首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The previously identified membranotropic regions of the HCV E1 envelope glycoprotein, a class II membrane fusion protein, permitted us to identify different sequences which might be implicated in viral membrane fusion, membrane interaction and/or protein-protein binding. HCV E1 glycoprotein presents a membrano-active region immediately adjacent to the transmembrane segment, which could be involved in membrane destabilization similarly to the pre-transmembrane domains of class I fusion proteins. Consequently, we have carried out a study of the binding and interaction with the lipid bilayer of a peptide corresponding to segment 309-340, peptide E1PTM, as well as the structural changes which take place in both the peptide and the phospholipid molecules induced by the binding of the peptide to the membrane. Here we demonstrate that peptide E1PTM strongly partitions into phospholipid membranes, interacts with negatively-charged phospholipids and locates in a shallow position in the membrane. These data support its role in HCV-mediated membrane fusion and suggest that the mechanism of membrane fusion elicited by class I and II fusion proteins might be similar.  相似文献   

2.
We have studied the binding and interaction of the peptide E1FP with various model membranes. E1FP is derived from the amino acid segment 274-291 of the hepatitis C virus envelope glycoprotein E1, which was previously proposed to host the peptide responsible for fusion to target membranes. In the present study we addressed the changes which take place upon E1FP binding in both the peptide and the phospholipid bilayer, respectively, through a series of complementary experiments. We show that peptide E1FP binds to and interacts with phospholipid model membranes, modulates the polymorphic phase behavior of membrane phospholipids, is localized in a shallow position in the membrane and interacts preferentially with cholesterol. The capability of modifying the biophysical properties of model membranes supports its role in HCV-mediated membrane fusion and suggests that the mechanism of membrane fusion elicited by class I and II fusion proteins might be similar.  相似文献   

3.
The previously identified membrane-active regions of the hepatitis C virus (HCV) E1 and E2 envelope glycoproteins led us to identify different segments that might be implicated in viral membrane fusion, membrane interaction, and/or protein-protein binding. HCV E2 glycoprotein contains one of the most membranotropic segments, segment 603-634, which has been implicated in CD81 binding, E1/E2 and E2/E2 dimerization, and membrane interaction. Through a series of complementary experiments, we have carried out a study of the binding and interaction with the lipid bilayer of a peptide corresponding to segment 603-634, peptide E2FP, as well as the structural changes induced by membrane binding that take place in both the peptide and the phospholipid molecules. Here, we demonstrate that peptide E2FP binds to and interacts with phospholipid model membranes, modulates the polymorphic phase behavior of membrane phospholipids, is localized in a shallow position in the membrane, and is probably oligomerized in the presence of membranes. These data support the role of E2FP in HCV-mediated membrane fusion, and sustain the notion that this segment of the E2 envelope glycoprotein, together with other segments of E2 and E1 glycoproteins, provides the driving force for the merging of the viral and target cell membranes.  相似文献   

4.
We have investigated membrane interactions and perturbations induced by NH(2)-DKWASLWNWFNITNWLWYIK-COOH (HIV(c)), representing the membrane interface-partitioning region that precedes the transmembrane anchor of the human immunodeficiency virus type-1 gp41 fusion protein. The HIV(c) peptide bound with high affinity to electrically neutral vesicles composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine and cholesterol (molar ratio, 1:1:1), and induced vesicle leakage and lipid mixing. Infrared spectra suggest that these effects were promoted by membrane-associated peptides adopting an alpha-helical conformation. A sequence representing a defective gp41 phenotype unable to mediate both cell-cell fusion and virus entry, was equally unable to induce vesicle fusion, and adopted a non-helical conformation in the membrane. We conclude that membrane perturbation and adoption of the alpha-helical conformation by this gp41 region might be functionally meaningful.  相似文献   

5.
We demonstrate in vitro the occurence of a specific but low-affinity interaction between soluble tetrameric rgp160 or soluble monomeric or tetrameric rgp120 and heparin-agarose (HA). This interaction is saturable, pH and temperature-dependent, and can be inhibited by soluble heparin, but not by soluble dextran. In buffer supplemented with 10 mM CaCl2, the C50 of soluble heparin, i.e., the concentration of soluble heparin which leads to 50% inhibition of the binding of [125I]rgp160 or [125I]rgp120 to HA, is 1.1. · 10?4 disaccharidic molar concentration for rgp160 and 3.2 · 10?4 disaccharidic molar concentration for rgp120, which indicates low-affinity interactions. Upon chromatography on HA, [125I]rgp160 is repeatedly eluted as a retarded fraction when compared to the elutions volume of [125I]rgp160-soluble heparin complex. Under the same experimental conditions, [125I]rgp120 is also eluted, but as a less retarded fraction than [125I]rgp160. Taken together, these results suggest that, at least part of the described anti HIV-1 activity of heparin might be mediated by interaction with HIV-1 major envelope glycoprotein.  相似文献   

6.
Mannose-binding C-type lectin receptors, expressed on Langerhans cells and subepithelial dendritic cells (DCs) of cervico-vaginal tissues, play an important role in HIV-1 capture and subsequent dissemination to lymph nodes. DC-SIGN has been implicated in both productive infection of DCs and the DC-mediated trans infection of CD4(+) T cells that occurs in the absence of replication. However, the molecular events that underlie this efficient transmission have not been fully defined. In this study, we have examined the effect of the extracellular domains of DC-SIGN and Langerin on the stability of the interaction of the HIV-1 envelope glycoprotein with CD4 and also on replication in permissive cells. Surface plasmon resonance analysis showed that DC-SIGN increases the binding affinity of trimeric gp140 envelope glycoproteins to CD4. In contrast, Langerin had no effect on the stability of the gp140:CD4 complex. In vitro infection experiments to compare DC-SIGN enhancement of CD4-dependent and CD4-independent strains demonstrated significantly lower enhancement of the CD4-independent strain. In addition DC-SIGN increased the relative rate of infection of the CD4-dependent strain but had no effect on the CD4-independent strain. DC-SIGN binding to the HIV envelope protein effectively increases exposure of the CD4 binding site, which in turn contributes to enhancement of infection.  相似文献   

7.
A model for the hepatitis C virus envelope glycoprotein E2   总被引:16,自引:0,他引:16  
Several experimental studies on hepatitis C virus (HCV) have suggested the envelope glycoprotein E2 as a key antigen for an effective vaccine against the virus. Knowledge of its structure, therefore, would present a significant step forward in the fight against this disease. This paper reports the application of fold recognition methods in order to produce a model of the HCV E2 protein. Such investigation highlighted the envelope protein E of Tick Borne Encephalitis virus as a possible template for building a model of HCV E2. Mapping of experimental data onto the model allowed the prediction of a composite interaction site between E2 and its proposed cellular receptor CD81, as well as a heparin binding domain. In addition, experimental evidence is provided to show that CD81 recognition by E2 is isolate or strain specific and possibly mediated by the second hypervariable region (HVR2) of E2. Finally, the studies have also allowed a rough model for the quaternary structure of the envelope glycoproteins E1 and E2 complex to be proposed. Proteins 2000;40:355-366.  相似文献   

8.
We demonstrate in vitro the occurrence of a specific but low-affinity interaction between soluble tetrameric rgp160 or soluble monomeric or tetrameric rgp120 and heparin-agarose (HA). This interaction is saturable, pH and temperature-dependent, and can be inhibited by soluble heparin, but not by soluble dextran. In buffer supplemented with 10 mM CaCl2, the C50 of soluble heparin, i.e., the concentration of soluble heparin which leads to 50% inhibition of the binding of [125I]rgp160 or of [125I]rgp120 to HA, is 1.1 x 10(-4) disaccharidic molar concentration for rgp160 and 3.2 x 10(-4) dissacharidic molar concentration for rgp120, which indicates low-affinity interactions. Upon chromatography on HA, [125I]rgp160 is repeatedly eluted as a retarded fraction when compared to the elution volume of [125I]rgp160-soluble heparin complex. Under the same experimental conditions, [125I]rgp120 is also eluted, but as a less retarded fraction than [125I]rgp160. Taken together, these results suggest that, at least part of the described anti HIV-1 activity of heparin might be mediated by interaction with HIV-1 major envelope glycoprotein.  相似文献   

9.
We investigated at the molecular level the interaction between, HIV-1 recombinant gp160 (rgp160) and low-molecular-weight dextran sulfate. We demonstrate the occurrence of a specific interaction between rgp160 and sulfated dextran beads, which is saturable, pH-dependent and inhibitable by soluble dextran sulfate but not by soluble dextran. This specific interaction has a low affinity, with an estimated Kd in the 10?4 M range. In addition, the binding of rgp160 to soluble recombinant CD4 (sT4) can only be inhibited by the preincubation of rgp160, but not of sT4, with dextran sulfate. Taken together, these results demonstrate the occurrence of a low affinity, but specific interaction between dextran sulfate and rgp160. This may account, at least in part, for the anti-HIV-1 activity of dextran sulfate.  相似文献   

10.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein interacts with the viral receptor (CD4) and with the gp41 transmembrane envelope glycoprotein. To study the interaction of the gp120 and gp41 envelope glycoproteins, we compared the abilities of anti-gp120 monoclonal antibodies to bind soluble gp120 and a soluble glycoprotein, sgp140, that contains gp120 and gp41 exterior domains. The occlusion or alteration of a subset of gp120 epitopes on the latter molecule allowed the definition of a gp41 "footprint" on the gp120 antibody competition map. The occlusion of these epitopes on the sgp140 glycoprotein was decreased by the binding of soluble CD4. The gp120 epitopes implicated in the interaction with the gp41 ectodomain were disrupted by deletions of the first (C1) and fifth (C5) conserved gp120 regions. These deletions did not affect the integrity of the discontinuous binding sites for CD4 and neutralizing monoclonal antibodies. Thus, the gp41 interface on the HIV-1 gp120 glycoprotein, which elicits nonneutralizing antibodies, can be removed while retaining immunologically desirable gp120 structures.  相似文献   

11.
To estimate the connection between physico-chemical characteristics and biological activity of prostaglandins the interaction of prostaglandin E1 with biological membrane lipids was studied. It is shown that as a result of prostaglandin interaction with phosphatidylcholine a complex is formed that behaves as an individual component and occupies in the surface layer twice as large area than the complex with prostaglandin F2 alpha. The prostaglandin E1 film collapses earlier than F2 alpha. Both facts indicate that the first is more friable. A difference in morphology of prostaglandin monolayers was revealed by electron microscopy. When studying the catalytic activity of peroxidase incorporated in prostaglandin E1 and F2 alpha monolayers some differences were also revealed. In the second case oxidation with methylblue located under the monolayer proceeds more actively. The results obtained point to the connection between the regulatory function of prostaglandins and their chemical structure. Molecular rearrangements of the monolayer caused by prostaglandin incorporation were recorded.  相似文献   

12.
The effect of increasing concentrations of mequitazine, a quinuclidinylmethyl-phenothiazine, on the phase transition temperature (Tc), the broadening of the transition peak, the enthalpy and entropy of transition of dimyristoyl-, dipalmitoyl- and distearoylphosphatidylcholine (DPPC) liposomes was studied. Pest critical micelle concentrations of mequitazine (CMC = 5.23 X 10?2M), caused broadening of the transition peak and lowering of the Tc of pure liposomes. The ratio of peak heights from the nuclear magnetic resonance (NMR) spectra of egg phosphatidycholine liposomes was used as a criterion for assessing the interaction of the drug with phospholipid membranes. Mequitazine interacts with both the polar head groups and hydrophobic membrane interior.  相似文献   

13.
We investigated at the molecular level the interaction between, HIV-1 recombinant gp160 (rgp160) and low-molecular-weight dextran sulfate. We demonstrate the occurrence of a specific interaction between rgp160 and sulfated dextran beads, which is saturable, pH-dependent and inhibitable by soluble dextran sulfate but not by soluble dextran. This specific interaction has a low affinity, with an estimated Kd in the 10(-4) M range. In addition, the binding of rgp160 to soluble recombinant CD4 (sT4) can only be inhibited by the preincubation of rgp160, but not of sT4, with dextran sulfate. Taken together, these results demonstrate the occurrence of a low affinity, but specific interaction between dextran sulfate and rgp160. This may account, at least in part, for the anti-HIV-1 activity of dextran sulfate.  相似文献   

14.
We used BIAcore to analyze the kinetics of interactions between CD81 and hepatitis C virus (HCV) envelope proteins. We immobilized different forms of HCV envelope proteins (E1E2, E2, and E2(661)) on the sensor and monitored their interaction with injected fusion proteins of CD81 large extracellular loop (CD81LEL) and glutathione-S-transferase (CD81LEL-GST) or maltose binding protein (CD81LEL-MBP). The difference between the GST and MBP fusion proteins was their multimeric and monomeric forms, respectively. The association rate constants between CD81LEL-GST or CD81LEL-MBP and the E1E2, E2 or E2(661) HCV envelope proteins were similar. However, the dissociation rate constants of CD81LEL-MBP were higher than those of CD81LEL-GST. Interestingly, the dissociation rate constant of CD81LEL-GST from E1E2 was much lower than from E2 or E2(661). The interaction between both forms of the CD81LEL fusion proteins and the HCV envelope proteins best-fitted the "heterogeneous ligand" model. This model implies that two kinds of interactions occur between envelope proteins and CD81LEL: one is strong, the other is weak. It also implies that the heterogeneity is likely due to the HCV envelope proteins, which are known to form non-covalently linked heterodimers and disulfide-linked aggregate.  相似文献   

15.
The steps leading from hepatitis C virus (HCV) attachment to the hepatocytes to the fusion of viral and cellular membranes remain uncharacterized. In this regard, we have studied the mechanism underlying the HCV fusion process using liposomes and a truncated form of E2 protein lacking the transmembrane region, E2661 (amino acids 384–661). E2661 has been previously obtained by using the baculovirus expression system and shown to behave as an independent folding domain (M. Rodriguez-Rodriguez, D. Tello, B. Yelamos, J. Gomez-Gutierrez, B. Pacheco, S. Ortega, A.G. Serrano, D.L. Peterson, F. Gavilanes, Structural properties of the ectodomain of hepatitis C virus E2 envelope protein, Virus Res. 139 (2009) 91–99). This form has been used in lipid-protein interaction studies with different model vesicles, at different pHs and by employing a variety of fluorescent assays. The obtained results indicate that E2661 induces vesicle aggregation, lipid mixing and liposome leakage, reaching higher values in the presence of negatively charged phospholipids and cholesterol at acidic pH. Therefore, the results of these studies would be indicative of an HCV infection process through receptor mediated endocytosis. Accordingly, E2 might be important in the HCV initial infective steps, interacting with the target membranes and giving rise to their subsequent destabilization.  相似文献   

16.
17.
Human CD81 has been previously identified as the putative receptor for the hepatitis C virus envelope glycoprotein E2. The large extracellular loop (LEL) of human CD81 differs in four amino acid residues from that of the African green monkey (AGM), which does not bind E2. We mutated each of the four positions in human CD81 to the corresponding AGM residues and expressed them as soluble fusion LEL proteins in bacteria or as complete membrane proteins in mammalian cells. We found human amino acid 186 to be critical for the interaction with the viral envelope glycoprotein. This residue was also important for binding of certain anti-CD81 monoclonal antibodies. Mutating residues 188 and 196 did not affect E2 or antibody binding. Interestingly, mutation of residue 163 increased both E2 and antibody binding, suggesting that this amino acid contributes to the tertiary structure of CD81 and its ligand-binding ability. These observations have implications for the design of soluble high-affinity molecules that could target the CD81-E2 interaction site(s).  相似文献   

18.

Introduction

Hepatitis C virus (HCV) genome contains two envelope proteins (E1 and E2) responsible for the virus entry into the cell. There is a substantial lack of sequences covering the full length of E1/E2 region for genotype 4. Our study aims at providing new sequences as well as characterizing the genetic divergence of the E1/E2 region of HCV 4a using our new sequences along with all publicly available datasets.

Methods

The genomic segments covering the whole E1/E2 region were isolated from Egyptian HCV patients and sequenced. The resulting 36 sequences 36 were analyzed using sequence analysis techniques to study variability within and among hosts in the same time point. Furthermore, previously published HCV E1/E2 sequence datasets for genotype 4a were retrieved and categorized according to the geographical location and date of isolation and were used for further analysis of variability among Egyptian over a period of 15 years, also compared with non-Egyptian sequences to figure out region-specific variability.

Results

Phylogenetic analysis of the new sequences has shown variability within the host and among different individuals in the same time point. Analysis of the 36 sequences along with the Egyptian sequences (254 sequences in E1 in the period from 1997 to 2010 and 8 E2 sequences in the period from 2006 to 2010) has shown temporal change over time. Analysis of the new HCV sequences with the non-Egyptian sequences (182 sequences in E1 and 155 sequences in the E2) has shown region specific variability. The molecular clock rate of E1 was estimated to be 5E-3 per site per year for Egyptian and 5.38E-3 for non-Egyptian. The clock rate of E2 was estimated to be 8.48E per site per year for Egyptian and 6.3E-3 for non-Egyptian.

Conclusion

The results of this study support the high rate of evolution of the Egyptian HCV genotype 4a. It has also revealed significant level of genetic variability among sequences from different regions in the world.
  相似文献   

19.
The peptide fragment of the carboxy-terminal region of the human immunodeficiency virus (HIV) transmembrane protein (gp41) has been implicated in T-cell death. This positively charged, amphipathic helix (amino acids 828 to 848) of the envelope protein is located within virions or cytoplasm. We studied the interaction of the isolated, synthetic amphipathic helix of gp41 with planar phospholipid bilayer membranes and with Sf9 cells using voltage clamp, potentiodynamic, and single-cell recording techniques. We found that the peptide binds strongly to planar membranes, especially to the negatively charged phosphatidylserine bilayer. In the presence of micromolar concentrations of peptide sufficient to make its surface densities comparable with those of envelope glycoprotein molecules in HIV virions, an increase in bilayer conductance and a decrease in bilayer stability were observed, showing pore formation in the planar lipid bilayers. These pores were permeable to both monovalent and divalent cations, as well as to chloride. The exposure of the inner leaflet of cell membranes to even 25 nM peptide increased membrane conductance. We suggest that the carboxy-terminal fragment of the HIV type 1 envelope protein may interact with the cell membrane of infected T cells to create lipidic pores which increase membrane permeability, leading to sodium and calcium flux into cells, osmotic swelling, and T-cell necrosis or apoptosis.  相似文献   

20.
Antibody-complement interaction with lipid model membranes   总被引:19,自引:0,他引:19  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号