but are intermixed and scattered through most of segments UL and US. The cytoplasmic polyadenylated RNAs expressed during latent infection were not detected in productively infected cells, indicating that different classes of viral RNA are associated with latent and productive infection. Non-polyadenylated small RNAs originally identified in cells latently infected with Epstein-Barr virus are expressed in greater abundance in productively infected cells and are part of the early RNA class.  相似文献   

10.
The detection of small amounts of viral pathogens in infected cells by classical PCR is hampered by a partial loss of virus nucleic acid due to extraction and by difficulties in discrimination between truly intracellular virus genome material and that possibly adhered to the cell surface. These impediments limit reliable identification of virus traces within infected cells, which are typically encountered in latent and persistent occult infections. In this study, hepadnavirus-specific in situ PCR combined with the enzymatic elimination of extracellular virus and flow cytometry permitted detection of viral genomes in lymphoid cells without nucleic acid isolation and allowed quantification of infected cells during the course of persistent infection with woodchuck hepatitis virus (WHV). The validity of the procedure was confirmed by hybridization analysis of the in situ-amplified viral sequences. The results showed that hepadnavirus can be directly detected within lymphoid cells not only in serologically accountable infection, but also years after recovery from viral hepatitis and in the course of primary occult virus carriage. Percentages of infected peripheral lymphoid cells in symptomatic WHV hepatitis fluctuate between 3.4 and 20.4% (mean +/- standard error of the mean, 9.6% +/- 1.7%), whereas those in persistent, serologically mute WHV infection range from 1.1 to 14.6% (mean +/- standard error of the mean, 4.8% +/- 0.8%) (P = 0.005). The data obtained provide further evidence that WHV infection continues indefinitely in the lymphatic system independently of whether it is symptomatic or concealed. They document that hepadnavirus can be detected in a significant proportion of circulating lymphoid cells in both immunovirologically apparent as well as occult persistent infection.  相似文献   

11.
Murine gammaherpesvirus 68 (gamma HV-68; also referred to as MHV-68) is a gammaherpesvirus which infects murid rodents. Previous studies showed that CD8 T cells are important for controlling gamma HV-68 replication during the first 2 weeks of infection and suggested a role for B cells in latent or persistent gamma HV-68 infection. To further define the importance of B cells and CD8 T cells during acute and chronic gamma HV-68 infection, we examined splenic infection in mice with null mutations in the transmembrane domain of the mu-heavy-chain constant region (MuMT; B-cell and antibody deficient) or in the beta2-microglobulin gene (beta2 -/-; CD8 deficient). Immunocompetent mice infected intraperitoneally with gamma HV-68 demonstrated peak splenic titers 9 to 10 days postinfection, cleared infectious virus 15 to 20 days postinfection, and harbored low levels of latent virus at 6 weeks postinfection. Beta2-/- mice showed peak splenic gamma HV-68 titers similar to those of normal mice but were unable to clear infectious virus completely from the spleen, demonstrating persistent infectious virus 6 weeks postinfection. These data indicate that CD8 T cells are important for clearing infectious gamma HV-68 from the spleen. Infected MuMT mice did not demonstrate detectable infectious gamma HV-68 in the spleen at any time after infection, indicating that mature B lymphocytes are necessary for acute splenic infection by gamma HV-68. Despite the lack of measurable acute infection, MuMT spleen cells harbored latent virus 6 weeks postinfection at a level about 100-fold higher than that in normal mice. These data demonstrate establishment of latency by a herpesvirus in an organ in the absence of acute viral replication in that organ. In addition, they demonstrate that gamma HV-68 can establish latency in a cell type other than mature B lymphocytes.  相似文献   

12.
Murine gamma-herpesvirus 68 (MHV-68) is a natural pathogen of small rodents and insectivores (mice, voles and shrews). The primary infection is characterized by virus replication in lung epithelial cells and the establishment of a latent infection in B lymphocytes. The virus is also observed to persist in lung epithelial cells, dendritic cells and macrophages. Splenomegaly is observed two weeks after infection, in which there is a CD4+ T-cell-mediated expansion of B and T cells in the spleen. At three weeks post-infection an infectious mononucleosis-like syndrome is observed involving a major expansion of Vbeta4+CD8+ T cells. Later in the course of persistent infection, ca. 10% of mice develop lymphoproliferative disease characterized as lymphomas of B-cell origin. The genome from MHV-68 strain g2.4 has been sequenced and contains ca. 73 genes, the majority of which are collinear and homologous to other gamma-herpesviruses. The genome includes cellular homologues for a complement-regulatory protein, Bcl-2, cyclin D and interleukin-8 receptor and a set of novel genes M1 to M4. The function of these genes in the context of latent infections, evasion of immune responses and virus-mediated pathologies is discussed. Both innate and adaptive immune responses play an active role in limiting virus infection. The absence of type I interferon (IFN) results in a lethal MHV-68 infection, emphasizing the central role of these cytokines at the initial stages of infection. In contrast, type II IFN is not essential for the recovery from infection in the lung, but a failure of type II IFN receptor signalling results in the atrophy of lymphoid tissue associated with virus persistence. Splenic atrophy appears to be the result of immunopathology, since in the absence of CD8+ T cells no pathology occurs. CD8+ T cells play a major role in recovery from the primary infection, and also in regulating latently infected cells expressing the M2 gene product. CD4+ T cells have a key role in surveillance against virus recurrences in the lung, in part mediated through 'help' in the genesis of neutralizing antibodies. In the absence of CD4+ T cells, virus-specific CD8+ T cells are able to control the primary infection in the respiratory tract, yet surprisingly the memory CD8+ T cells generated are unable to inhibit virus recurrences in the lung. This could be explained in part by the observations that this virus can downregulate major histocompatibility complex class I expression and also restrict inflammatory cell responses by producing a chemokine-binding protein (M3 gene product). MHV-68 provides an excellent model to explore methods for controlling gamma-herpesvirus infection through vaccination and chemotherapy. Vaccination with gp150 (a homologue of gp350 of Epstein-Barr virus) results in a reduction in splenomegaly and virus latency but does not block replication in the lung, nor the establishment of a latent infection. Even when lung virus infection is greatly reduced following the action of CD8+ T cells, induced via a prime-boost vaccination strategy, a latent infection is established. Potent antiviral compounds such as the nucleoside analogue 2'deoxy-5-ethyl-beta-4'-thiouridine, which disrupts virus replication in vivo, cannot inhibit the establishment of a latent infection. Clearly, devising strategies to interrupt the establishment of latent virus infections may well prove impossible with existing methods.  相似文献   

13.
The growth of the virus T3 has been followed by breaking up the complexes it forms with host cells at various stages in their development and then assaying the debris for active virus particles. Two independent methods for breaking up cells were used: sonic vibration and lysis by the T6-cyanide method previously used for the study of the growth of T4. During the first half of the latent period both treatments, as well as cyanide alone, destroyed the capacity of the complexes for producing daughter virus particles. Furthermore, the infecting particles could not be recovered from them during the first half of the latent period. After the complexes had had 12 minutes of incubation at 30°C. both methods freed daughter virus particles from them in numbers which increased steadily with time until, near the end of the rise period, the normal burst size was reached. In general the agreement between the two yields is so good that one may conclude that both methods liberate quantitatively the mature daughter T3 particles which exist in the complexes before normal lysis occurs.  相似文献   

14.
15.
Dendritic cells (DCs) play a central role in initiating immune responses. Some persistent viruses infect DCs and can disrupt their functions in vitro. However, these viruses remain strongly immunogenic in vivo. Thus what role DC infection plays in the pathogenesis of persistent infections is unclear. Here we show that a persistent, B cell-tropic gamma-herpesvirus, Murid Herpesvirus-4 (MuHV-4), infects DCs early after host entry, before it establishes a substantial infection of B cells. DC-specific virus marking by cre-lox recombination revealed that a significant fraction of the virus latent in B cells had passed through a DC, and a virus attenuated for replication in DCs was impaired in B cell colonization. In vitro MuHV-4 dramatically altered the DC cytoskeleton, suggesting that it manipulates DC migration and shape in order to spread. MuHV-4 therefore uses DCs to colonize B cells.  相似文献   

16.
Alpha/beta interferon (IFN-alpha/beta) protects the host from virus infection by inhibition of lytic virus replication in infected cells and modulation of the antiviral cell-mediated immune response. To determine whether IFN-alpha/beta also modulates the virus-host interaction during latent virus infection, we infected mice lacking the IFN-alpha/beta receptor (IFN-alpha/betaR(-/-)) and wild-type (wt; 129S2/SvPas) mice with murine gammaherpesvirus 68 (gammaHV68), a lymphotropic gamma-2-herpesvirus that establishes latent infection in B cells, macrophages, and dendritic cells. IFN-alpha/betaR(-/-) mice cleared low-dose intranasal gammaHV68 infection with wt kinetics and harbored essentially wt frequencies of latently infected cells in both peritoneum and spleen by 28 days postinfection. However, latent virus in peritoneal cells and splenocytes from IFN-alpha/betaR(-/-) mice reactivated ex vivo with >40-fold- and 5-fold-enhanced efficiency, respectively, compared to wt cells. Depletion of IFN-alpha/beta from wt mice during viral latency also significantly increased viral reactivation, demonstrating an antiviral function of IFN-alpha/beta during latency. Viral reactivation efficiency was temporally regulated in both wt and IFN-alpha/betaR(-/-) mice. The mechanism of IFN-alpha/betaR action was distinct from that of IFN-gammaR, since IFN-alpha/betaR(-/-) mice did not display persistent virus replication in vivo. Analysis of viral latent gene expression in vivo demonstrated specific upregulation of the latency-associated gene M2, which is required for efficient reactivation from latency, in IFN-alpha/betaR(-/-) splenocytes. These data demonstrate that an IFN-alpha/beta-induced pathway regulates gammaHV68 gene expression patterns during latent viral infection in vivo and that IFN-alpha/beta plays a critical role in inhibiting viral reactivation during latency.  相似文献   

17.
18.
The recently discovered human parvovirus 4 (PARV4) has been associated with seropositivity for human immunodeficiency virus, hepatitis B virus and hepatitis C virus. High prevalence is seen especially in intravenous drug users. The virus has been detected in blood products and persons who have been repeatedly transfused have shown to be a risk-group. Furthermore, reports from different parts of the world suggesting a prevalence ranging from zero to one third of the healthy population and the virus is thought to cause a latent or persistent infection. We investigated the presence of PARV4 DNA and parvovirus B19 (B19) DNA in serum from 231 severely immunocompromised cancer patients that have been exposed for blood products. Compared to B19, which was found in 3.9% of the patients, we found no evidence of PARV4. Our results may indicate a very low prevalence of the virus in Sweden, and it would be useful to measure the real PARV4 exposure of the healthy population as well as individuals with known risk factors by serology.  相似文献   

19.
Antiretroviral therapy is currently only capable of controlling HIV replication rather than completely eradicating virus from patients. This is due in part to the establishment of a latent virus reservoir in resting CD4+ T cells, which persists even in the presence of HAART. It is thought that forced activation of latently infected cells could induce virus production, allowing targeting of the cell by the immune response. A variety of molecules are able to stimulate HIV from latency. However no tested purging strategy has proven capable of eliminating the infection completely or preventing viral rebound if therapy is stopped. Hence novel latency activation approaches are required. Nanoparticles can offer several advantages over more traditional drug delivery methods, including improved drug solubility, stability, and the ability to simultaneously target multiple different molecules to particular cell or tissue types. Here we describe the development of a novel lipid nanoparticle with the protein kinase C activator bryostatin-2 incorporated (LNP-Bry). These particles can target and activate primary human CD4+ T-cells and stimulate latent virus production from human T-cell lines in vitro and from latently infected cells in a humanized mouse model ex vivo. This activation was synergistically enhanced by the HDAC inhibitor sodium butyrate. Furthermore, LNP-Bry can also be loaded with the protease inhibitor nelfinavir (LNP-Bry-Nel), producing a particle capable of both activating latent virus and inhibiting viral spread. Taken together these data demonstrate the ability of nanotechnological approaches to provide improved methods for activating latent HIV and provide key proof-of-principle experiments showing how novel delivery systems may enhance future HIV therapy.  相似文献   

20.
HAART has succeeded in reducing morbidity and mortality rates in patients infected with HIV. However, a small amount of replication-competent HIV can persist during HAART, allowing the virus to re-emerge if therapy is ceased. One significant source of this persistent virus is a pool of long-lived, latently infected CD4(+) T cells. This article outlines what is known about how this reservoir is established and maintained, and describes the model systems that have provided insights into the molecular mechanisms governing HIV latency. The therapeutic approaches for eliminating latent cells that have been attempted are also discussed, including how improvements in understanding of these persistent HIV reservoirs are being used to develop enhanced methods for their depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号