首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Su X  Pang T  Wakabayashi S  Shigekawa M 《Biochemistry》2003,42(4):1086-1094
We studied hyperosmolarity-induced changes in cell volume and cytoplasmic pH in PS120 cells expressing Na(+)/H(+) exchanger (NHE) isoforms and their mutants. Change in cell volume was estimated by measuring change in cell height by means of confocal microscopy. Regulatory volume increase (RVI) and cytoplasmic alkalinization were observed in cells expressing NHE1 but not in cells expressing NHE2 or NHE3. Studies using chimeric exchangers revealed that the membrane domain of the exchanger is responsible for the difference in volume sensitivity between NHE1 and NHE2. Although deletion or point mutation within the first extracellular loop of NHE1 did not affect RVI and alkalinization, point mutations within the corresponding region of NHE2, particularly a region containing aa 41-53, as well as replacement of the N-terminus of NHE2 with the corresponding region of NHE1, rendered NHE2 responsive to the activating effect of cell shrinkage. Thus, the membrane domain plays an important role in the response of the exchanger to cell shrinkage. The data suggest that the putative first extracellular loop of NHE2, but not that of NHE1, may exert an inhibitory influence on hyperosmolarity-induced activation of the exchanger and thereby block RVI.  相似文献   

2.
We have previously shown that stimulation of acid secretion in parietal cells causes rapid initial cell shrinkage, followed by Na(+)/H(+) exchange-mediated regulatory volume increase (RVI). The factors leading to the initial cell shrinkage are unknown. We therefore monitored volume changes in cultured rabbit parietal cells by confocal measurement of the cytoplasmic calcein concentration. Although blocking the presumably apically located K(+) channel KCNQ1 with chromanol 293b reduced both the forskolin- and carbachol-induced cell shrinkage, inhibition of Ca(2+)-sensitive K(+) channels with charybdotoxin strongly inhibited the cell volume decrease after carbachol, but not after forskolin stimulation. The cell shrinkage induced by both secretagogues was partially inhibited by blocking H(+)-K(+)-ATPase with SCH28080 and completely absent after incubation with NPPB, which inhibits parietal cell anion conductances involved in acid secretion. The subsequent RVI was strongly inhibited with the Na(+)/H(+) exchanger 1 (NHE1)-specific concentration of HOE642 and completely by 500 muM dimethyl-amiloride (DMA), which also inhibits NHE4. None of the above substances induced volume changes under baseline conditions. Our results indicate that cell volume decrease associated with acid secretion is dependent on the activation of K(+) and Cl(-) channels by the respective secretagogues. K(+), Cl(-), and water secretion into the secretory canaliculi is thus one likely mechanism of stimulation-associated cell shrinkage in cultured parietal cells. The observed RVI is predominantly mediated by NHE1.  相似文献   

3.
Maeno E  Takahashi N  Okada Y 《FEBS letters》2006,580(27):6513-6517
Sustained cell shrinkage is a major hallmark of apoptotic cell death. In apoptotic cells, whole cell volume reduction, called apoptotic volume decrease (AVD), proceeds until fragmentation of cells. Under non-apoptotic conditions, human epithelial HeLa cells exhibited a slow regulatory volume increase (RVI) after osmotic shrinkage induced by exposure to hypertonic solution. When AVD was induced by treatment with a Fas ligand, TNF-alpha or staurosporine, however, it was found that HeLa cells failed to undergo RVI. When RVI was inhibited by combined application of Na+/H+ exchanger (NHE) and anion exchanger blockers, hypertonic stress induced prolonged shrinkage followed by caspase-3 activation in HeLa cells. Hypertonicity also induced apoptosis in NHE1-deficient PS120 fibroblasts, which lack the RVI response. When RVI was restored by transfection of these cells with NHE1, hypertonicity-induced apoptosis was completely prevented. Thus, it is concluded that RVI dysfunction is indispensable for the persistence of AVD and induction of apoptosis.  相似文献   

4.
Whole blood from rainbow trout and carp was subjected to hyperosmotic shock and subsequent beta-adrenergic stimulation (isoprenaline) at different oxygen tension ( PO(2)) and carbon dioxide tension ( PCO(2)) levels with the aim to evaluate changes in red blood cell (RBC) volume, pH and ion concentrations and their ultimate effect on blood O(2) transport characteristics. Hyperosmolality (addition of NaCl) induced RBC shrinkage, which was followed by a regulatory volume increase (RVI) that was larger at low than at high PO(2)and more complete in carp than in trout. Carp RBC showed practically full volume recovery within 140 min at low PO(2)and partial recovery at high PO(2), whereas RVI was partial under all PO(2)and PCO(2)conditions in trout. The RVI increased intracellular [Na(+)], water content, and, in carp, also pH (pHi), suggesting activation of Na(+)/H(+) exchange. In trout RBCs, activation of RVI was rapid but succeeded by deactivation. In carp RBCs, activation of Na(+) influx was slower but it continued, allowing full volume recovery. Shrinkage of the RBCs was associated with only minor decreases in blood oxygen saturation and oxygen affinity in both species. Thus, the oxygen affinity decrease expected on the basis of the increased concentration of intracellular haemoglobin and organic phosphates was small, and it appeared to some extent countered during RVI by an oxygen affinity increase via increased pHi. Addition of isoprenaline increased RBC volume and pHi and increased Hb oxygen saturation. The beta-adrenergic response was stronger at low compared to high PO(2) and at high compared to low PCO(2). The PO(2) dependency was largest in carp, whereas the PCO(2) (pH) dependency was more expressed in trout. The adrenergic response of trout RBCs was similar under isoosmotic and hyperosmotic conditions. In carp RBCs, the response was absent at high PO(2) under isoosmotic conditions, but interestingly it could be induced under hyperosmotic conditions. The data suggest that the RBC shrinkage occurring in fish moving from freshwater to seawater has minimal impact on blood O(2) binding properties.  相似文献   

5.
在许多类型的哺乳动物细胞中,细胞体积对介导胰岛素发挥其生理功能起关键作用.细胞体积调节机制在胰岛素的主要靶组织骨骼肌中尤为重要.为了解该组织中细胞体积调节的机制,对Na+K+2Cl-共转运蛋白在大鼠L6骨骼肌细胞中的表达及其在调节性体积增加中的作用进行了研究.应用免疫印迹法,在L6肌管细胞中检测到分子量为170kD的钠钾氯共转运蛋白.K+(86Rb+)输入实验结果表明,54%的86Rb+是通过钠钾氯共转运蛋白输入细胞的,而其余86Rb+的输入是通过钠钾三磷酸腺苷酶和其他未知转运蛋白实现的.当L6细胞被置于高渗透压溶液(420mosmolL)中,导致细胞体积减少40%,同时钠钾氯共转运蛋白的活性迅速增加(高达2倍).细胞体积在60min内恢复至正常,但在钠钾氯共转运蛋白抑制剂bumetanide存在时,这种调节性体积增加的过程被阻断.这些结果表明,L6肌管细胞表达具有生理活性的钠钾氯共转运蛋白;此转运蛋白被高渗透压诱导造成的细胞体积缩小激活的现象表明,它是细胞调节性体积增加(RVI)机制中的关键元素,在L6骨骼肌细胞体积的调节中起重要作用.  相似文献   

6.
在许多类型的哺乳动物细胞中,细胞体积对介导胰岛素发挥其生理功能起关键作用.细胞体积调节机制在胰岛素的主要靶组织骨骼肌中尤为重要.为了解该组织中细胞体积调节的机制,对Na K 2Cl-共转运蛋白在大鼠L6骨骼肌细胞中的表达及其在调节性体积增加中的作用进行了研究.应用免疫印迹法,在L6肌管细胞中检测到分子量为170kD的钠钾氯共转运蛋白.K (86Rb )输入实验结果表明,54%的86Rb 是通过钠钾氯共转运蛋白输入细胞的,而其余86Rb 的输入是通过钠钾三磷酸腺苷酶和其他未知转运蛋白实现的.当L6细胞被置于高渗透压溶液(420mosmolL)中,导致细胞体积减少40%,同时钠钾氯共转运蛋白的活性迅速增加(高达2倍).细胞体积在60min内恢复至正常,但在钠钾氯共转运蛋白抑制剂bumetanide存在时,这种调节性体积增加的过程被阻断.这些结果表明,L6肌管细胞表达具有生理活性的钠钾氯共转运蛋白;此转运蛋白被高渗透压诱导造成的细胞体积缩小激活的现象表明,它是细胞调节性体积增加(RVI)机制中的关键元素,在L6骨骼肌细胞体积的调节中起重要作用.  相似文献   

7.
Alteration in cell volume of vertebrates results in activation of volume-sensitive ion flux pathways. Fine control of the activity of these pathways enables cells to regulate volume following osmotic perturbation. Protein phosphorylation and dephosphorylation have been reported to play a crucial role in the control of volume-sensitive ion flux pathways. Exposing Amphiuma tridactylu red blood cells (RBCs) to phorbol esters in isotonic medium results in a simultaneous, dose-dependent activation of both Na(+)/H(+) and K(+)/H(+) exchangers. We tested the hypothesis that in Amphiuma RBCs, both shrinkage-induced Na(+)/H(+) exchange and swelling-induced K(+)/H(+) exchange are activated by phosphorylation-dependent reactions. To this end, we assessed the effect of calyculin A, a phosphatase inhibitor, on the activity of the aforementioned exchangers. We found that exposure of Amphiuma RBCs to calyculin-A in isotonic media results in simultaneous, 1-2 orders of magnitude increase in the activity of both K(+)/H(+) and Na(+)/H(+) exchangers. We also demonstrate that, in isotonic media, calyculin A-dependent increases in net Na(+) uptake and K(+) loss are a direct result of phosphatase inhibition and are not dependent on changes in cell volume. Whereas calyculin A exposure in the absence of volume changes results in stimulation of both the Na(+)/H(+) and K(+)/H(+) exchangers, superimposing cell swelling or shrinkage and calyculin A treatment results in selective activation of K(+)/H(+) or Na(+)/H(+) exchange, respectively. We conclude that kinase-dependent reactions are responsible for Na(+)/H(+) and K(+)/H(+) exchange activity, whereas undefined volume-dependent reactions confer specificity and coordinated control.  相似文献   

8.
Maintenance of a stable cell volume and intracellular pH is critical for normal cell function. Arguably, two of the most important ion transporters involved in these processes are the Na+/H+ exchanger isoform 1 (NHE1) and Na+ -K+ -2Cl- cotransporter isoform 1 (NKCC1). Both NHE1 and NKCC1 are stimulated by cell shrinkage and by numerous other stimuli, including a wide range of hormones and growth factors, and for NHE1, intracellular acidification. Both transporters can be important regulators of cell volume, yet their activity also, directly or indirectly, affects the intracellular concentrations of Na+, Ca2+, Cl-, K+, and H+. Conversely, when either transporter responds to a stimulus other than cell shrinkage and when the driving force is directed to promote Na+ entry, one consequence may be cell swelling. Thus stimulation of NHE1 and/or NKCC1 by a deviation from homeostasis of a given parameter may regulate that parameter at the expense of compromising others, a coupling that may contribute to irreversible cell damage in a number of pathophysiological conditions. This review addresses the roles of NHE1 and NKCC1 in the cellular responses to physiological and pathophysiological stress. The aim is to provide a comprehensive overview of the mechanisms and consequences of stress-induced stimulation of these transporters with focus on the heart, brain, and blood. The physiological stressors reviewed are metabolic/exercise stress, osmotic stress, and mechanical stress, conditions in which NHE1 and NKCC1 play important physiological roles. With respect to pathophysiology, the focus is on ischemia and severe hypoxia where the roles of NHE1 and NKCC1 have been widely studied yet remain controversial and incompletely elucidated.  相似文献   

9.
Aestivation in African and South American lungfish (Protopterus and Lepidosiren, respectively) is associated with elevations of extracellular osmolarity. Osmotic shrinkage of Protopterus red blood cells (RBCs) caused a small but significant stimulation of the Na influx that was amiloride-sensitive. suggesting involvement of the Na+/H+ exchanger (NHE). The associated in vitro regulatory volume increase was insignificant within a time frame of 120 min, but the shrinkage-activated Na+ influx may be sufficient for slow regulatory volume increase during aestivation in vivo. Osmotic swelling of the RBCs induced an incomplete regulatory volume decrease that was statistically significant after 180 min. The RBCs of Protopterus were very large (mean cellular volume of 6939 +/- 294 microm3) and possessed 23,066 +/- 7,326 beta-adrenoceptors cell(-1) with a Kd value of 6.1 +/- 3.2 nM. The number of receptors per unit surface area of lungfish RBCs was calculated to be twice that of trout RBCs and 70% that of cod RBCs. There was, however, no adrenergic stimulation of the NHE in either Protopterus or Lepidosiren. Acidification of the extracellular medium also failed to activate the NHE.  相似文献   

10.
Concomitant Na(+)/H(+) and Cl(-)/HCO(3)(-) exchange activation occurs during stimulation of acid secretion in cultured rabbit parietal cells, possibly related to a necessity for volume regulation during the secretory process. We investigated whether cytoplasmic volume changes occur during secretagogue stimulation of cultured rabbit parietal cells. Cells were loaded with the fluorescent dye calcein, and the calcein concentration within a defined cytoplasmic volume was recorded by confocal microscopy. Forskolin at 10(-5) M, carbachol at 10(-4) M, and hyperosmolarity (400 mosmol) resulted in a rapid increase in the cytoplasmic dye concentration by 21 +/- 6, 9 +/- 4, and 23 +/- 5%, respectively, indicative of cell shrinkage, followed by recovery to baseline within several minutes, indicative of regulatory volume increase (RVI). Depolarization by 5 mM barium resulted in a decrease of the cytoplasmic dye concentration by 10 +/- 2%, indicative of cell swelling, with recovery within 15 min, and completely prevented forskolin- or carbachol-induced cytoplasmic shrinkage. Na(+)/H(+) exchange inhibitors slightly reduced the initial cell shrinkage and significantly slowed the RVI, whereas 100 microM bumetanide had no significant effect on either parameter. We conclude that acid secretagoguges induce a rapid loss of parietal cell cytoplasmic volume, followed by RVI, which is predominantly mediated by Na(+)/H(+) and Cl(-)/HCO(3)(-) exchange.  相似文献   

11.
We examined the cell-specific subcellular expression patterns for sodium- and potassium-coupled chloride (NaK2Cl) cotransporter 1 (NKCC1), Na(+) bicarbonate cotransporter (NBCe1), cystic fibrosis transmembrane conductance regulator (CFTR), and Na(+)/H(+) exchanger 3 (NHE3) to understand the functional plasticity and synchronization of ion transport functions along the crypt-villus axis and its relevance to intestinal disease. In the unstimulated intestine, all small intestinal villus enterocytes coexpressed apical CFTR and NHE3, basolateral NBCe1, and mostly intracellular NKCC1. All (crypt and villus) goblet cells strongly expressed basolateral NKCC1 (at approximately three-fold higher levels than villus enterocytes), but no CFTR, NBCe1, or NHE3. Lower crypt cells coexpressed apical CFTR and basolateral NKCC1, but no NHE3 or NBCe1 (except NBCe1-expressing proximal colonic crypts). CFTR, NBCe1, and NKCC1 colocalized with markers of early and recycling endosomes, implicating endocytic recycling in cell-specific anion transport. Brunner's glands of the proximal duodenum coexpressed high levels of apical/subapical CFTR and basolateral NKCC1, but very low levels of NBCe1, consistent with secretion of Cl(-)-enriched fluid into the crypt. The cholinergic agonist carbachol rapidly (within 10 min) reduced cell volume along the entire crypt/villus axis and promoted NHE3 internalization into early endosomes. In contrast, carbachol induced membrane recruitment of NKCC1 and CFTR in all crypt and villus enterocytes, NKCC1 in all goblet cells, and NBCe1 in all villus enterocytes. These observations support regulated vesicle traffic in Cl(-) secretion by goblet cells and Cl(-) and HCO(3)(-) secretion by villus enterocytes during the transient phase of cholinergic stimulation. Overall, the carbachol-induced membrane trafficking profile of the four ion transporters supports functional plasticity of the small intestinal villus epithelium that enables it to conduct both absorptive and secretory functions.  相似文献   

12.
Hypertonicity is a stressful stimulus leading to cell shrinkage and apoptotic cell death. Apoptosis can be prevented if cells are able to activate the mechanism of RVI (regulatory volume increase). This study in mIMCD3 cells presents evidence of a permissive role of the EGFR (epidermal growth factor receptor) on RVI, achieved for the most part through the two main EGFR-triggered signalling chains, the MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) and the PI3K (phosphoinositide 3-kinase)/Akt (also known as protein kinase B) pathways. Hyperosmotic solutions (450 mosM) made by addition of NaCl, increased EGFR phosphorylation, which is prevented by GM6001 and AG1478, blockers respectively, of MMPs (matrix metalloproteinases) and EGFR. Inhibition of EGFR, ERK (PD98059) or PI3K/Akt (wortmannin) phosphorylation reduced RVI by 60, 48 and 58% respectively. The NHE (Na(+)/H(+) exchanger) seems to be the essential mediator of this effect since (i) NHE is the main contributor to RVI, (ii) EGFR, ERK and PI3K/Akt blockers added together with the NHE blocker zoniporide reduce RVI by non-additive effects and (iii) All the blockers significantly lowered the NHE rate in cells challenged by an NH(4)Cl pulse. Besides reducing RVI, the inhibition of MMP, EGFR and PI3K/Akt had a strong pro-apoptotic effect increasing cell death by 2-3.7-fold. This effect was significantly lower when RVI inhibition did not involve the EGFR-PI3K/Akt pathway. These results provide evidence that Akt and its permissive effect on RVI have a predominant influence on cell survival under hypertonic conditions in IMCD3 cells. This role of Akt operates under the influence of EGFR activation, promoted by MMP.  相似文献   

13.
Apoptosis results in cell shrinkage and intracellular acidification, processes opposed by the ubiquitously expressed NHE1 Na(+)/H(+) exchanger. In addition to mediating Na(+)/H(+) transport, NHE1 interacts with ezrin/radixin/moesin (ERM), which tethers NHE1 to cortical actin cytoskeleton to regulate cell shape, adhesion, motility, and resistance to apoptosis. We hypothesize that apoptotic stress activates NHE1-dependent Na(+)/H(+) exchange, and NHE1-ERM interaction is required for cell survival signaling. Apoptotic stimuli induced NHE1-regulated Na(+)/H(+) transport, as demonstrated by ethyl-N-isopropyl-amiloride-inhibitable, intracellular alkalinization. Ectopic NHE1, but not NHE3, expression rescued NHE1-null cells from apoptosis induced by staurosporine or N-ethylmaleimide-stimulated KCl efflux. When cells were subjected to apoptotic stress, NHE1 and phosphorylated ERM physically associated within the cytoskeleton-enriched fraction, resulting in activation of the pro-survival kinase, Akt. NHE1-associated Akt activity and cell survival were inhibited in cells expressing ERM binding-deficient NHE1, dominant negative ezrin constructs, or ezrin mutants with defective binding to phosphoinositide 3-kinase, an upstream regulator of Akt. We conclude that NHE1 promotes cell survival by dual mechanisms: by defending cell volume and pH(i) through Na(+)/H(+) exchange and by functioning as a scaffold for recruitment of a signalplex that includes ERM, phosphoinositide 3-kinase, and Akt.  相似文献   

14.
15.
Electrolyte transport processes of small intestinal epithelia maintain a balance between hydration of the luminal contents and systemic fluid homeostasis. Under basal conditions, electroneutral Na(+) absorption mediated by Na(+)/H(+) exchanger 3 (NHE3) predominates; under stimulated conditions, increased anion secretion mediated by CFTR occurs concurrently with inhibition of Na(+) absorption. Homeostatic adjustments to diseases that chronically affect the activity of one transporter (e.g., cystic fibrosis) may include adaptations in the opposing transport process to prevent enterosystemic fluid imbalance. To test this hypothesis, we measured electrogenic anion secretion (indexed by the short-circuit current) across NHE3-null [NHE3(-)] murine small intestine and electroneutral Na(+) absorption (by radioisotopic flux analysis) across small intestine of mice with gene-targeted disruptions of the anion secretory pathway, i.e., CFTR-null [CFTR(-)] or Na(+)-K(+)-2Cl(-) cotransporter-null [NKCC1(-)]. Protein expression of NHE3 and CFTR in the intestinal epithelia was measured by immunoblotting. In NHE3(-), compared with wild-type small intestine, maximal and bumetanide-sensitive anion secretion following cAMP stimulation was significantly reduced, and there was a corresponding decrease in CFTR protein expression. In CFTR(-) and NKCC1(-) intestine, Na(+) absorption was significantly reduced compared with wild-type. NHE3 protein expression was decreased in the CFTR(-) intestine but was unchanged in the NKCC1(-) intestine, indicating that factors independent of expression also downregulate NHE3 activity. Together, these data support the concept that absorptive and secretory processes determining NaCl and water movement across the intestinal epithelium are regulated in parallel to maintain balance between the systemic fluid volume and hydration of the luminal contents.  相似文献   

16.
We explored molecular and morphological alteration in gill mitochondria-rich (MR) cells of Mozambique tilapia, Oreochromis mossambicus, acclimated to deionized freshwater (DFW), freshwater (FW), 1/3-diluted seawater (1/3 SW) and seawater (SW). Scanning electron microscopic observations revealed that the apical membrane of MR cells appeared as a flat or slightly projecting disk in DFW and FW, being larger in DFW than in FW. In contrast, the apical membrane typically formed a pit structure in 1/3 SW and SW. The mRNA expression levels of Na(+)/H(+) exchanger-3 (NHE3) and Na(+)/Cl(-) cotransporter (NCC) in the gills were increased with decreasing environmental salinity, whereas Na(+)/K(+)/2Cl(-) cotransporter-1a (NKCC1a) expression was upregulated by increasing salinity. Immunofluorescence staining showed that the MR cell population of DFW- and FW-acclimated tilapia consisted mostly of MR cells with apical NHE3 and those with apical-NCC; MR cells with basolateral NKCC1a dominated in SW-acclimated tilapia. These results indicated that apical-NHE3 and apical-NCC MR cells were ion-absorbing cells, and that basolateral-NKCC1a MR cells were ion-secreting cells. In fish acclimated to 1/3 SW, both ion-absorbing and secreting cells existed in the gills, suggesting that fish in near-isotonic water were equipped with mechanisms of both hyper- and hypoosmoregulation to prepare for environmental salinity changes.  相似文献   

17.
Rigor RR  Damoc C  Phinney BS  Cala PM 《PloS one》2011,6(12):e29210
The Na(+)/H(+)Exchanger isoform 1 (NHE1) is a highly versatile, broadly distributed and precisely controlled transport protein that mediates volume and pH regulation in most cell types. NHE1 phosphorylation contributes to Na(+)/H(+) exchange activity in response to phorbol esters, growth factors or protein phosphatase inhibitors, but has not been observed during activation by osmotic cell shrinkage (OCS). We examined the role of NHE1 phosphorylation during activation by OCS, using an ideal model system, the Amphiuma tridactylum red blood cell (atRBC). Na(+)/H(+) exchange in atRBCs is mediated by an NHE1 homolog (atNHE1) that is 79% identical to human NHE1 at the amino acid level. NHE1 activity in atRBCs is exceptionally robust in that transport activity can increase more than 2 orders of magnitude from rest to full activation. Michaelis-Menten transport kinetics indicates that either OCS or treatment with the phosphatase inhibitor calyculin-A (CLA) increase Na(+) transport capacity without affecting transport affinity (K(m)=44 mM) in atRBCs. CLA and OCS act non-additively to activate atNHE1, indicating convergent, phosphorylation-dependent signaling in atNHE1 activation. In situ(32)P labeling and immunoprecipitation demonstrates that the net phosphorylation of atNHE1 is increased 4-fold during OCS coinciding with a more than 2-order increase in Na(+) transport activity. This is the first reported evidence of increased NHE1 phosphorylation during OCS in any vertebrate cell type. Finally, liquid chromatography and mass spectrometry (LC-MS/MS) analysis of atNHE1 immunoprecipitated from atRBC membranes reveals 9 phosphorylated serine/threonine residues, suggesting that activation of atNHE1 involves multiple phosphorylation and/or dephosphorylation events.  相似文献   

18.
To investigate the interaction between the ion channels and transporters in the salivary fluid secretion, we measured the membrane voltage (V(m)) and intracellular concentrations of Ca(2+), Na(+) ([Na(+)](c)), Cl(-), and H(+) (pH(i)) in rat submandibular gland acini (RSMGA). After a transient depolarization induced by a short application of acetylcholine (ACh; 5 muM, 20 s), RSMGA showed strong delayed hyperpolarization (V(h,ACh); -95 +/- 1.8 mV) that was abolished by ouabain. In the HCO(3)(-)-free condition, the V(h,ACh) was also blocked by bumetanide, a blocker of Na(+)-K(+)-2Cl(-) cotransporter (NKCC). In the presence of HCO(3)(-) (24 meq, bubbled with 5% CO(2)), however, the V(h,ACh) was not blocked by bumetanide, but it was suppressed by ethylisopropylamiloride (EIPA), a Na(+)/H(+) exchanger (NHE) inhibitor. Similarly, the ACh-induced increase in [Na(+)](c) was totally blocked by bumetanide in the absence of HCO(3)(-), but only by one-half in the presence of HCO(3)(-). ACh induced a prominent acidification of pH(i) in the presence of HCO(3)(-), and the acidification was further increased by EIPA treatment. Without HCO(3)(-), an application of ACh strongly accelerated the NKCC activity that was measured from the decay of pH(i) during the application of NH(4)(+) (20 mM). Notably, the ACh-induced activation of NKCC was largely suppressed in the presence of HCO(3)(-). In summary, the ACh-induced anion secretion in RSMGA is followed by the activation of NKCC and NHE, resulting an increase in [Na(+)](c). The intracellular Na(+)-induced activation of electrogenic Na(+)/K(+)-ATPase causes V(h,ACh). The regulation of NKCC and NHE by ACh is strongly affected by the physiological level of HCO(3)(-).  相似文献   

19.
20.
We tested whether NHE3 and NHE2 Na(+)/H(+) exchanger isoforms were recruited to the plasma membrane (PM) in response to changes in ion homeostasis. NHE2-CFP or NHE3-CFP fusion proteins were functional Na(+)/H(+) exchangers when transiently expressed in NHE-deficient PS120 fibroblasts. Confocal morphometry of cells whose PM was labeled with FM4-64 measured the fractional amount of fusion protein at the cell surface. In resting cells, 10-20% of CFP fluorescence was at PM and stable over time. A protocol commonly used to activate the Na(+)/H(+) exchange function (NH(4)-prepulse acid load sustained in Na(+)-free medium), increased PM percentages of PM NHE3-CFP and NHE2-CFP. Separation of cellular acidification from Na(+) removal revealed that only NHE3-CFP translocated when medium Na(+) was removed, and only NHE2-CFP translocated when the cell was acidified. NHE2/NHE3 chimeric proteins demonstrate that the Na(+)-removal response element resides predominantly in the NHE3 cytoplasmic tail and is distinct from the acidification response sequence of NHE2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号