首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The niche provides a specialised microenvironment necessary for maintenance of stem cells in a non differentiated state. While the hematopoietic stem cell (HSC) niche in vertebrates was the first to be recognized, Drosophila niches supporting germline stem cells were characterised first. Recent evidence for the existence of a niche maintaining hematopoietic precursors in Drosophila opens the way to study in vivo the niche/hematopoietic precursors interactions. The availability of a large collection of cell markers, mutants and sophisticated genetic tools makes Drosophila an attractive model for investigating the cellular and molecular mechanisms that are involved in these interactions.  相似文献   

2.
All blood cells are derived from multipotent stem cells, the so-called hematopoietic stem cells (HSCs), that in adults reside in the bone marrow. Most types of blood cells also develop there, with the notable exception of T lymphocytes that develop in the thymus. For both HSCs and developing T cells, interactions with the surrounding microenvironment are critical in regulating maintenance, differentiation, apoptosis, and proliferation. Such specialized regulatory microenvironments are referred to as niches and provide both soluble factors as well as cell-cell interactions between niche component cells and blood cells. Two pathways that are critical for early T cell development in the thymic niche are Wnt and Notch signaling. These signals also play important but controversial roles in the HSC niche. Here, we review the differences and similarities between the thymic and hematopoietic niches, with particular focus on Wnt and Notch signals, as well as the latest insights into regulation of these developmentally important pathways.  相似文献   

3.
Bone-marrow haematopoietic-stem-cell niches   总被引:1,自引:0,他引:1  
Adult stem cells hold many promises for future clinical applications and regenerative medicine. The haematopoietic stem cell (HSC) is the best-characterized somatic stem cell so far, but in vitro expansion has been unsuccessful, limiting the future therapeutic potential of these cells. Here we review recent progress in characterizing the composition of the HSC bone-marrow microenvironment, known as the HSC niche. During homeostasis, HSCs, and therefore putative bone-marrow HSC niches, are located near bone surfaces or are associated with the sinusoidal endothelium. The molecular crosstalk between HSCs and the cellular constituents of these niches is thought to control the balance between HSC self-renewal and differentiation, indicating that future successful expansion of HSCs for therapeutic use will require three-dimensional reconstruction of a stem-cell-niche unit.  相似文献   

4.
Haematopoietic stem cell (HSC) niches are specialized microenvironments that contain stem cells and regulate their maintenance. Cells at the interface of bone and the bone marrow (the endosteum) contribute to the creation of HSC niches. It remains uncertain whether this interface itself is a niche, or whether endosteal cells secrete factors that diffuse to nearby niches. Vascular and/or perivascular cells may also create niches as many HSCs are observed around sinusoidal blood vessels, and perivascular cells secrete factors that regulate HSC maintenance. Do endosteal and perivascular cells create distinct niches, or do they contribute to a common niche? We discuss a range of niche models consistent with recent evidence.  相似文献   

5.
Haematopoiesis is the term used to describe the production of blood cells. This is a tightly regulated hierarchical system in which mature circulating blood cells develop from a small population of haematopoietic stem (HSC) and progenitor cells within the microenvironment of the bone marrow. Molecular and genetic abnormalities arising in these stem cells lead to a block in the normal programme of proliferation and differentiation and result in the development of the blood cancers known as the leukaemias and lymphomas. Recently the regulatory role of the bone marrow microenvironment or niche has also become increasingly recognised. The interface between the bone and bone marrow (endosteum) and the region surrounding the blood vessels (perivascular) provide distinct niches harbouring quiescent HSC or proliferative HSC respectively. Current chemotherapeutic regimes can often successfully target the proliferative HSC but disease relapse occurs due to residual quiescent HSC. Understanding these developmental and regulatory processes and the associated cell communication mechanisms are thus crucial to the development of new treatment strategies. The CCN family of proteins have been recognised to play a key role in all aspects of haematopoiesis.  相似文献   

6.
Hematopoietic stem cells (HSCs) are rare, multipotent cells that generate via progenitor and precursor cells of all blood lineages. Similar to normal hematopoiesis, leukemia is also hierarchically organized and a subpopulation of leukemic cells, the leukemic stem cells (LSCs), is responsible for disease initiation and maintenance and gives rise to more differentiated malignant cells. Although genetically abnormal, LSCs share many characteristics with normal HSCs, including quiescence, multipotency and self-renewal. Normal HSCs reside in a specialized microenvironment in the bone marrow (BM), the so-called HSC niche that crucially regulates HSC survival and function. Many cell types including osteoblastic, perivascular, endothelial and mesenchymal cells contribute to the HSC niche. In addition, the BM functions as primary and secondary lymphoid organ and hosts various mature immune cell types, including T and B cells, dendritic cells and macrophages that contribute to the HSC niche. Signals derived from the HSC niche are necessary to regulate demand-adapted responses of HSCs and progenitor cells after BM stress or during infection. LSCs occupy similar niches and depend on signals from the BM microenvironment. However, in addition to the cell types that constitute the HSC niche during homeostasis, in leukemia the BM is infiltrated by activated leukemia-specific immune cells. Leukemic cells express different antigens that are able to activate CD4+ and CD8+ T cells. It is well documented that activated T cells can contribute to the control of leukemic cells and it was hoped that these cells may be able to target and eliminate the therapy-resistant LSCs. However, the actual interaction of leukemia-specific T cells with LSCs remains ill-defined. Paradoxically, many immune mechanisms that evolved to activate emergency hematopoiesis during infection may actually contribute to the expansion and differentiation of LSCs, promoting leukemia progression. In this review, we summarize mechanisms by which the immune system regulates HSCs and LSCs.  相似文献   

7.
Adult epithelial stem cells are thought to reside in specific niches, where they are maintained by adhesion to stromal cells and by intercellular signals. In niches that harbor multiple adjacent stem cells, such as those maintaining Drosophila germ cells, lost stem cells are replaced by division of neighboring stem cells or reversion of transit cells. We have characterized the Drosophila follicle stem cell (FSC) niche as a model of the epithelial niche to learn whether nonneighboring cells can also generate stem cell replacements. Exactly two stroma-free FSC niches holding single FSCs are located in fixed locations on opposite edges of the Drosophila ovariole. FSC daughters regularly migrate across the width of the ovariole to the other niche before proliferating and contributing to the follicle cell monolayer. Crossmigrating FSC daughters compete with the resident FSC for niche occupancy and are the source of replacement FSCs. The ability of stem cell daughters to target a distant niche and displace its resident stem cell suggests that precancerous mutations might spread from niche to niche within stem cell-based tissues.  相似文献   

8.
We investigated whether the in vitro differentiation of ES cells into haematopoietic progenitors could be enhanced by exposure to the aorta-gonadal-mesonephros (AGM) microenvironment that is involved in the generation of haematopoietic stem cells (HSC) during embryonic development. We established a co-culture system that combines the requirements for primary organ culture and differentiating ES cells and showed that exposure of differentiating ES cells to the primary AGM region results in a significant increase in the number of ES-derived haematopoietic progenitors. Co-culture of ES cells on the AM20-1B4 stromal cell line derived from the AGM region also increases haematopoietic activity. We conclude that factors promoting the haematopoietic activity of differentiating ES cells present in primary AGM explants are partially retained in the AM20.1B4 stromal cell line and that these factors are likely to be different to those required for adult HSC maintenance.  相似文献   

9.
Ellis SL  Nilsson SK 《Cytotherapy》2012,14(2):135-143
While it is accepted that hemopoietic stem cells (HSC) are located in a three-dimensional microenvironment, termed a niche, the cellular and extracellular composition, as well as the multifaceted effects the components of the niche have on HSC regulation, remains undefined. Over the past four decades numerous advances in the field have led to the identification of roles for some cell types and propositions of potentially a number of HSC niches. We present evidence supporting the roles of multiple cell types and extracellular matrix molecules in the HSC niche, as well as discuss the potential significant overlap and intertwining of previously proposed distinct HSC niches.  相似文献   

10.
Perry JM  Li L 《The EMBO journal》2012,31(5):1060-1061
Nature 481 7382, 457–462 (2012); published online January252012Recent studies have identified multiple cell types that regulate haematopoietic stem cells (HSCs); however, proof that a specific cell type produces a specific factor important for HSC function and maintenance is largely lacking. Ding et al (2012) reported recently that conditional deletion of stem cell factor (SCF) in Leptin receptor (Lepr) expressing perivascular cells or endothelial and haematopoietic cells resulted in significant reductions in number but less profound reduction in function of HSCs. Although the long-term fate of HSCs in these models is largely unexplored and an underlying mechanism for reduction in HSCs not yet reported, these findings further implicate the vascular niche in the functional maintenance of HSCs in vivo and also raise intriguing questions for future studies in this field.The haematopoietic stem cell (HSC) niche has traditionally been considered a discrete site within the bone marrow; however, recent studies have shown that numerous cell types are critically important for HSC regulation and maintenance (Wang and Wagers, 2011). Imaging studies have shown that phenotypic HSCs can be found adjacent to osteoblasts or osteoprogenitor cells on the inner surface of trabecular bone, and genetic studies have further shown that expansion of trabecular bone, leads to expansion of HSCs (Calvi et al, 2003; Zhang et al, 2003; Lo Celso et al, 2009; Xie et al, 2009). Other studies have found that phenotypic HSCs are frequently localized to the central marrow, specifically near endothelial or perivascular cells (Kiel et al, 2005). Recently, endothelial cells have been shown to support the ex vivo expansion of HSCs (Butler et al, 2010); however, it was so far not known whether endothelial or perivascular cells functionally maintain in vivo HSCs.Ding and colleagues used knockin reporter mice for Scf expression and found that stem cell factor (SCF) was produced predominantly by endothelial and perivascular cells but was not concentrated near the bone surface. To investigate which cellular sources of SCF are important for HSC maintenance, they conditionally deleted Scf specifically in haematopoietic cells, osteoblasts and Nestin-Cre expressing cells but found no significant effects on HSC maintenance. In contrast, conditional deletion in both haematopoietic and endothelial cells or in Leptin receptor (Lepr) expressing perivascular stromal cells significantly reduced phenotypic and, to a lesser extent, functional HSC frequency—thus further demonstrating that the vascular niche plays a role in functionally supporting HSCs (Figure 1). These findings underscore the complexity of the HSC niche and raise crucial future questions.Open in a separate windowFigure 1(A) HSCs reside in both osteoblastic and vascular niches. The vascular niche is juxtaposed with the osteoblastic niche and includes endothelial cells, CAR cells, Nestin+ cells, Lepr+ perivascular cells and other cell types. Ding et al show that SCF is predominantly provided by endothelial and perivascular cells. (B) Cell-specific deletion of Scf in endothelial and Lepr+ cells results in reduced HSCs; however, other HSCs are maintained, possibly from a quiescent reserved population that is less dependent on SCF, providing significant levels of haematopoiesis.The nature and specific identity of Lepr expressing cells is uncertain. This population appears to partially overlap with Nestin-Cre expressing cells, and it is not clear to what extent Lepr expressing cells might identify with Cxcl12-abundant reticular (CAR) cells, both of which have been previously identified as HSC niche components (Sugiyama et al, 2006; Mendez-Ferrer et al, 2010). Although phenotypic HSC frequency (determined by the cell-surface markers lineage, Sca-1+, Kit+, CD150+, CD48) is dramatically reduced, functional HSC frequency is only mildly compromised following conditional deletion of Scf either ubiquitously or in endothelial/perivascular cells. This indicates that other factors or sources of SCF maintain substantial numbers of HSCs independent of SCF produced by the vascular niche or elsewhere. Indeed, these results may be consistent with the coexistence of quiescent and active HSC populations—with the quiescent, reserved population serving as a backup HSC source to support life-long haematopoiesis, especially following the loss of active HSCs in response to stress (Li and Clevers, 2010). Considering the role of SCF in promoting proliferation (Broudy, 1997), it would be interesting to know the long-term effects of cell-specific deletion of Scf on HSC maintenance. Cell-specific deletion in Nestin-Cre expressing cells apparently did not affect HSC frequency long-term (5 months); however, such long-term data were not presented for osteoblast-specific knockout of Scf. It would also be interesting to know the mechanism for HSC loss following endothelial/perivascular-specific deletion of Scf. Interesting topics to address in the future are whether HSC quiescence is compromised, or whether apoptosis or differentiation is increased.As the authors note, multiple cell types is involved in HSC maintenance. Given the juxtaposition of endothelial and perivascular cells with the bone surface, the osteoblastic and vascular niche represent not always mutually exclusive entities (Lo Celso et al, 2009). We have recently proposed that stem cells may reside in special zones, where active stem cells may provide for the daily replenishment of tissues while quiescent, reserved stem cells serve as a backup sub-population to ensure life-long tissue maintenance and replenishment of the stem cell pool following stress (Li and Clevers, 2010). It remains for future studies to continue to determine which specific niche cells produce which particular factors for maintaining long-term quiescence versus those for supporting proliferation and survival of stem cells. The results published by Ding et al present a significant step towards this goal.  相似文献   

11.
The hematopoietic system is the paradigm for adult mammalian stem-cell research. Recent advances have improved our understanding of the cellular and molecular components of the microenvironment - or niche - that regulates hematopoietic stem cells (HSCs). Here, we summarize the molecular and cellular properties of two types of niche, namely the osteoblastic and the vascular niche, in homeostatic regulation of HSC behavior, including its maintenance, proliferation, differentiation, mobilization and homing. We highlight the most recent findings and point to an important trend to the study of niche activity in cancers. Knowledge of the basic features of the HSC niches, including physical location, cell type and various signaling pathways, should provide insights into other stem-cell systems and benefit clinical applications.  相似文献   

12.
Niche-to-niche migration of bone-marrow-derived cells   总被引:9,自引:0,他引:9  
During ontogenesis, haematopoietic stem cells (HSCs) relocate between extra-embryonic and embryonic compartments. Similarly, site-specific homing of HSCs is ongoing during adulthood. With the expanding knowledge of HSC physiology, a new paradigm emerges in which HSCs and haematopoietic progenitor cells (HPCs) migrate to defined microenvironments within the bone marrow (BM) and to 'activated' or 'inducible' niches elsewhere. Here, we summarize current understanding of HSC niche characteristics, and the physiological and pathological mechanisms that guide HSC homing both within the BM and to distant niches in the periphery, promoting new vessel growth in tumours and ischaemia. Recent observations suggest that features of the HSC niche might also be recapitulated in pre-metastatic sites. Clusters of BM-derived HPCs promote invasion of disseminating cancer cells. Clear clinical benefits can be foreseen by modulating HSCs and their microenvironments, in promoting tissue regeneration, and inhibiting tumourigenesis and cancer metastasis.  相似文献   

13.
Adult stem cells generally reside in supporting local micro environments or niches, and intimate stem cell and niche association is critical for their long-term maintenance and function. Recent studies in model organisms especially Drosophila have started to unveil the underlying mechanisms of stem anchorage in the niche at the molecular and cellular level. Two types of cell adhesion molecules are emerging as essential players: cadherin-mediated cell adhesion for keeping stem cells within stromal niches, whereas integrin-mediated cell adhesion for keeping stem cells within epidermal niches. Further understanding stem cell anchorage and release in coupling with environmental changes should provide further insights into homeostasis control in tissues that harbor stem cells.Key words: stem cell, niche, anchorage, cell adhesion, extracellular matrix, cadherin, integrinTissue-specific adult stem cells are characterized by their prolonged self-renewal ability and potentiality to differentiate into one or more types of mature cells. These unique properties make stem cells essential for maintaining tissue homeostasis throughout life. It is generally believed that all adult stem cells reside in specific microenvironments named niches, which provide physical support and produce critical signals to maintain stem cell identity and govern their behavior.14 Consequently, intimate stem cell and niche association is a pre-requisite for stem cell''s long-term maintenance and function. How stem cells are kept within the niche is thus an important issue in stem cell biology. Characterization of a number of stem cell niches in model organisms has led to the classification of niches into two general types: stromal niches where stem cells have direct membrane contact with the niche cells and epidermal niches where stem cells are usually associated with the extracellular matrix (ECM), and do not directly contact any fixed stromal cells.1 Studies in Drosophila have led to the cellular and functional verification of the stem cell niche theory5,6 and not surprisingly, have also led to the discovery of the molecular mechanisms anchoring stem cells to the niche. Here I consider recent studies in Drosophila on types of cell adhesions used to anchor stem cells in the niches, and summarize cell adhesion molecules utilized in the most characterized niches in the mammalian tissues, and suggest that cadherin-mediated cell-to-cell adhesion and integrin-mediated cell-to-ECM adhesion are possibly two general mechanisms that function in respective stromal or epidermal niches for stem cell anchorage in diverse organisms.  相似文献   

14.
15.
Haematopoietic stem cells (HSCs) are multipotent, self-renewing progenitors that generate all mature blood cells. HSC function is tightly controlled to maintain haematopoietic homeostasis, and this regulation relies on specialized cells and factors that constitute the haematopoietic 'niche', or microenvironment. Recent discoveries, aided in part by technological advances in in vivo imaging, have engendered a new appreciation for the dynamic nature of the niche, identifying novel cellular and acellular niche components and uncovering fluctuations in the relative importance of these components over time. These new insights significantly improve our understanding of haematopoiesis and raise fundamental questions about what truly constitutes a stem cell niche.  相似文献   

16.
The subventricular zone is one of the 2 germinal niches of the adult brain where neural stem cells (NSC) generate new neurons and glia throughout life. NSC behavior is controlled by the integration of intrinsic signals and extrinsic cues provided by the surrounding microenvironment, or niche. Within the niche, the vasculature has emerged as a critical compartment, to which both neural stem cells and transit-amplifying progenitors are closely associated. A key function of the vasculature is to deliver blood-borne and secreted factors that promote proliferation and lineage progression of committed neural progenitors. We recently found that, in contrast to the established role of soluble cues, juxtacrine signals on vascular endothelial cells maintain neural stem cells in a quiescent and undifferentiated state through direct cell-cell interactions. In this perspective, we discuss how, through these apparently opposing signals, the vascular niche might coordinate stem cell decisions between maintenance and proliferation.  相似文献   

17.
Stem cells are fascinating, as they supply the cells that construct our adult bodies and replenish, as we age, worn out, damaged, and diseased tissues. Stem cell regulation relies on intrinsic signals but also on inputs emanating from the neighbouring niche. The Drosophila testis provides an excellent system for studying such processes. Although recent advances have uncovered several signalling, cytoskeletal and other factors affecting niche homeostasis and testis differentiation, many aspects of niche regulation and maintenance remain unsolved. In this review, we discuss aspects of niche establishment and integrity not yet fully understood and we compare it to the current knowledge in other model systems such as vertebrates and plants. We also address specific questions on stem cell maintenance and niche regulation in the Drosophila testis under the control of Hox genes. Finally, we provide insights on the striking functional conservation of homologous genes in plants and animals and their respective stem cell niches. Elucidating conserved mechanisms of stem cell control in both lineages could reveal the importance underlying this conservation and justify the evolutionary pressure to adapt homologous molecules for performing the same task.  相似文献   

18.
Stem cell niches are specific regulatory microenvironments formed by neighboring stromal cells. Owing to difficulties in identifying stem cells and their niches in many systems, mechanisms that control niche formation and stem cell recruitment remain elusive. In the Drosophila ovary, two or three germline stem cells (GSCs) have recently been shown to reside in a niche, in which terminal filaments (TFs) and cap cells are two major components. We report that signals from newly formed niches promote clonal expansion of GSCs during niche formation in the Drosophila ovary. After the formation of TFs and cap cells, anterior primordial germ cells (PGCs) adjacent to TFs/cap cells can develop into GSCs at the early pupal stage while the rest directly differentiate. The anterior PGCs are very mitotically active and exhibit two division patterns with respect to cap cells. One of these patterns generates two daughters that both contact cap cells and potentially become GSCs. Our lineage tracing study confirms that one PGC can generate two or three GSCs to occupy a whole niche ('clonal expansion'). decapentaplegic (dpp), the Drosophila homolog of human bone morphogenetic protein 2/4, is expressed in anterior somatic cells of the gonad, including TFs/cap cells. dpp overexpression promotes PGC proliferation and causes the accumulation of more PGCs in the gonad. A single PGC mutant for thick veins, encoding an essential dpp receptor, loses the ability to clonally populate a niche. Therefore, dpp is probably one of the mitotic signals that promote the clonal expansion of GSCs in a niche. This study also suggests that signals from newly formed niche cells are important for expanding stem cells and populating niches.  相似文献   

19.
20.
Hematopoietic stem cells (HSC) are maintained in a tightly regulated bone microenvironment constituted by a rich milieu of cells. Bone cells such as osteoblasts are associated with niche maintenance as regulators of the endosteal microenvironment. Bone remodeling also plays a role in HSC mobilization although it is poorly defined. The effects of zoledronic acid (ZA), a potent bisphosphonate that inhibits bone resorption, were investigated on bone marrow cell populations focusing on HSCs, and the endosteal and vascular niches in bone. ZA treatment significantly increased bone volume and HSCs in both young and adult mice (4 week and 4 month old, respectively). ZA increased vessel numbers with no overall change in vascular volume in bones of young and had no effect on vasculature in adult mice. Since both young and adult mice had increased HSCs and bone mass with differing vasculature responses, this suggests that ZA indirectly supports HSCs via the osteoblastic niche and not the vascular niche. Additionally, gene expression in Lin‐ cells demonstrated increased expression of self‐renewal‐related genes Bmi1 and Ink4a suggesting a role of ZA in the modulation of cell commitment and differentiation toward a long‐term self‐renewing cell. Genes that support the osteoblastic niche, BMP2 and BMP6 were also augmented in ZA treated mice. In conclusion, ZA‐induced HSC expansion occurs independent of the vascular niche via indirect modulation of the osteoblastic niche. J. Cell. Biochem. 114: 67–78, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号